Vorlesung. Komplexe Zahlen

Größe: px
Ab Seite anzeigen:

Download "Vorlesung. Komplexe Zahlen"

Transkript

1 Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x = 0. 1 Mit der Lösung dieses Problems eröffneten sich neue Perspektiven in der Analysis wie beispielsweise die Reihenentwicklung trigonometrischer Funktionen oder der Exponentialfunktion, und ein neuartiger Blick auf viele innermathematische Probleme. So gilt die Eulersche Identität e iπ = 1 bei vielen als das schönste mathematische Gesetz, da es einen Zusammenhang zwischen vier der wichtigsten Konstanten herstellt. Aber auch außerhalb der Mathematik sind die komplexen Zahlen von entscheidender Bedeutung, beispielsweise in der Physik (Wechselstromrechnung). Da die komplexen Zahlen in der Schule häufig nicht behandelt werden, wollen wir hier einen kleinen Einstieg geben. Vorbetrachtung Zahlbereiche Bevor wir nun direkt mit der Einführung der Komplexen Zahlen beginnen, schadet es nicht einen Blick auf die schon bekannten Zahlenbereiche zu werfen und warum deren Einführung Notwendig war. N Z Q R C Am Anfang stehen immer die Natürlichen Zahlen 2 N = {1, 2, 3,... }, welche eigens eingeführt wurden um zählen zu können. Darauf aufbauend wurden die Ganzen Zahlen Z = {..., 2, 1, 0, 1, 2,... } entwickelt. Ursächlich hierfür, dass sich Gleichungen der Form a + x = b in den Natürlichen Zahlen a, b N für a b nicht lösen lassen. Wir wollen also Rechnungen der Form x = b a vornehmen, selbst wenn a größer als b ist, wie dies zum Beispiel bei 2 4 der Fall ist. 1 Allgemein die Lsg der Gleichungen x 2 + c = 0 für c > 0. Diese lässt sich aber auf den Fall c = 1 reduzieren 2 Der Grundlagenstreit ob 0 eine natürliche Zahl ist oder nicht, spielt für unsere Betrachtung keine Rolle. 1

2 Die Lösung des Problems ist eine sehr mathematische. Denn statt sich darüber Gedanken zu machen, dass wir solche Zahlen nicht haben, erklären wir das Problem zur Lösung, indem wir für jede Rechnung b a eine Zahl einführen und unter diesen dann jene als gleich betrachten, bei denen a und b den selben Abstand haben und in der selben Größenreihenfolge vorkommen. So sind 1 3 und 2 4 das gleiche, aber sind verschieden zu 3 1. Schreibt man für Zahlen b a mit b = a auch 0 für b > a einfach die Lösung b a N und für b < a auch (a b). Nach den Ganzen Zahlen kommen die Rationalen Zahlen Q die alle Brüche enthalten. Auch hier stand wieder die Lösung einer bestimmten Art der Gleichung, nämlich bx = a, im Vordergrund und die Lösung bestand darin, wieder neue Zahlen a b zu erdenken, von denen erneut einige als gleich betrachtet werden. So ist 1 2 das Gleiche wie 3 6. Auf die Rationalen Zahlen bauen nun noch die Reellen Zahlen auf, die notwendig wurden, da es irrationale Zahlen und damit Zahlen gibt, deren Dezimaldarstellung weder endlich noch periodisch ist. Beispiele wären 2, π und e. Eingeführt hat man diese dann, in dem man (potenziell) unendliche Dezimaldarstellung zugelassen hat. Alle diesen Zahlenbereichen sind zwei Dinge gemein: Zum einen ist jeder eine Erweiterung des Vorhergehenden. Zum anderen wird jeweils das Problems zur Lösung erklärt und gegebenenfalls gleichwertige Lösungen zu einer zusammengefasst. 1 Grundlagen Betrachtet man nun das Ausgangsproblem x = 0, so scheint es nur das natürlichste ein x einzuführen, dass die Gleichung erfüllt. Dies führt zu folgender Definition 1. Die imaginäre Einheit i ist eine Lösung der Gleichung x = 0 i := 1 = i 2 = 1. Rechnet man mit i nun wie mit einer Variable und nimmt die bisherigen Reellen Zahlen hinzu, so kann man Zahlen der Form a + b i mit a, b R erzeugen und außerdem feststellen, dass durch die Grundrechenarten +,,, keine weiteren Zahlen erhält. Die so neu gewonnen Zahlen definieren wir daher wie folgt: Definition 2 (komplexe Zahl). Die Menge der komplexen Zahlen 3 ist definiert als C := {(a, b) a, b R} = R 2 3 Die Isomorphie zu R 2 sollte als alternative Schreibweise veranschaulicht werden. 2

3 Hierbei heißt a = Re(z) Realteil und b = Im(z) Imaginärteil der komplexen Zahl z C. Wenn man nun z = (a, b) im zwei dimensionalen karthesischen Koordinatensystem mit dem dazugehörigen Richtungsvektor identifizert, begründet das auch die äquivalente Schreibweise z = a + ib = a 1 C + b i wobei 1 C = (1, 0) und i = (0, 1). Bemerkung 1. Die reellen Zahlen lassen sich nunmehr als Teilmenge der komplexen Zahlen auffassen, nämlich als Menge aller Tupel (a, b) C mit b = 0. Wegen der Isomorphie zwischen C und R 2 lassen sich die Rechenregeln von R 2 sehr leicht auf C übertragen: Definition 3 (Rechenregeln). Für w, z C mit z = a + ib und w = c + id gilt: z + w = (a + b) + (c + d)i z w = (a + ib)(c + id) = (ac bd) + i(ad + bc) Weiterhin übertragen sich direkt das Assoziativ-, Kommutativ- und Distributivgesetz. Definition 4 (Betrag). Der Betrag einer komplexen Zahl z = a + ib ist definiert als z := z z = Re(z) 2 + Im(z) 2 = a 2 + b 2. Hierbei bezeichnet z := a ib die zu z konjugiert-komplexe Zahl. Auch für den komplexen Betrag gilt die Dreiecksungleichung z 1 + z 2 z 1 + z 2. Bemerkung 2. Für die Komplexe Konjugation z von z gelten folgende Rechenregeln: Es seien z, w C z = z z + w = z + w z w = z w z w = z w z/w = z/w Daher macht es keinen Unterschied, ob man erst rechnet und dann konjugiert oder umgekehrt. 3

4 Geometrische Interpretation z = a + ib z = a ib z = a ib z = z = a + ib Addition und Subtraktion von komplexen Zahlen 2 Polarkoordinaten Wir haben gerade gesehen, wie sich komplexe Zahlen geometrisch interpretieren lassen. Aufgrund dieser geometrischen Interpretation lassen sich komplexe Zahlen auch mit zwei anderen Variablen darstellen, nämlich Radius r und Winkel ϕ. Es ist nämlich z = a 2 + b 2 = r. 4

5 Darstellung einer komplexen Zahl in Polarkoordinaten Damit lassen sich die Winkelfunktionen für komplexe Zahlen beschreiben: cos ϕ = a z sin ϕ = b z tan ϕ = b a, wobei z = a + ib und ϕ [0, 2π). Damit folgt: z = z (cos ϕ + i sin ϕ) Bemerkung 3. Der Tangens ist für komplexe Zahlen mit Re(z) = 0 offenbar nicht definiert. 3 Exponentialform komplexer Zahlen Für Sinus und Cosinus und die Exponentialfunktion gibt es auch eine Darstellung in Reihenform: sin x = ( 1) n x2n+1 (2n + 1)! i=0 cos x = i=0 ( 1) n x2n (2n)! exp(x) = i=0 x n n! Daraus folgt, dass e iϕ = exp(iϕ) = cos ϕ + i sin ϕ und daraus ergibt sich für komplexe Zahlen, dass z = z e iϕ. (Exponentialform) Bemerkung 4. Aus obigem Zusammenhang wird auch direkt die Eulersche Identität e iπ = cos π + i sin π = 1 5

6 ersichtlich. Außerdem erleichtert die Exponentialform (auch: Normalform) das Rechnen mit komplexen Zahlen. Es ist nämlich für z 1 = z 1 e iϕ 1, z 2 = z 2 e iϕ 2 : z 1 z 2 = z 1 z 2 e i(ϕ 1+ϕ 2 ) z 1 z 2 = z 1 z 2 ei(ϕ 1 ϕ 2 ) e iϕ = e iϕ cos ϕ = 1 2 ( e iϕ + e iϕ) sin ϕ = 1 2i ( e iϕ e iϕ) 4 Potenzen und Wurzeln in C 4.1 Potenzen z 2 = z 2 e 2iϕ i 2 = Wurzeln Beispiele für Quadratwurzeln x 2 = i = e i π 2 = x = e i π 4 x = e i π 4 = e i 5π 4 = x = cos π 4 + i sin π 4 = i x = 2 i n-te Einheitswurzel Die Gleichung z n = 1 hat in C die n Lösungen Beispiel: z 12 = 1 z 0 = 1 z 1 = e i 2π n z 2 = e i 2 2π n z k = e i k 2π n für k = 0,..., n 1 6

7 z 0 = 1 z 1 = e i 2π 12 = e i π 6 2π 8i z 1 = e 12 = e i 4π 3 Bemerkung 5. Alle Lösungen haben denselben Betrag, denn sie liegen auf dem komplexen Einheitskreis. Außerdem unterteilen die Lösungen den Kreis in n gleichgroße Kreisstücke die Winkelabstände der Lösungen sind gleich. Deshalb folgt: Wer eine Lösung kennt, kennt alle n-te Wurzel einer komplexen Zahl Aus dem Fundamentalsatz der Algebra folgt, dass jedes Polynom vom Grad k 1 mindestens eine komplexe Nullstelle besitzt. Es folgt sogar, dass jedes komplexe Polynom vollständig in Linearfaktoren zerlegbar ist, sprich für das Polynom P (z) gilt: P (z) = n m a k z k = (z λ j ) σ j mit i=0 j=0 m σ j = n, j=0 wobei λ j die Nullstellen des Polynoms sind und σ j deren Vielfachheit. Somit hat also ein Polynom n-ten Grades inklusive Vielfachheiten n Nullstellen. p hat n Nullstel- Daraus wiederum folgt, dass für das Polynom p(z) = z n q für q C folgt: len. Überlegungen zur Berechnung der Lösungen Seien q, z C mit 0 q = q e iϕ und z n = q. 7

8 1. z ergibt n Mal mit sich selbst multipliziert q : z = n q. Da dies für alle Lösungen gilt, liegen diese auf einem Kreis (um den Ursprung) mir Radius z. 2. Sei z 0 := n q = z e iϕ 0. Dann muss n ϕ 0 ϕ mod 2π sein, da bei der Multiplikation komplexer Zahlen die Winkel der Faktoren addiert werden. Also folgt: z 0 = z e i ϕ n. 3. Alle Lösungen unterscheiden sich nur im Winkel ϕ j. Da für alle Lösungen 1. gilt, folgt: n ϕ j ϕ mod 2π für alle j. 4. Somit gilt: ϕ 0 = ϕ n + 0 2π n ϕ 1 = ϕ n + 1 2π n... ϕ j = ϕ n + j 2π n = z 0 = n q e i n (ϕ+0 2π) z 0 = n q e i n (ϕ+1 2π)... z j = n q e i n (ϕ+j 2π) 5 Punktmengen in der Gaußschen Zahlenebene A := {z z = 1} = Einheitskreis B := { z z 1 = 3 } 2 C := { z z + 2 2i = 1 } 2 D := {z 2 Re(z) Im(z) = 0} E := {z Re(z) = 3} 8

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Kapitel 9 Die komplexen Zahlen Der Körper der komplexen Zahlen Die Gauß sche Zahlenebene Algebraische Gleichungen Anwendungen Der Körper der komplexen Zahlen Die Definition der komplexen Zahlen Definition

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43 Zahlenbereiche Jörn Loviscach Versionsstand: 20. Oktober 2009, 17:43 1 Natürliche, ganze und rationale Zahlen Zum Zählen benötigt man die positiven natürlichen Zahlen 1, 2, 3,... In der Informatik zählt

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

5. Komplexe Zahlen. 5.1 Was ist eine Zahl?

5. Komplexe Zahlen. 5.1 Was ist eine Zahl? 5. Komplexe Zahlen Komplexe Zahlen sind Zahlen der Form a + bi, wo a und b reelle Zahlen sind und i = 1 ist. Wurzeln aus negativen Zahlen gibt es nicht, wird man da antworten, und in der Tat gibt es keine

Mehr

MSG Kurs 10. Klasse, 2011/2012

MSG Kurs 10. Klasse, 2011/2012 MSG Kurs 10. Klasse, 011/01 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stochastik Inhaltsverzeichnis 1 Komplexe Zahlen 3 1.1 Heuristische Herleitung I (Potenzreihen)......................

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2

x 2 + px + q = 0 ) x 1;2 = p 2 r p 2 2 Komplexe Zahlen Komplexe Zahlen treten in der Schule zum ersten Mal bei der Lösung von quadratischen Gleichungen auf. Wir nehmen die Gleichung x 2 + 6x + 25 als Beispiel. Diesen Gleichungstyp können wir

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren.

Komplexe. Zahlen. Ein Leitprogramm in Mathematik. Verfasst von Christina Diehl Marcel Leupp. Du weißt. Instinkt. Bei uns Tigern ist das angeboren. Komplexe Hier ist noch eine Matheaufgabe, die ich nicht lösen kann. Was ist 9+4? Oh, die ist schwer. Dafür brauchst du Analysis und imaginäre Zahlen. Imaginäre Zahlen?! Du weißt schon. Elfzehn, zwölfunddreißig,

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES

4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES 4. QUADRATISCHE GLEICHUNGEN, GLEICHUNGEN HÖHEREN GRADES 4.1. Quadratische Gleichungen (a) Definition Beispiel: Das Produkt zweier aufeinanderfolgender gerader Zahlen beträgt 808. Wie lauten die beiden

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet)

Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet) Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet) Intro: Du kennst die reellen Zahlen. Sie entsprechen den Punkten auf einer Strecke bzw. auf dem Zahlenstrahl. - Man kann sie der Größe

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Hausinternes Curriculum Alfred-Krupp-Schule

Hausinternes Curriculum Alfred-Krupp-Schule Hausinternes Curriculum Alfred-Krupp-Schule Jahrgangsstufe 5 Fach: Mathematik Version vom 12.11.2008 (Jan, Hö) Natürliche Zahlen Symmetrie Schätzen Rechnen Überschlagen Flächen Körper Ganze Zahlen - natürliche

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Die Einführung der Zahlenbereiche aufgrund spezieller Problemstellungen Allgemeines Geschichtliches Anwendungen

Die Einführung der Zahlenbereiche aufgrund spezieller Problemstellungen Allgemeines Geschichtliches Anwendungen Die Einführung der Zahlenbereiche aufgrund spezieller Problemstellungen Allgemeines Geschichtliches Anwendungen PAUL Christina, 0355866 TEUTSCH Elisabeth, 0355470 Seite 1 von 19 Inhaltsverzeichnis 1. Abstract

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Einführung in die Funktionentheorie

Einführung in die Funktionentheorie Einführung in die Funktionentheorie Andreas Gathmann Vorlesungsskript TU Kaiserslautern 204/5 Inhaltsverzeichnis 0. Einleitung und Motivation..................... 3. Komplexe Zahlen.......................

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Skript Dr. Johanna Dettweiler Institut für Analysis 20. Oktober 2009 Inhaltsverzeichnis Einleitung 7 1 Aussagen und Mengen 9 1.1 Aussagen:

Mehr

Lösungen zum 2. Aufgabenblatt

Lösungen zum 2. Aufgabenblatt SS 2012, Lineare Algebra 1 Onlineversion, es werden keine Namen angezeigt. Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar. Insgesamt 3255 Wörter

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 4 Kongruenz und Modulorechnung 39 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

1 Zahlen. 1.1 Die reellen Zahlen

1 Zahlen. 1.1 Die reellen Zahlen Zahlen Die aus dem Alltagsleben bekannten rationalen Zahlen (Bruchzahlen) reichen nicht aus, um Analysis rigoros betreiben zu können. Die historische Entwicklung zeigt vielmehr, dass für die Belange der

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen...

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen... ASK Hochschule Konstanz HTWG www.ask.htwg-konstanz.de INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK Inhalt 1 Anforderungen... 2 2 Aufgaben... 9 3 Lösungen... 11 4 Ausführliche Lösungen... 15 5 Musterprüfungen...

Mehr

7.1 Imaginäre Zahlen. Für die imaginäre Einheit gilt: i 2 = 1 bzw. j 2 = 1 i = 1 j = 1 Alle Vielfachen von i bzw. j nennt man imaginäre Zahlen.

7.1 Imaginäre Zahlen. Für die imaginäre Einheit gilt: i 2 = 1 bzw. j 2 = 1 i = 1 j = 1 Alle Vielfachen von i bzw. j nennt man imaginäre Zahlen. 7 Komplexe Zahlen In vielen Sammlungen mathematischer Zitate findet man den Ausspruch des deutschen Mathematikers Leopold Kronecker: Die natürlichen Zahlen hat der liebe Gott geschaffen, alles andere ist

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Wintersemester 2014/15 Aufgaben I-1. Es seien die folgenden Mengen A = {5,7,9}, B = {5,6,7} und C = {1,3,5,7,9} gegeben.

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Vorlesungsskript. für den Vorkurs Mathematik für Elektrotechniker und Informationstechniker

Vorlesungsskript. für den Vorkurs Mathematik für Elektrotechniker und Informationstechniker Vorlesungsskript für den Vorkurs Mathematik für Elektrotechniker und Informationstechniker Nach einer Vorlesung von Prof. Dr. Josef F. Dorfmeister an der Technischen Universität München Verfasst von Conrad

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Lösung zur Übung 3. Aufgabe 9)

Lösung zur Übung 3. Aufgabe 9) Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen

Mehr

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010

Reelle Zahlen. Mathematische Grundlagen Lernmodul 4. Stand: Oktober 2010 Mathematische Grundlagen Lernmodul 4 Reelle Zahlen Stand: Oktober 200 Autoren: Prof. Dr. Reinhold Hübl, Professor Fakultät für Technik, Wissenschaftliche Leitung ZeMath, E-Mail: huebl@dhbw-mannheim.de

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Vorwort... 11. Analysis... 16

Vorwort... 11. Analysis... 16 Vorwort... 11 Analysis... 16 Differentialrechnung... 16 Produktregel... 17 Höhere Ableitungen... 18 Quotientenregel... 18 Kettenregel... 19 Anwendung der Kettenregel... 20 Einige wichtige Ableitungen...

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrüc WS 2011/2012 Mathemati für Anwender I Vorlesung 3 Bernoullische Ungleichung Die Bernoulli sche Ungleichung für n = 3. Die folgende Aussage heißt Bernoulli Ungleichung. Satz

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

klar Mathematik 7 Hötzel Postruznik Urban-Woldron Weigl

klar Mathematik 7 Hötzel Postruznik Urban-Woldron Weigl klar Mathematik 7 Hötzel Postruznik Urban-Woldron Weigl Mit Bescheid des Bundesministeriums für Bildung, Wissenschaft und Kultur GZ 5.021/0064-Präs. 8/2010 vom 15. Juli 2011 als für den Unterrichtsgebrauch

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Die Fibonacci-Zahlen und der Goldene Schnitt

Die Fibonacci-Zahlen und der Goldene Schnitt Die Fibonacci-Zahlen und der Goldene Schnitt Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 31. August 003 Dieser Artikel beginnt mit der Definition der Fibonacci-Zahlen und des Goldenen Schnitts.

Mehr

1 Komplexe Zahlen. Grenzwertverlag 1

1 Komplexe Zahlen. Grenzwertverlag 1 1 Komplexe Zahlen Grenzwertverlag 1 11 Einführung Grenzwertverlag 2 11 Einführung Problem: Es gibt algebraische Gleichungen, die in der Menge IR der reellen Zahlen keine Lösung besitzen Beispiel 11: x

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

9. Natürliche Zahlen, rationale Zahlen, reelle Zahlen.

9. Natürliche Zahlen, rationale Zahlen, reelle Zahlen. 9-1 Funktionen 9 Natürliche Zahlen, rationale Zahlen, reelle Zahlen Hier soll ein Überblick gegeben werden, wie die reellen Zahlen ausgehend von den natürlichen Zahlen konstruiert werden Dies erfolgt in

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Probestudium der Physik: Mathematische Grundlagen

Probestudium der Physik: Mathematische Grundlagen Probestudium der Physik: Mathematische Grundlagen Ludger Santen 1. Februar 2013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 1 Einführung Die Mathematik ist die Sprache der

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Formale Logik. 1. Das p-g-system Ein formales System ist ein System von

Formale Logik. 1. Das p-g-system Ein formales System ist ein System von E VA R I C H T E R A U F G A B E N S A M M L U N G F Ü R D E N B R Ü C K E N K U R S M AT H E M AT I K F Ü R S T U - D I E N A N FÄ N G E R I N C O M - P U TAT I O N A L S C I E N C E U N D W I R T S C

Mehr