Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen"

Transkript

1 Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de

2 SCHOOL-SCOUT Lernzirkel - Flächen, Flächenumfng, FlächeninhltSeite 7 von 7 III. Flächeninhlt WIEDERHOLUNG In einem Qudrt berechnest du den Flächeninhlt (A), indem du die Seitenlänge qudrierst: A =. = ² In einem Rechteck berechnest du den Flächeninhlt (A), indem du die Seitenlängen und b miteinnder multiplizierst: A =. b b b In einem Dreieck berechnest du den Flächeninhlt, indem du die Seitenlänge mit der Höhe h des Dreiecks multiplizierst und durch teilst: A = (. h) : h Beispiel 1: Der Flächeninhlt des nebenstehenden Qudrts beträgt 4 cm², denn A = cm. cm = ( cm)² = 4 cm² Beispiel : Der Flächeninhlt des nebenstehenden Dreiecks beträgt cm², denn A = cm. cm : = 4 cm² : = cm² E-Mil: Internet: Fx: 0501/6048

3 SCHOOL-SCOUT Lernzirkel - Flächen, Flächenumfng, FlächeninhltSeite 8 von 8 1. Wie verändert sich der Flächeninhlt A eines Qudrts, wenn die Seitenlängen doppelt so groß werden? Überprüfe dies zunächst mit Hilfe konkreter Zhlen. Du knnst beispielsweise mit der Seitenlänge = cm nfngen und den Flächeninhlt des zugehörigen Qudrts berechnen. Verdopple nschließend die Seitenlängen solnge, bis du eine llgemeine Regel erkennst. Formuliere diese Rechenvorschrift dnn llgemein für.. Ein Rechteck ht den Flächeninhlt A = 96 FE (FE = Flächeneinheiten). Finde mindestens drei verschiedene Möglichkeiten für die Seitenlängen des Rechtecks, sodss sich obiger Flächeninhlt ergibt. c 96 d e 96 f 96 b E-Mil: Internet: Fx: 0501/6048

4 SCHOOL-SCOUT Lernzirkel - Flächen, Flächenumfng, FlächeninhltSeite 9 von 9 IV. Volumen WIEDERHOLUNG Du berechnst ds Volumen (V) eines Würfels, indem du die Höhe, Breite und Tiefe multiplizierst: V =.. = ³ Du berechnest ds Volumen (V) eines Quders, indem du die Höhe, die Breite b und die Tiefe c multiplizierst: V =. b. c b c Du berechnest ds Volumen (V) einer Pyrmide, indem du die Höhe h mit der Grundfläche G multiplizierst und durch 3 teilst. Die Grundfläche G errechnest du, indem du die Kntenlänge g qudrierst: V = 1/3. h. G = 1/3. h. g. g h g g Beispiel 1: Ds Volumen des Quders beträgt 3 cm³, denn V = 1cm. 3cm. 1cm = 3 cm³ 1cm 3cm 1cm Beispiel : Ds Volumen der Pyrmide beträgt 6000m³, denn V = 1/3. 0m. 30m. 30m= 6000m³ h = 0m 30m E-Mil: Internet: Fx: 0501/6048

5 SCHOOL-SCOUT Lernzirkel - Flächen, Flächenumfng, FlächeninhltSeite 10 von 10 AUFGABEN Schneide die Bögen us und führe mit einem Prtner ds Frge und Antwort Spiel durch. Prtner A Prtner B Frge n Prtner B: Ein Würfel ht eine Kntenlänge von 8 cm. Wie groß ist ds Volumen des Würfels? 8cm h = 3 m Frge n Prtner A: G = 1 m² Eine Pyrmide ist 3 m hoch und ht eine Grundfläche von 1 m². Wie groß ist ds Volumen der Pyrmide? Frge n Prtner B: h = 5 m Eine Pyrmide ist 5 m hoch und ht n der Grundfläche eine Kntenlänge von 6 m. Wie groß ist ihr Volumen? 6 m Frge n Prtner A: 9 m 5 m 7 m Ein Quder ht eine Höhe von 9 m, eine Breite von 5 m und eine Tiefe von 7 m. Wie groß ist ds Volumen des Quders? E-Mil: Internet: Fx: 0501/6048

6 SCHOOL-SCOUT Lernzirkel - Flächen, Flächenumfng, FlächeninhltSeite 11 von 11 V. Zusmmengesetzte Flächen und Körper WIEDERHOLUNG Im zweidimensionlen Rum knn mn sowohl Flächeninhlte ls uch Flächenumfänge von zusmmengesetzten Figuren bestimmen. Möchte mn den Flächeninhlt (A) einer zusmmengesetzten Fläche bestimmen, so sollte mn zunächst den Flächeninhlt der Teilflächen (A I, A II, A III,...), us denen sich die Fläche zusmmensetzt, einzeln usrechnen. Im Anschluss können die Teilflächen ddiert werden und mn erhält den Flächeninhlt der zusmmengesetzten Fläche. Beispiel: 4 Die nebenstehende Fläche setzt sich us einem Qudrt (I), einem Rechteck (II), und zwei Dreiecken (III, IV) zusmmen. A I : 4. 4 =16 A II : 7. 1 = 7 A III :. 5 : = 5 A IV : 3. 4 : = 6 III I II 7 IV 1 A gesmt : = 34 Möchte mn den Flächenumfng (U) einer zusmmengesetzten Fläche bestimmen, so muss mn die Längen ller ußen liegenden Seiten ddieren. Der Umfng der Fläche 4 beträgt 4,4 LE, denn ,4 = 4,4 5, E-Mil: Internet: Fx: 0501/6048

7 SCHOOL-SCOUT Lernzirkel - Flächen, Flächenumfng, FlächeninhltSeite 1 von 1 AUFGABEN 3 cm 1.Bestimme den Flächeninhlt und den Umfng der zusmmengesetzten Fläche. A I = IV A II = A III = A IV = V I 5 cm III A V = A gesmt = U = II.Bestimme den Flächeninhlt und den Umfng der zusmmengesetzten Fläche. A I = A II = A III = A IV = A gesmt = 5cm I IV 9,4cm 8cm II 1,5cm III 1,5cm cm U= cm 7,5cm E-Mil: Internet: Fx: 0501/6048

8 Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas Berechnungen m Prism Einführung des Prisms: Schüler ringen verschiedene Verpckungen mit in den Unterricht Klssifizierung der Verpckungen in Prismen und ndere Körper Erreitung der Eigenschften eines Prisms:

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Flächenberechnung - Umfng und Fläche von Rechteck und Qudrt Ds komplette Mteril finden Sie hier: Downlod bei School-Scout.de Inhltsverzeichnis

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag Relschule 01 Mthemtik wwwmtheverlgcom Mthemtik-Verlg Vorwort: Sehr geehrte Schülerinnen und Schüler, mit diesem Prüfungsheft können Sie sich gezielt und systemtisch uf die Relschulbschlussprüfung in Mthemtik

Mehr

Kreis und Kreisteile. - Aufgaben Teil 2 -

Kreis und Kreisteile. - Aufgaben Teil 2 - - Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1 Wichtige Symole Grundwissen Mthemtik 5/1 Wichtige Symole Rechenrten Qudrtzhlen IN Menge der ntürlichen Zhlen { 1; ; 3; 4;... } IN 0 Menge der ntürlichen Zhlen einschließlich der Null {0; 1; ; 3; 4;...

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Oberflächenberechnung bei Prisma und Pyramide

Oberflächenberechnung bei Prisma und Pyramide Lösungscoach Oberflächenberechnung bei Prisma und Pyramide Aufgabe Ein Schokoladenhersteller bekommt zwei Vorschläge für eine neue Verpackung: 5,9 cm 3 cm 2 cm 3 cm 3 cm Das linke Modell ist ein gerades

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors

Mehr

Grundwissen Jahrgangsstufe 9

Grundwissen Jahrgangsstufe 9 Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,

Mehr

1. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mthemtik Olympide. Stufe (Bezirksolympide) Klsse 1 Sison 1961/196 Aufgen und Lösungen 1 OJM 1. Mthemtik-Olympide. Stufe (Bezirksolympide) Klsse 1 Aufgen Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Volumina der 8 konvexen Deltaeder

Volumina der 8 konvexen Deltaeder Arno Fehringer, Gymnsillehrer für Mthemtik und Physik, Wilhelm-Bläsig-Schule, Hegu-Jugendwerk, 78262 Gilingen, Kpellenstr. 31-1 - Volumin der 8 konvexen Delteder Arno Fehringer Juli 2007 Die Bestimmung

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d November 2006 Quadratische Funktionen

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d November 2006 Quadratische Funktionen .) Entscheide, ohne zu zeichnen, ob die Prbeln - eng/weit, - nch oben/nch unten geöffnet, - nch oben/nch unten verschoben sind. Als Vergleich soll die Normlprbel dienen. ) y = 3x b) y =,8x -7 c) y = -,5x

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE FLÄCHENBERECHNUNG FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE Für die Berenung von Fläen git es für die versiedenen Figuren Formeln, die mn kennen sollte. Mit ein pr kleinen Triks mt mn si ds Leen llerdings viel

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache Wirsberg-Gymnsium Grundwissen Mthemtik. Jhrgngsstue Lerninhlte Fkten-Regeln-Beispiele Proportionlität Gehört bei einer Zuordnung zum r-chen der einen Größe ds r-che der nderen Größe, so spricht mn von

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

MB1 LU 5 und 12 Geometrische Grundbegriffe

MB1 LU 5 und 12 Geometrische Grundbegriffe M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich

Mehr

Verlauf Material LEK Glossar Lösungen. Das Wurzelwerk ein Spiel. Dr. Heinrich Schneider, Wien

Verlauf Material LEK Glossar Lösungen. Das Wurzelwerk ein Spiel. Dr. Heinrich Schneider, Wien Reihe S 1 Verluf Mteril Ds Wurzelwerk ein Spiel Dr. Heinrich Schneider, Wien Klsse 10 Duer Inhlt Ihr Plus vriel, weil Sie Spielkrten weglssen können (Gesmtumfng: 9 Stunden) Wurzeln in jeglicher Form; teilweise

Mehr

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN Professur für VWL II Wolfgng Scherf Die Exmensklusur us der Volkswirtschftslehre Erschienen in: WISU 8-9/2000, S. 1163 1166. Fchbereich Wirtschftswissenschften Prof. Dr.

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

MATHEMATIK-WETTBEWERB 2003/2004 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2003/2004 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2003/2004 DES LANDES HESSEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. Berechne: ) 22 (45 48) ) 25 [ 60 + ( 38 2)] c) 24 : (12 60) P2. Eine Kugel Eis kostete im vergngenen Jhr 0,60 ; jetzt

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

geeigneten Rechenoperationen dar. Du kannst auch die Zahl 77 oder 777 verwenden.

geeigneten Rechenoperationen dar. Du kannst auch die Zahl 77 oder 777 verwenden. 1fälle für 2felslos 1fllsreiche Suche für die Ziffern 0, 1, 2, 3, 4, 7 und 8 mindestens ein Wort, in dem die Buchstben der Ziffer vorkommen (Weihnchten). Die Ziffer soll nicht m Anfng des Wortes stehen.

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Kurven und Bogenlänge

Kurven und Bogenlänge Kpitel 3 Kurven und Bogenlänge 3.1 Motivtion Der Begriff der Kurve in der Ebene oder im Rum spielt in den Nturwissenschften, insbesondere der Physik, Technik (Robotik) und der Informtik (Computergrphik)

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

24 Volumen und Oberfläche eines Quaders

24 Volumen und Oberfläche eines Quaders 52 24 Volumen und Oberfläche eines Quaders Das Volumen (V) eines Quaders berechnet man, indem man Länge (a), Breite (b) und Höhe (c) miteinander multipliziert, also: V = a b c. Die Oberfläche (O) eines

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Grundwissen Jahrgangsstufe 7

Grundwissen Jahrgangsstufe 7 GM 7.1 chsensymmetrie Grundwissen Jhrgngsstufe 7 Definition Zwei unkte liegen symmetrisch bezüglich einer chse, wenn ihre Verbindungsstrecke von der chse senkrecht hlbiert wird. M und liegen symmetrisch

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1. Die Bedeutung von Vriblen....................................... 2. Addition und Subtrktion gleichrtiger Terme............................ 3. Multipliktion und Division von einfchen Termen.........................

Mehr

Geraden im Raum Vektoren

Geraden im Raum Vektoren Seite 8 Gerden im Rum Vektoren Punkte im Rum Seite 8 B A C D x D A B O C x x x x x b) A ( ); B ( ); C ( ); D ( ); E ( ); F ( ); G ( ); H ( ) ) Diese Punkte liegen in der x x -Ebene (x x -Ebene; x x -Ebene).

Mehr

Industrielle Messtechnik. Prüfkörper Überwachung von Messgeräten für die Sicherheit Ihrer Messergebnisse

Industrielle Messtechnik. Prüfkörper Überwachung von Messgeräten für die Sicherheit Ihrer Messergebnisse Industrielle Messtechnik Prüfkörper Überwchung von Messgeräten für die Sicherheit Ihrer Messergebnisse Prüfkörper und Softwre......für die Zwischenprüfung von Koordintenmessgeräten (KMG) Konturenmessgeräten...für

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1 Qudrt und Rechteck Prllelogrmm 3 Dreieck 4 Trpez 5 Drchen und Rute 6 Exkurs: Höhen zeichnen 7 heckliste Kopiervorlge: Formeln herleiten 8 Hinweise zur Benutzung 6 10 13 17 0 3 4 Die vorliegenden

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Musterlösung zur Musterprüfung 2 in Mathematik

Musterlösung zur Musterprüfung 2 in Mathematik Musterlösung zur Musterprüfung in Mthemtik Diese Musterlösung enthält usführliche Lösungen zu llen Aufgben der Musterprüfung in Mthemtik sowie Hinweise zum Selbstlernen. Literturhinweise ) Bosch: Brückenkurs

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Des Königs neues Zepter

Des Königs neues Zepter Des Königs neues Zepter Schule: Regionale Schule Untermosel Kobern-Gondorf Idee und Erprobung der Aufgabe: Franz-Josef Göbel, Ralf Nagel, Helga Schmidt Die folgende Aufgabe ist einer Aufgabensammlung entnommen,

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 7 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

2.10. Prüfungsaufgaben zu Pyramiden

2.10. Prüfungsaufgaben zu Pyramiden .0. Prüfungufgben zu Pyrmiden Aufgbe : Pyrmiden Berecne die Fläceninlte und Volumin der unten bgebildeten Däcer, wobei ll Mße in m ngegeben ind: Zeltdc Wlmdc Krüppelwlmdc Gekreuzte Giebeldc en Zeltdc:

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr