beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit"

Transkript

1 Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe Geschwindigkeit habe, sodass Teilchen instantan (d.h. zum Zeitpunkt t) in B' ruht. Dann gilt stimmt mit dem Zeitintervall dt' der "mitgeführten" Uhr überein, und definiert die "Eigenzeit" des Teilchens. Sie ist aus Sicht jedes beliebigen ISs gleich (weil invariant ist) Folglich ist die Eigenzeit invariant. denn Eigenzeit für ein beliebig bewegtes Punktteilchen P und Q seien Ereignisse auf einer Weltlinie, die im Inertialsystem A durch die Bahnkurve mit Geschwindigkeit beschrieben wird. Eigenzeit zwischen P und Q: B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit. Die Eigenzeitdifferenz von B ist also Jede andere Weltlinie von P nach Q hat eine kleinere Eigenzeitdifferenz! [Für Weltlinie entlang Photonbahnen (mit ) ist Eigenzeitdifferenz sogar = 0).] (2) impliziert "Zwillingsparadox": Raumfahrer kehrt jünger(!) zur Erde zurück als ein daheim gebliebener Zwilling. Wie kann das sein? Grund: Seine Bahn ist gekrümmt, d.h. er wird unterwegs beschleunigt, und laut allgemeiner Relativitätstheorie gehen beschleunigte Uhren langsamer.

2 Viererformalismus (Barthelmann et al., "Theoretische Physik, Kapitel 9, 10) Wir wählen für alle IS den Koordinatenursprung gleich. Das Ereignis P, beschrieben durch den "physikalischen Vierervektor", hat in unterschiedlichen IS unterschiedliche Koordinaten, weil die Basisvektoren unterschiedlich sind. In S: In S': Koordinaten Basisvektoren Konvention: immer ein Index oben, anderer Index unten! Reihenindex Lorentz-Transformation für Koordinaten: Spaltenindex (1) = (2): (Indizes umbenennen) Lorentz-Transformation für Basisvektoren: Poincare-Transformation Poincare-Gruppe = ( Lorentz-Gruppe ) U (Translationsgruppe) Poincare-Transformation: Verschiebung von Zeitnullpunkt und/oder räumlichem Ursprung Für Koordinatendifferenzen und Koordinatendifferenziale gilt weiterhin: Definition eines allgemeinen Vierervektors: ist ein Vierervektor mit "kontravarianten Komponenten" wenn letztere bei der Lorentz-Transformation (43.3) wie folgt transformieren: (also "wie ") "kontravariant" = "entgegengesetzt zu den Basisvektoren" (damit invariant bleibt) Beispiele: Geschwindigkeit, Impuls, Beschleunigung, Kraft Man spricht oft von "Lorentz-kovarianten Vierervektoren". Das Attribut "Lorentz-kovariant" bedeutet dabei lediglich, dass sich alle Vierergrößen entsprechend ihrer Indexstruktur transformieren, denn die sind eigentlich kontravariante Komponenten

3 Minkowski-Metrik Invariantes Wegelement definiert eine metrische Fundamentalform des Minkowski-Raumes: "Minkowski- Metrik": Die Inverse der Minkowski-Metrik ist definiert durch: für für Inverse: [Achtung: für krummlinige Koordinaten sind die Matrixelemente von und verschieden!] Eigenschaften der Lorentz-Transformation Invarianz des Wegelements: (Indizes umbenennen) Definierende Eigenschaft von Lorentz-Transformationen: (2) = (1) Bestimmung der inversen Lorentz-Transformation: Inverse Transformation:

4 Kovariante Komponenten, duale Basisvektoren Def: "kovariante Komponenten": "Index runterziehen" Inverse Relation: "Index hochziehen" Definition: "duale Basisvektoren": "Index hochziehen" Inverse Relation: "Index runterziehen" Äquivalente Darstellungen von physikalischem Vierervektor: mittels kontravarianten Komponenten mittels kovarianten Komponenten Invariantes Intervall: (Indexziehen) Transformationseigenschaften von kovarianten Komponenten Somit folgt aus (1): Vergleiche (43.5): gleiche Form! Also transformiert wie ein Basisvektor (deswegen die Bezeichnung "kovariant") Transformation von dualem Basisvektor: Forderung Iindexziehen für inverse Transformation: (Indexziehen) (46.4):

5 Lorentz-invariantes Skalarprodukt Definition: Skalarprodukt für die Basisvektoren: Daraus ergibt sich ein Lorentz-invariantes Skalarprodukt für beliebige Vierervektoren: (Indexziehen) invariant, denn: ist also ein "Lorentz-Skalar" Vierertensoren höherer Ordnung Jeder Index hat wohldefinierte Transformationseigenschaften: z.b. für Tensoren 2. Stufe Beispiel: Minkowski-Metrik ist ein "invarianter Tensor" zweiter Stufe: Einsteins 1. Postulat, "alle physikalischen Phänomene laufen in allen IS gleich ab, impliziert: Eine relativistischen Theorie muss sich vollständig mittels Lorentz-Tensoren formulieren lassen! Vierergeschwindigkeit und -beschleunigung Weltlinie eines Teilchens sei beschrieben durch parametrisiert durch die Koordinatenzeit Geschwindigkeit: Vierergeschwindigkeit? wäre kein Lorentz-kovarianter Vierervektor, weil t nicht-trivial transformiert Lorentz-kovariante Vierergeschwindigkeit wird mittels Eigenzeit definiert: Lorentz-Skalar: in der Tat invariant! Viererbeschleunigung: Orthogonalität von Vierier- Geschwindigkeit und Beschleunigung:

6 Relativistische Mechanik Ruhemasse, Viererimpuls "Ruhemasse" eines Punktteilchens = seine Masse in einem IS, in dem es ruht. Ruhemasse ist per Definition eine invariante Größe, d.h. ein Lorentz-Skalar. Lorentz-kovarianter Viererimpuls: = Ruhemasse x Vierergeschwindigkeit "Relativistischer Dreierimpuls": "Relativistische Masse": Lorentz-Skalar: Nullkomponente des Viererimpulses: [positives Vorzeichen, zwecks Konsistenz mit (2)] Viererkraft Lorentz-invariante Viererkraft: Es gilt Dreierkraft: mit relativistischem Dreierimpuls Relativistische Impulserhaltung: in Abwesendheit v. externen Kräften gilt Für Punktteilchen mit zeitunabhängiger Masse: (4) ist die relativistische Version von Newton's 2. Gesetz. Es führt zu folgendem Ausdruck für die räumlichen Komponenten der Kraft (kann gezeigt werden...): Relativistische Trägheitskraft zeigt somit nicht notwendigerweise in Richtung von

7 Relativistische Energie (50.7): Daraus lässt sich Bedeutung von ablesen: = Arbeit, die bei infinitesimaler Verschiebung von der Kraft geleistet wird. Wurde ein anfänglich freies Teilchen eine Zeit lang durch äußere Kräfte beschleunigt, dann hat sich um die geleistete Arbeit verändert, und wird deshalb als "Energie" interpretier mit "relativistischer Energie": (Einstein's berühmte Formel) Für ruhendes Teilchen gilt: "Äquivalenz von Masse und Energie" Relativistische Energie-Impuls-Beziehung Wir wissen bereits: Relativistische Energie-Impuls- Beziehung: Taylor-Entwicklung: Ruhe- Energie kinetische Energie relativistische Korrektur Photonen: dann muss sein, ansonsten wäre Stattdessen:

8 Zusammenfassung: Minkowski-Metrik, Vierervektoren, Lorentz-Transformation Eigenzeit (im Ruhesystem gemessene Zeit): "Minkowski- Metrik": Indexziehen: Physikalischer Vierervektor: dargestellt mittels: kontravarianten Komponenten kovarianten Komponenten Definierende Eigenschaft von Lorentz-Transformationen: Transformation von Komponenten: Transformation von Basisvektoren: Invariantes Skalarprodukt: Zusammenfassung: Relativistische Mechanik Vierergeschwindigkeit: Viererbeschleunigung: (Dreiergeschwindigkeit) Viererimpuls: Relativistischer Dreierimpuls: relativistische Masse Viererkraft: (Dreierkraft) Relativistischer Energie: Für Photonen:

IX Relativistische Mechanik

IX Relativistische Mechanik IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat Allgemeine Relativitätstheorie Ausarbeitung Von Jan Kaprolat Grundlegende Motivation zur ART Die Allgemeine Relativitätstheorie (ART) ist die Erweiterung der speziellen Relativitätstheorie (SRT). Sie bezieht

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie von Mike Bernhardt, mikebernhardt@web.de März 005 Inhaltsverzeichnis Einleitung.........................................................................................

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne

Mehr

Skript zur Vorlesung Spezielle Relativitätstheorie

Skript zur Vorlesung Spezielle Relativitätstheorie Skript zur Vorlesung Spezielle Relativitätstheorie gelesen von: Apl. Prof. Dr. rer. nat. Jörg Main Skript von : Michael Klas 1 Inhaltsverzeichnis 1. Einführung... 4 1.1. Physik in dieser Raum-Zeit... 4

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Vorlesung: Klassische Theoretische Physik I

Vorlesung: Klassische Theoretische Physik I Vorlesung: Klassische Theoretische Physik I M. Zirnbauer Institut für Theoretische Physik Universität zu Köln Sommersemester 2015 Contents 1 Newtonsche Mechanik 3 1.1 Affine und Euklidische Räume.............................

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften 12 Relativitätstheorie Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 06. Juli 2009 Die Relativitätstheorie besteht aus

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Allgemeine Relativitätstheorie. Einführung in die Grundlagen

Allgemeine Relativitätstheorie. Einführung in die Grundlagen Allgemeine Relativitätstheorie Einführung in die Grundlagen Bisher: Newton sche Theorie der Gravitation Bewegungen von Teilchen durch Feld: Einstein (1915): Allgemeine Relativitätstheorie Feld erzeugt

Mehr

1 Einleitung: Die Lichtgeschwindigkeit

1 Einleitung: Die Lichtgeschwindigkeit 1 Einleitung: Die Lichtgeschwindigkeit In der zweiten Hälfte des 19. Jahrhunderts wurde die elektromagnetische Natur des Lichts erkannt (J. C. Maxwell, ca. 1870). Wir wollen die Argumentation kurz skizzieren.

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

1 Felder bewegter Ladungen

1 Felder bewegter Ladungen Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 16.10.2008 1 Felder

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Lorentz- und Poincaré-Gruppe und SL(2,C)

Lorentz- und Poincaré-Gruppe und SL(2,C) Lorentz- und Poincaré-Gruppe und SL(2,C) Alexander Baade Andreas Müllers Christian Wuttke 24.01.2005 Inhaltsverzeichnis 1 Wiederholung der Grundlagen 2 2 Die SL(2,C) und die eigentlichen orthochronen Lorentz-Gruppe

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Was ist Relativistische Astrophysik?................................. 3 1.2 Schwarzschildradius - klassisch...................................

Mehr

Minkowski-Geometrie in der Schule. Michael Bürker

Minkowski-Geometrie in der Schule. Michael Bürker Minkowski-Geometrie in der Schule Michael Bürker buerker@online.de Gliederung Weg-Zeit-Diagramme Grundprinzipien der speziellen Relativitätstheorie Drei Symmetrieprinzipien Der relativistische Faktor Lorentz-Kontraktion

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Das gravitomagnetische Feld der Erde

Das gravitomagnetische Feld der Erde Das gravitomagnetische Feld der Erde von T. Fließbach 1. Einführung magnetisch gravitomagnetisch 2. Bezugssysteme Bevorzugte Inertialsysteme 3. Newton und Mach Absoluter Raum? 4. Drehung eines Foucault-Pendels

Mehr

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung 10 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia ETH Zurich) 7. Die Klein-Gordon-Gleichung Kapitel 7 Bosonfelder: Die Klein-Gordon Gleichung Wir können im Prinzip die Schrödinger-Gleichung einfach erweitern.

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr

Relativistische Kinematik - Formelsammlung

Relativistische Kinematik - Formelsammlung Relativistische Kinematik - Formelsammlung Editor: Patrick Reichart Physik Department E, TU-München Originalassung vom 0. Dezember 996 letzte Überarbeitung :. März 05 Quelle/Autoren: diverse handschritliche

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

6. Die Grundgesetze der Physik

6. Die Grundgesetze der Physik K.Bräuer: Philosophische Aspekte der modernen Physik, SS 015 6. Die Grundgesetze der Physik Bewusstsein und Physik In der Regel wird Physik als eine Beschreibung der unbelebten Natur aufgefasst. Folgt

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Grundlagen der Astronomie und Astrophysik. Andre Knecht. [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze

Grundlagen der Astronomie und Astrophysik. Andre Knecht. [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze 2009 Grundlagen der Astronomie und Astrophysik Andre Knecht [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze 2-Körperproblem-Gravitationsgesetz 3 Newton schen Axiome Trägheitsgesetz:

Mehr

Relativitätstheorie. Ergänzendes Scriptum zur Vorlesung Physik II. U. Straumann Physik - Institut Universität Zürich, 19.

Relativitätstheorie. Ergänzendes Scriptum zur Vorlesung Physik II. U. Straumann Physik - Institut Universität Zürich, 19. Relativitätstheorie Ergänzendes Scriptum zur Vorlesung Physik II U. Straumann Physik - Institut Universität Zürich, 19. März 2013 1 Inhaltsverzeichnis 1 Die grundlegenden Ideen 3 1.1 Raum und Zeit.................................

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: 23.10.12 Jungius 9, Hörs 2 1 Organisatorisches Vorlesung am 1.11.: wird dankenswerterweise

Mehr

Relativistische Punktteilchen

Relativistische Punktteilchen Kapitel 11 Relativistische Punktteilchen In diesem Kapitel untersuchen wir die Bewegung von geladenen Punktteilchen in elektromagnetischen Feldern. Wir beginnen mit der Diskussion der Weltlinien von Teilchen

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

2.6 Mechanik in bewegten Bezugsystemen

2.6 Mechanik in bewegten Bezugsystemen - 66-2.6 Mechanik in bewegten Bezugsystemen 2.6.1 Galilei'sche Relativität Die Beschreibung einer Bewegung hängt ab vom verwendeten Bezugssystem: Wenn jemand in einem Eisenbahnwagen einen Ball aufwirft

Mehr

Kapitel 3. Koordinatensysteme

Kapitel 3. Koordinatensysteme Kapitel 3 Koordinatensysteme Bisher haben wir uns bei der Beschreibung von Vektoren auf das kartesische Koordinatensystem konzentriert. Für viele physikalische Anwendungen sind aber kartesische Koordinaten

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

8 Spezielle Relativitätstheorie

8 Spezielle Relativitätstheorie 8 Spezielle Relativitätstheorie Im Jahr 1905 veröffentlichte Albert Einstein seine berühmte spezielle Relativitätstheorie, in der er die Kenntnisse über die Struktur von Raum und Zeit revolutionierte.

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Darstellungstheorie der Lorentz-Gruppe

Darstellungstheorie der Lorentz-Gruppe Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr

Mathematische Physik: Vektoranalysis und Differentialgeometrie

Mathematische Physik: Vektoranalysis und Differentialgeometrie Mathematische Physik: Vektoranalysis und Differentialgeometrie September 2006 April 2007 Markus Penz Stichwörter. Mannigfaltigkeit, Karte, Atlas, Tangentialraum, Tangentialbündel, Dualraum (Kovektorraum),

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

10 Kapitel I: Anschauliche Vektorrechnung

10 Kapitel I: Anschauliche Vektorrechnung 10 Kapitel I: Anschauliche Vektorrechnung haben. In Mengenschreibweise ist G = {x x = a + tb für ein t R}. Wir werden für diese einführenden Betrachtungen im Interesse einer knappen Redeweise jedoch häufig

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Transformation der Anregungsenergie zwischen Bezugssystemen.

Transformation der Anregungsenergie zwischen Bezugssystemen. Einsteins Relativitätstheorie kontra klassische Mechanik Paul Marmet übersetzt von Mathias Hüfner Kapitel Zwei letzte Durchsicht 01.08.12 Transformation der Anregungsenergie zwischen Bezugssystemen. 2.1

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

Spezielle Relativitätstheorie (Einstein, 1905)

Spezielle Relativitätstheorie (Einstein, 1905) Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

Mehr

Bemerkungen zur Tensorrechnung

Bemerkungen zur Tensorrechnung Prof.Dr.W.Timmermann Institut für Analysis 0. Einführung Bemerkungen zur Tensorrechnung Tensorrechnung wird meist als schwierig empfunden. Das hat mindestens zwei Gründe: 1. Etliche Lehrbücher enthalten

Mehr

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Hypothese Nach der Thermal-Time-Theorie (ttt) ist die Gravitation keine Kraft zwischen zwei Massen, sondern eine Beschleunigung bzw. Kraft,

Mehr

Protokoll zum Versuch: Atwood'sche Fallmaschine

Protokoll zum Versuch: Atwood'sche Fallmaschine Protokoll zum Versuch: Atwood'sche Fallmaschine Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 11.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3

Mehr

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Von Torsten Pieper Mannheim 11. November 2013 Zusammenfassung

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

I. Astronomische Weltbilder

I. Astronomische Weltbilder Grundwissen Physik 10. Jahrgangsstufe I. Astronomische Weltbilder 1. Geozentrisches Weltbild Wichtige Eigenschaften nach Ptolemäus 100-160: - Die Erde ist der Mittelpunkt der Welt - Das kugelförmige Himmelsgewölbe

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676)

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" Empfehlenswerte Notizen: David Mermin (Cornell University, USA): "Physics 209: Introductory Notes on Relativity" www.lassp.cornell.edu/~cew2/p209/p209_home.html

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Grundlagen der Strömungsmechanik

Grundlagen der Strömungsmechanik Franz Durst Grundlagen der Strömungsmechanik Eine Einführung in die Theorie der Strömungen von Fluiden Mit 349 Abbildungen, davon 8 farbig QA Springer Inhaltsverzeichnis Bedeutung und Entwicklung der Strömungsmechanik

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Technische Mechanik I

Technische Mechanik I Vorlesung Technische Mechanik I Prof. Dr.-Ing. habil. Jörn Ihlemann Professur Festkörpermechanik Raum 270, Sekretariat: Frau Ines Voigt Tel.:531-38522 Technische Mechanik I, WS 2010/11 Mechanik: Ältestes

Mehr

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010

Einführung in die Numerik strukturerhaltender Zeitintegratoren. Leonard Schlag 6. Dezember 2010 Einführung in die Numerik strukturerhaltender Zeitintegratoren Leonard Schlag 6. Dezember 2010 1 Inhaltsverzeichnis 1 Einführung in die Numerik strukturerhaltender Zeitintegratoren 3 1.1 Häuge Problemstellung:

Mehr

Einführung in die Grundlagen der Theoretischen Physik

Einführung in die Grundlagen der Theoretischen Physik Günther Ludwig Einführung in die Grundlagen der Theoretischen Physik Band 1: Raum, Zeit, Mechanik 2., durchgesehene und erweiterte Auflage Vieweg Inhalt Zur Einführung 1 /. Was theoretische Physik nicht

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Relativistische Energie

Relativistische Energie Relativistische Energie. Der LHC (Large Hadron Collider) am CERN beschleunigt Protonen und schwere Ionen auf einer kreisförmigen Strecke der Länge u = 6,659 km. (a) Protonen erreichen die Endenergie W

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

9 Relativistische Mechanik

9 Relativistische Mechanik 9 Relativistische Mechanik Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind In diesem Kapitel stellen wir die relativistische

Mehr

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Mechanik Dipl. Ing. (FH) Michael Schmidt März 2016 nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung 7 2. Kinematik 9 2.1. Einführung..............................

Mehr

Die Lorentz-Transformation

Die Lorentz-Transformation Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme

Mehr

Einblicke in die spezielle Relativitätstheorie

Einblicke in die spezielle Relativitätstheorie Einblicke in die spezielle Relativitätstheorie M. Jakob Gymnasium Pegnitz 3. April 2015 Inhaltsverzeichnis 1 Grundaussagen der speziellen Relativitätstheorie 1.1 Notwendigkeit 1.2 Annahmen 1.3 Ergebnisse

Mehr

Demonstration der Effekte der Speziellen Relativitätstheorie durch geometrische Konstruktion

Demonstration der Effekte der Speziellen Relativitätstheorie durch geometrische Konstruktion Demonstration der Effekte der Speziellen Relativitätstheorie durch geometrische Konstruktion Dr. Thomas Strohm www.thomas-strohm.de Zusammenfassung Im vorliegenden Artikel werden die wichtigsten Aussagen

Mehr

Über die Autoren 7 Danksagung 7. Einleitung 17

Über die Autoren 7 Danksagung 7. Einleitung 17 Inhaltsverzeichnis Über die Autoren 7 Danksagung 7 Einleitung 17 Über dieses Buch 17 Konventionen in diesem Buch 17 Falsche Voraussetzungen 17 Wie dieses Buch aufgebaut ist 18 Teil I: Physik anwenden 18

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume

Kapitel VIII: Der Raum R n ; allgemeine Vektorräume Kapitel VIII: Der Raum R n ; allgemeine Vektorräume a) Vektoren: Definition und Grundlagen Größen, die sich durch Angabe eines Zahlenwertes und einer Einheit vollständig beschreiben lassen, nennt man Skalare

Mehr

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg:

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: Werkstatt: Arbeit = Kraft Weg Viel Kraft für nichts? In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: W = * = F * s FII bezeichnet dabei die Kraftkomponente in Wegrichtung s. Die

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Vorlesung von Prof. Dr. D. Trautmann. ausgearbeitet von Dr. Andreas Aste und Dr. Oliver Conradt

Vorlesung von Prof. Dr. D. Trautmann. ausgearbeitet von Dr. Andreas Aste und Dr. Oliver Conradt Einführung in die Physik III Vorlesung von Prof. Dr. D. Trautmann ausgearbeitet von Dr. Andreas Aste und Dr. Oliver Conradt Wintersemester 2001/2002 2 Dieses Skript ist als wissenschaftliches Werk geschützt

Mehr

Verallgemeinerte Dreiecksungleichungen Michael Kapovich

Verallgemeinerte Dreiecksungleichungen Michael Kapovich Verallgemeinerte Dreiecksungleichungen Michael Kapovich Wir alle wissen, dass eine gerade Linie die kürzeste Verbindung von einem Punkt zu einem anderen Punkt ist. Dieses Wissen scheint in den Jahrmillionen

Mehr

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung Rotverschiebung In der Astronomie wird die Rotverschiebung mit dem Buchstaben z bezeichnet. Mit ihrer Hilfe lassen sich z.b. Fluchtgeschwindigkeiten, Entfernungen und Daten aus früheren Epochen des Universum

Mehr