Sicherheitsaspekte. Szenarien. Angriffsarten. Discretionary Access Control. Sicherheit im DBMS. Identifikation und Authentisierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Sicherheitsaspekte. Szenarien. Angriffsarten. Discretionary Access Control. Sicherheit im DBMS. Identifikation und Authentisierung"

Transkript

1 Sicherheitsaspekte Sicherheit im DBMS Identifikation und Authentisierun Autorisierun und Zuriffskontrolle Auditin Szenarien Literaturdatenbank in der Hochschule: erines Sicherheitsbedürfnis ERP-Datenbank in einem Betrieb: Vertrauliche Daten Enthüllun kann zu finanziellen Verlusten führen Datenbank einer Bank Enthüllun von Daten kann zum Bankrott der Bank führen Datenbank in einer militärischen Anlae Anriffsarten Missbrauch von Autorität Inferenz ( Volkszählun ) und Areation ( Verkäufe ) Maskierun Umehun der Zuriffskontrolle ( Reviewin von Papern ) Browsin Trojanische Pferde Versteckte Kanäle Discretionary Access Control Zuriffsreeln (o, s, t, p, f) mit o O, der Mene der Objekte (z.b. Relationen, Tupel, Attribute), s S, der Mene der Subjekte (z.b. Benutzer, Prozesse), t T, der Mene der Zuriffsrechte (z.b. T = {lesen, schreiben, löschen}), p ein Prädikat (z.b. Ran = C4 für die Relation Professoren), und f ein Boolescher Wert, der anibt, ob s das Recht (o, t, p) an ein anderes Subjekt s weitereben darf.

2 Discretionary Access Control Zuriffskontrolle in SQL Realisierun: Zuriffsmatrix Sichten Query Modification Nachteile: Erzeuer der Daten = Verantwortlicher für deren Sicherheit Beispiel: rant select on Professoren to eickler; rant update (MatrNr, VorlNr, PersNr) on prüfen to eickler; Weitere Rechte: Zuriffskontrolle in SQL delete insert references Weiterabe von Rechten: with rant option Entzu von Rechten: revoke update (MatrNr, VorlNr, PersNr) on prüfen from eickler cascade; Sichten Realisierun des Zuriffsprädikats: create view ErstSemestler as select * from Studenten where Semester = 1; rant select on ErstSemestler to tutor; Schutz von Individualdaten durch Areation: create view VorlesunsHärte (VorlNr, Härte) as select VorlNr, av(note) from prüfen roup by VorlNr;

3 Auditin Beispiele: audit session by system whenever not successful; audit insert, delete, update on Professoren; Verfeinerunen des Autorisierunsmodells explizite / implizite Autorisierun positive / neative Autorisierun starke / schwache Autorisierun Autorisierunsalorithmus: wenn es eine explizite oder implizite starke Autorisierun (o, s, t) ibt, dann erlaube die Operation wenn es eine explizite oder implizite starke neative Autorisierun (o, s, t) ibt, dann verbiete die Operation ansonsten wenn es eine explizite oder implizite schwache Autorisierun [o, s, t] ibt, dann erlaube die Operation wenn es eine explizite oder implizite schwache Autorisierun [o, s, t] ibt, dann verbiete die Operation Implizite Autorisierun von Subjekten Dekane Professoren wissenschaftliche Anestellte Rektor / in Anestellte Referatsleiter explizite positive Autorisierun implizite positive Autorisierun auf allen höheren Stufen explizite neative Autorisierun implizite neative Autorisierun auf allen niedrieren Stufen Starke und schwache Autorisierun am Beispiel der Autorisierun von Subjekten Dekane Professoren wissenschaftliche Anestellte Rektor / in Aushilfen Leserecht: /Raum aller Anestellten Anestellte Referatsleiter Verwaltunsanestellte Verwaltunsanestellte Leserecht: /Raum aller Anestellten starke pos. Autorisierun starke ne. Autorisierun schwache pos. Autorisierun schwache ne. Autorisierun

4 Implizite Autorisierun von Operationen schreiben Implizite Autorisierun von Objekten Datenbank lesen explizite positive Autorisierun implizite positive Autorisierun auf allen niedrieren Stufen explizite neative Autorisierun implizite neative Autorisierun auf allen höheren Stufen Schema Relation Tupel Attribut Implikationen abhäni von Operation Implizite Autorisierun entlan einer Typhierarchie PersNr Anestellte GebDatum PersNr Benutzerruppen: Implizite Autorisierun entlan einer Typhierarchie Verwaltunsanestellte dürfen die n aller Anestellten lesen PersNr GebDatum Assistenten is-a Professoren GebDatum Ran wissenschaftliche Anestellte dürfen n und Ran aller Professoren lesen Anfraen: lese die n aller Anestellten Fachebiet Raum lese n und Ran aller Professoren

5 Reeln: Implizite Autorisierun entlan einer Typhierarchie Benutzer mit einem Zuriffsrecht auf einem Objekttypen haben auf die eerbten Attribute in den Untertypen ein leicharties Zuriffsrecht Ein Zuriffsrecht auf einen Objekttyp impliziert auch ein Zuriffsrecht auf alle von Obertypen eerbte Attribute in diesem Typ. Ein Attribut, das in einem Untertyp definiert wurde, ist nicht von einem Obertyp aus erreichbar. Mandatory Access Control hierarchische Klassifikation von Vertrauenswürdikeit und Sensitivität clear(s), mit s Subjekt (clearance) class(o), mit o Objekt (classification) Ein Subjekt s darf ein Objekt o nur lesen, wenn das Objekt eine erinere Sicherheitseinstufun besitzt (class(o) clear(s)). Ein Objekt o muss mit mindestens der Einstufun des Subjektes s eschrieben werden (clear(s) class(o)). Multilevel-Datenbanken Benutzer soll sich der Existenz unzuänlicher Daten nicht bewusst sein Beispiel (TC = Klassifizierun des esamten Tupels = Maximum der Attributklassifizierunen): TC s s Kennun KC s Aenten Blond, James Mata, Harry s meucheln spitzeln Sichtweise eines eheim einestuften Benutzers: TC Probleme: Kennun 007 KC Aenten Blond, James - s s eheimer Benutzer füt Tupel mit Schlüssel 008 ein eheimer Benutzer modifiziert von 007 Multilevel-Relationen Multilevel-Relation R mit Schema R = {A 1, C 1, A 2, C 2,..., A n, C n, TC} Relationeninstanzen R C mit Tupeln [a 1, c 1, a 2, c 2,..., a n, c n, tc] c c i a i ist sichtbar, wenn class (s) c i

6 Interitätsbedinunen Sei κ sichtbarer Schlüssel der Multilevel-Relation R Entity-Interität. R erfüllt die Entity-Interität enau dann, wenn für alle Instanzen R c und r R c die folende Bedinunen elten: 1. A i κ r.a i Null 2. A i,a j κ r.c i =r.c j 3. A i κ r.c i r.c κ (wobei C κ die Zuriffsklasse des Schlüssels ist) Interitätsbedinunen Sei κ sichtbarer Schlüssel der Multilevel-Relation R Null-Interität. R erfüllt die Null-Interität enau dann, wenn für jede Instanz R c von R ilt: 1. r R c, r.a i = Null r.c i = r.c κ 2. R c ist subsumierunsfrei, d.h. es existieren keine zwei Tupel r und s, bei denen für alle Attribute A i entweder r.a i = s.a i und r.c i = s.c i oder r.a i Null und s.a i = Null ilt. Subsumtionsfreiheit von Relationen a) R s Aenten TC Kennun KC 007 Blond, James - Interitätsbedinunen Interinstanz-Interität. R erfüllt die Interinstanz- Interität enau dann, wenn für alle Instanzen R c und R c von R mit c < c R c = f(r c, c ) ilt. Die Filterfunktion f arbeitet wie folt: a) Änderun von R s Aenten TC Kennun KC s 007 Blond, James a) Fehlende Subsumtionsfreiheit Aenten TC Kennun KC 007 Blond, James s 007 Blond, James meucheln - meucheln s s 1. Für jedes r R c mit r.c κ c muss ein Tupel s R c existieren, mit r. Ai wenn r. c' s. Ai = Null sonst r. wenn r. c' s. = r. Ck sonst 1. R c enthält außer diesen keine weiteren Tupel. 2. Subsumierte Tupel werden eliminiert.

7 Interitätsbedinunen Polyinstanziierunsinterität. R erfüllt die Polyinstanziierunsinterität enau dann, wenn für jede Instanz R c für alle a i die folende funktionale Abhänikeit ilt: {κ, C κ, C } i A i. Kryptoraphie Gerade die Gefahr des Abhörens von Kommunikationskanälen ist in heutien Datenbankarchitekturen und Anwendunen sehr roß. Die meisten Datenbankanwendunen werden in einer verteilten Umebun betrieben sei es als Client / Server-System oder als echte verteilte Datenbank. In beiden Fällen ist die Gefahr des unleitimierten Abhörens sowohl innerhalb eines LAN (local area network, z.b. Ethernet) als auch im WAN (wide area network, z.b. Internet) eeben und kann technisch fast nicht auseschlossen werden. Deshalb kann nur die Verschlüsselun der esendeten Information einen effektiven Datenschutz ewährleisten. Ebenen des Datenschutzes leislative Maßnahmen oranisatorische Maßnahmen Authentisierun Zuriffskontrolle Kryptoraphie Datenbank

Referentielle Integrität Fremdschlüssel verweisen auf Tupel einer Relation z.b. gelesenvon in Vorlesungen verweist auf Tupel in Professoren referentie

Referentielle Integrität Fremdschlüssel verweisen auf Tupel einer Relation z.b. gelesenvon in Vorlesungen verweist auf Tupel in Professoren referentie Datenintegrität Integritätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierungen statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

7. Datenintegrität/-Sicherheit

7. Datenintegrität/-Sicherheit 7. Datenintegrität/-Sicherheit 7.1 Datenintegrität 7.2 Datensicherheit 7.2.1 Einleitung 7.2.2 Einfache Zugriffskontrolle in SQL 7.2.3 Verfeinerte Zugriffkontrolle 7.2.4 MAC und Multilevel DBs 33 7.2 Datensicherheit

Mehr

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne

Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne Informatik für Ökonomen II: Datenintegrität Prof. Dr. Carl-Christian Kanne 1 Konsistenzbedingungen DBMS soll logische Datenintegrität gewährleisten Beispiele für Integritätsbedingungen Schlüssel Beziehungskardinalitäten

Mehr

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012

Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012 Datenbanken Datenintegrität + Datenschutz Tobias Galliat Sommersemester 2012 Professoren PersNr Name Rang Raum 2125 Sokrates C4 226 Russel C4 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134 Augustinus

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

Objektrelationale Datenbanken

Objektrelationale Datenbanken Vorlesung Datenbanksysteme vom 26.11.2008 Objektrelationale Datenbanken Konzepte objektrelationaler DBs SQL:1999 OO vs. OR Konzepte objektrelationaler Datenbanken Große Objekte (LOBs: Large Objects) Mengenwertige

Mehr

Referentielle Integrität

Referentielle Integrität Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

VO Datenmodellierung. Katrin Seyr

VO Datenmodellierung. Katrin Seyr Datenintegrität Datenintegrität VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenintegrität 1. Überblick Überblick 1 Überblick 2 Integritätsbedingungen

Mehr

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel

4.14.3 Bedingungen über Werte. 4.14.4 Statische Integrität. CHECK-Klausel 4.14.3 Bedingungen über Werte 4.14.4 Statische Integrität Zu jeder Tabelle werden typischerweise ein Primärschlüssel und möglicherweise weitere Schlüssel festgelegt (UNIQUE-Klausel). In jeder Instanz zu

Mehr

Datenintegrität. Bisherige Integritätsbedingungen

Datenintegrität. Bisherige Integritätsbedingungen Datenintegrität Integitätsbedingungen chlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Bedingungen an den Zustand der Datenbasis dynamische Bedingungen an Zustandsübergänge

Mehr

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Datenintegrität Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Formulierung von Integritätsbedingungen ist die wichtigste Aufgabe des DB-Administrators!

Mehr

Datenintegrität. Arten von Integritätsbedingungen. Statische Integritätsbedingungen. Referentielle Integrität. Integritätsbedingungen in SQL.

Datenintegrität. Arten von Integritätsbedingungen. Statische Integritätsbedingungen. Referentielle Integrität. Integritätsbedingungen in SQL. Datenintegrität Arten von Integritätsbedingungen Statische Integritätsbedingungen Referentielle Integrität Integritätsbedingungen in SQL Trigger 1 Datenintegrität Einschränkung der möglichen Datenbankzustände

Mehr

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen

Datenintegrität. Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Datenintegrität Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Formulierung von Integritätsbedingungen ist die wichtigste Aufgabe des DB-Administrators!

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 6. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 Aufgabe 1: Rekursion Betrachten Sie die folgende Tabelle

Mehr

Rückblick: Datenbankentwurf

Rückblick: Datenbankentwurf Rückblick: Datenbankentwurf Entity-Relationship-Modell für konzeptuellen Entwurf Entitytypen (entity types) (z.b. Studenten) Beziehungstypen (relationships) (z.b. hören) Attribute beschreiben Gegenstände

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Wesentliche Eigenschaften von Hibernate Transparente Persistenz Transitive Persistenz (Persistenz

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücken, 18.06.2015 Information Systems Group Vorlesung Informationssysteme Vertiefung Kapitel 7: Zugriffskontrolle Erik Buchmann (buchmann@cs.uni-saarland.de) Foto: M. Strauch Aus den Videos wissen

Mehr

Datenbanken. Einführung. Tobias Galliat. Sommersemester 2012

Datenbanken. Einführung. Tobias Galliat. Sommersemester 2012 Datenbanken Einführung Tobias Galliat Sommersemester 2012 Basistext: A. Kemper, A. Eickler: Datenbanksysteme, Oldenbourg Verlag, München, 2011, 8. Auflage, Preis: 39,80 ebenfalls empfehlenswert: T. Kudraß

Mehr

Kapitel DB:VI (Fortsetzung)

Kapitel DB:VI (Fortsetzung) Kapitel DB:VI (Fortsetzung) VI. Die relationale Datenbanksprache SQL Einführung SQL als Datenanfragesprache SQL als Datendefinitionssprache SQL als Datenmanipulationssprache Sichten SQL vom Programm aus

Mehr

Grundlagen des relationalen l Modells

Grundlagen des relationalen l Modells Grundlagen des relationalen l Modells Seien D 1, D 2,..., D n Domänen (~Wertebereiche) Relation: R D 1 x... x D n Bsp.: Telefonbuch string x string x integer Tupel: t R Bsp.: t = ( Mickey Mouse, Main Street,

Mehr

9. Einführung in Datenbanken

9. Einführung in Datenbanken 9. Einführung in Datenbanken 9.1 Motivation und einführendes Beispiel 9.2 Modellierungskonzepte der realen Welt 9.3 Anfragesprachen (Query Languages) 9.1 Motivation und einführendes Beispiel Datenbanken

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Inhalt. 2.1 Datenbankentwurf. 2.2 Relationales Modell. 2.3 Relationale Entwurfstheorie. 2.4 Relationale Algebra. 2.5 Structured Query Language (SQL)

Inhalt. 2.1 Datenbankentwurf. 2.2 Relationales Modell. 2.3 Relationale Entwurfstheorie. 2.4 Relationale Algebra. 2.5 Structured Query Language (SQL) 2. Datenbanken Inhalt 2.1 Datenbankentwurf 2.2 Relationales Modell 2.3 Relationale Entwurfstheorie 2.4 Relationale Algebra 2.5 Structured Query Language (SQL) 2 2.1 Datenbankentwurf Datenbankanwendungen

Mehr

Benutzerverwaltung, Sichten und Datenintegrität

Benutzerverwaltung, Sichten und Datenintegrität Benutzerverwaltung, Sichten und Einige Vergleiche zwischen MySQL, Oracle und PostgreSQL OStR Michael Dienert, StR Ahmad Nessar Nazar 29. November und 30. November 2011 1 von 113 OStR Michael Dienert, StR

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

Rückblick: Entity-Relationship-Modell

Rückblick: Entity-Relationship-Modell Rückblick: Entity-Relationship-Modell Entity-Relationship-Modell für konzeptuellen Entwurf Entitytypen (entity types) (z.b. Studenten) Beziehungstypen (relationships) (z.b. hören) Attribute beschreiben

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 7 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws1314/dbsys/exercises/

Mehr

Aufgabe 1 Indexstrukturen

Aufgabe 1 Indexstrukturen 8. Übung zur Vorlesung Datenbanken im Sommersemester 2006 mit Musterlösungen Prof. Dr. Gerd Stumme, Dr. Andreas Hotho, Dipl.-Inform. Christoph Schmitz 25. Juni 2006 Aufgabe 1 Indexstrukturen Zeichnen Sie

Mehr

Datenbankentwurf. 4.2 Logischer Entwurf. Kapitel 4. ER-Modell. Umsetzung. Entwurfsdokumentation. relationales Modell. Verbesserung

Datenbankentwurf. 4.2 Logischer Entwurf. Kapitel 4. ER-Modell. Umsetzung. Entwurfsdokumentation. relationales Modell. Verbesserung 4.2 Logischer Entwurf Datenbankentwurf 4.2 Logischer Entwurf 2002 Prof. Dr. Rainer Manthey Informationssysteme Logischer Entwurf: Einordnung Entwurfsdokumentation logische Strukturen "auf dem Papier" konzeptueller

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Datenbankadministration

Datenbankadministration Datenbankadministration 4. Zugriffskontrolle AG DBIS University of Kaiserslautern, Germany Karsten Schmidt kschmidt@informatik.uni-kl.de (Vorlage TU-Dresden) Wintersemester 2008/2009 Einführung Architektur

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Terminologie. Kapitel 15 Verteilte Datenbanken. Verteiltes Datenbanksystem. Kommunikationsmedien

Terminologie. Kapitel 15 Verteilte Datenbanken. Verteiltes Datenbanksystem. Kommunikationsmedien Kapitel Verteilte Datenbanken Terminologie Motivation: geographisch verteilte Organisationsform einer Bank mit ihren Filialen Filialen sollen Daten lokaler Kunden bearbeiten können Zentrale soll Zugriff

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

ER-Modellierung am Beispiel der Universitätsdatenbank aus der DBIS-Vorlesung

ER-Modellierung am Beispiel der Universitätsdatenbank aus der DBIS-Vorlesung ER-Modellierung am Beispiel der Universitätsdatenbank aus der DBIS-Vorlesung Datenbank-Praktikum SS 2010 Prof. Dr. Georg Lausen Florian Schmedding ER-Modell: Wiederholung Entitäten E Beziehungen B Attribute

Mehr

Datenbanksysteme 2015

Datenbanksysteme 2015 Datenbanksysteme 2015 Kapitel 09: Datenbankapplikationen Oliver Vornberger Institut für Informatik Universität Osnabrück Datenbankapplikationen ODBC MS Visio MS Access Embedded SQL JDBC Application SQLJ

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Rückblick Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Data Definition Language zur Schemadefinition (z.b. CREATE TABLE zum Anlegen von Tabellen) Data

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück Kapitel 6b: Das relationale Modell Das Relationale Modell (vgl. Lerneinheit 6a) Wertebereiche (Domänen):

Mehr

Datenbanken in der Praxis 6. Integrität, DBS-Architektur, Sichten

Datenbanken in der Praxis 6. Integrität, DBS-Architektur, Sichten Datenbanken in der Praxis 6. Integrität, DBS-Architektur, Sichten Inhalt Konsistenz von Daten Datenintegrität Referentielle Integrität Architektur von Datenbanksystemen Drei-Ebenen-Architektur Individuelle

Mehr

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme Handout zur Vorlesung Vorlesung DBSP Unit Datenbanken SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: kratzke@fh-luebeck.de

Mehr

7. Datenbankdefinitionssprachen

7. Datenbankdefinitionssprachen 7. Datenbankdefinitionssprachen SQL-DDL Teil der Standardsprache für relationale Datenbanksysteme: SQL ODL (Object Definition Language) für objektorientierte Datenbanksysteme nach dem ODMG-Standard VL

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

cs241: Datenbanken mit Übungen HS 2011

cs241: Datenbanken mit Übungen HS 2011 UNIVERSITÄT BASEL Prof. Dr. Heiko Schuldt MSc. Nenad Stojnić BSc. Ivan Giangreco BSc. Florian Lindörfer cs241: Datenbanken mit Übungen HS 2011 Übung 5 Abgabe bis: 4.11.2011 Hinweise: Modalitäten der Abgabe:

Mehr

Microsoft SQL-Server 2000. Enterprise-Manager

Microsoft SQL-Server 2000. Enterprise-Manager Kapitel 7: SQL Microsoft SQL-Server 2000 Server: Client: Enterprise-Manager Query-Analyzer Installation Query Analyzer Tunnel mit Putty Tunnel mit Putty SQL: Geschichte 1970: System R mit Abfragesprache

Mehr

Datenbanksysteme Vorlesung vom noch Kapitel 7: SQL. Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme Vorlesung vom noch Kapitel 7: SQL. Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2009 Vorlesung vom 19.05.2009 noch Kapitel 7: SQL Oliver Vornberger Institut für Informatik Universität Osnabrück SQL: Self Join 15.) Liste die Namen der Assistenten, die für denselben

Mehr

Grundlagen: Datenbanken WS 15/16

Grundlagen: Datenbanken WS 15/16 Grundlagen: Datenbanken WS 15/16 2. Zentralübung / Wiederholung / Fragestunde Harald Lang gdb@in.tum.de Diese Folien finden Sie online. Die Mitschrift erhalten Sie im Anschluss. Termine Klausur 24.02.2016,

Mehr

Datenbanksysteme 2011

Datenbanksysteme 2011 Datenbanksysteme 2011 Anfang von Kapitel 10: Datenbankapplikationen Vorlesung vom 06.06.2011 Oliver Vornberger Institut für Informatik Universität Osnabrück Datenbankapplikationen ODBC MS Visio MS Access

Mehr

Konzeptueller Entwurf

Konzeptueller Entwurf Konzeptueller Entwurf UML Klassendiagrame UML Assoziationen Entspricht Beziehungen Optional: Assoziationsnamen Leserichtung ( oder ), sonst bidirektional Rollennamen Kardinalitätsrestriktionen UML Kardinalitätsrestriktionen

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

Datenbanken II Literatur

Datenbanken II Literatur Datenbanken II Literatur C. J. Date: An Introduction to Database Systems; Addison-Wesley Systems Programming Series. 6th ed. 1995 H. E. Erbs, S. Karczewski und I. Schestag: Datenbanken (Datenmodelle, Objekte,

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück 1 Kapitel 6a: Das relationale Modell 2 Das Relationale Modell Wertebereiche (Domänen): D 1, D 2,,...,

Mehr

5. Datendefinition in SQL

5. Datendefinition in SQL Datendefinition 5. Datendefinition in SQL Schema, Datentypen, Domains Erzeugen von Tabellen (CREATE TABLE) Schemaevolution: Ändern/Löschen von Tabellen Sichtkonzept (Views) CREATE VIEW / DROP VIEW Problemfälle

Mehr

UNIVERSITÄT ULM Fakultät für Ingenieurswissenschaften und Informatik Institut für Datenbanken und Informationssysteme

UNIVERSITÄT ULM Fakultät für Ingenieurswissenschaften und Informatik Institut für Datenbanken und Informationssysteme UNIVERSITÄT ULM Fakultät für Ingenieurswissenschaften und Informatik Institut für Datenbanken und Informationssysteme 8. Übung zur Vorlesung Datenbanksysteme WS 08/09 Musterlösung Aufgabe 8-1: SQLJ //

Mehr

Datenintegrität, Views und Zugriffsrechte

Datenintegrität, Views und Zugriffsrechte Kapitel 11 Dr. Jérôme Kunegis Datenintegrität, Views und Zugriffsrechte WeST Web Science & Technologien Lernziele Verankerung von Integritätsregeln in DB effektivere Integritätssicherung einfachere Anwendungsprogrammierung

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 06 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing (gdb@in.tum.de

Mehr

Wie definieren wir das Relationen-

Wie definieren wir das Relationen- Wie definieren wir das Relationen- schema für eine Datenbank? Professoren PersNr Name Rang Raum 2125 Sokrates C4 226 2126 Russel C4 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134 Augustinus C3 309 2136

Mehr

Universität Duisburg-Essen Informationssysteme Prof. Dr.-Ing. N. Fuhr. Praktikum Datenbanken / DB2 Woche 8: Trigger, SQL-PL

Universität Duisburg-Essen Informationssysteme Prof. Dr.-Ing. N. Fuhr. Praktikum Datenbanken / DB2 Woche 8: Trigger, SQL-PL Betreuer: Sascha Kriewel, Tobias Tuttas Raum: LF 230 Bearbeitung: 26., 27. und 29. Juni 2006 Datum Team (Account) Vorbereitung Präsenz Aktuelle Informationen, Ansprechpartner und Material unter: http://www.is.inf.uni-due.de/courses/dbp_ss07/index.html

Mehr

6 Sicherheitskonzepte in Oracle

6 Sicherheitskonzepte in Oracle 6 Sicherheitskonzepte in Oracle Datenbanksysteme sind für viele Benutzer(-gruppen) mit unterschiedlichen Nutzungswünschen geschaffen, aber nicht alle Daten des Informationssystems sind für alle Benutzer

Mehr

Aufbau Datenbanksysteme

Aufbau Datenbanksysteme Aufbau Datenbanksysteme Lehrveranstaltung Datenbanktechnologien Prof. Dr. Ingo Claßen Prof. Dr. Martin Kempa Hochschule für Technik und Wirtschaft Berlin Speichersystem c Ingo Claßen, Martin Kempa Softwarearchitektur

Mehr

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies Kapitel 7 Dr. Jérôme Kunegis Logische Kalküle WeST Web Science & Technologies Lernziele Grundideen des Domain-Relationenkalküls (DRK) und des Tupel-Relationenkalküls (TRK) Relationale Datenbank als Formelmenge

Mehr

Aufgabensammlung SQL SW4 1. Einfache Anfragen

Aufgabensammlung SQL SW4 1. Einfache Anfragen Aufgabensammlung SQL SW4 1. Einfache Anfragen Buch: Kapitel 4.6 und 4.7. Datenbank: Die folgenden Anfragen beziehen sich auf die Universitätsdatenbank des Buches. Alle Umlaute werden umschrieben (hören

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Einführung in das Entity-Relationship-Modell

Einführung in das Entity-Relationship-Modell Einführung in das Entity-Relationship-Modell Historie Entity-Relationship-Modell kurz: ER-Modell bzw. ERM 1976 von Peter Chen vorgeschlagen Standardmodell für frühe Entwurfsphasen in der Datenbankentwicklung

Mehr

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

E-R-Modell zu Relationenschema

E-R-Modell zu Relationenschema Raum: LF 230 Bearbeitung: 2.-6. Mai 2005 Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/courses/dbp_ss03/ E-R-Modell zu Relationenschema Als zweiter Schritt beim Entwurf einer Datenbank

Mehr

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs Datenbanken SQL Insert, Update, Delete, Drop Krebs Inhalt 1. Datensätze einfügen: INSERT 2. Datensätze verändern: UPDATE 3. Datensätze löschen: DROP vs. DELETE Beispiel Datenbank Schule Klasse P_Klasse

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Vorlesung Datenbanken

Vorlesung Datenbanken Vorlesung Datenbanken Kapitel 6 Institut für Informatik 2 Überblick Assertions Trigger und Regeln Zugriffsrechte 3 Zugriffsrechte und Integritätsbedingungen Zugriffsrechte gewährleisten, dass nur autorisierte

Mehr

Datenbanktechnologien 4

Datenbanktechnologien 4 Datenbanktechnologien 4 Ilir Fetai 2013 04.05.2013, Ilir Fetai 1 Semesterziele Datenbanksicherheit & Datenschutz Verteilte Datenbanken Objektrelationale und Objektorientierte Datenbanken 2 Tagesziele Datensicherheit

Mehr

Es wird empfohlen folgendes Material anzusehen:

Es wird empfohlen folgendes Material anzusehen: Übung zur Vorlesung "Einführung in die Informatik für Hörer anderer Fachrichtungen (WZW)" IN8003, SS 2011 Prof. Dr. J. Schlichter Dr. Georg Groh, Dipl.Inform. Dipl.Geogr. Jan Herrmann, Florian Schulze

Mehr

4. Structured Query Language (SQL)

4. Structured Query Language (SQL) 4. Structured Query Language (SQL) Rückblick Konzeptuelles Modell (ERM) können wir nun in (wenige) Relationen übersetzen Relationale Algebra gibt uns eine Sprache an die Hand, mit der wir Anfragen auf

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

Autorisierungsgraph mit zeitabhängiger Interpreta4on

Autorisierungsgraph mit zeitabhängiger Interpreta4on Autorisierungsgraph mit zeitabhängiger Interpreta4on Der Entzug eines Rechtes ergibt einen Schutzzustand, als wenn das Recht nie erteilt worden wäre. Vergabe von Zeitstempeln für jedes Zugriffsrecht bei

Mehr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr Raum: LF 230 Bearbeitung: 9.-11. Mai 2005 Datum Gruppe Vorbereitung Präsenz Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/courses/dbp_ss03/ Tabellen in IBM DB2 Tabellen Eine relationale

Mehr

Modifikation der Datenbank

Modifikation der Datenbank Modifikation der Datenbank Löschen Einfügen Änderungen Änderungen von Sichten 71 Löschen Wir haben bereits gesehen, dass wir den gesamten Inhalt einer Tabelle r löschen können durch das Kommando: delete

Mehr

Kapitel 6 Objektrelationale Datenbanken

Kapitel 6 Objektrelationale Datenbanken Kapitel 6 Objektrelatinale Datenbanken Flien zum Datenbankpraktikum Wintersemester 2012/13 LMU München 2008 Thmas Bernecker, Tbias Emrich 2010 Tbias Emrich, Erich Schubert unter Verwendung der Flien des

Mehr

JOIN-Strategien eines Optimizers (1)

JOIN-Strategien eines Optimizers (1) JOIN-Strategien eines Optimizers (1) Die drei unten aufgeführten Join-Strategien *) sollen exemplarisch anhand der folgenden SQL-Abfrage erklärt werden: select * from B, C where c.x=b.w and c.z=17; Verschachtelter

Mehr

6. Datenintegrität. Integritätsbedingungen

6. Datenintegrität. Integritätsbedingungen 6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können

Mehr

Übersicht über Datenbanken

Übersicht über Datenbanken Übersicht über Datenbanken Vergleich zwischen normaler Datenorganisation und Datenbanken Definition einer Datenbank Beispiel (inkl. Zugriff) Der Datenbankadministrator Relationale Datenbanken Transaktionen

Mehr

Sichten II. Definition einer Sicht. Sichten. Drei-Ebenen-Schema-Architektur. Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank

Sichten II. Definition einer Sicht. Sichten. Drei-Ebenen-Schema-Architektur. Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank Sichten II logische Datenunabhängigkeit (Sichten stabil bei Änderungen der Datenbankstruktur) Beschränkung von Zugriffen (Datenschutz) Definition

Mehr