4. Energie, Arbeit, Leistung, Impuls

Größe: px
Ab Seite anzeigen:

Download "4. Energie, Arbeit, Leistung, Impuls"

Transkript

1 Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule t Bewegung erbundene Energe t echselwrkungen erbundene Energe ( pecherte Energe) Bespel: Beschleungung F Gelestete Arbet: Annahe: konstante Kraft F Beschleungung: a zurückgelegter eg: s at errechte Geschwndgket: Fs a at ( at) E kn! at e be der Beschleungung gelestete Arbet wrd zu knetscher Energe! Erzeugung on Energe durch Kraftanwendung (Transfer on Energe zwschen Systeen) Es glt: Arbet Kraft al eg F s Bespel: Hubarbet F g h (Schwerkraft wrkt nach unten: de aufgebrachte Kraft nach oben) gelestete Arbet: Fs gh E e Arbet wrd zu enteller Energe

2 36 37 Bespel: Spannen ener Feder Gleche Arbet! e Potentelle Energe hängt ncht daon ab, we se erzeugt wurde! x gelestete Arbet: l l l Kraft ener Feder (Hooke sches Gesetz) F x Fdx ( x) dx l E Potentelle Energe ener u l gedehnten (oder tauchten) Feder. Allgeen: Vektorelle Beschrebung F s (für geraden eg und konstante Kraft) r r F( r ) ds F s (für gerade Telstücken) 4. egunabhänggket der. Energe Bespel: schefe Ebene F α F F l h Arbet: drektes Heben gh Fs E Arbet: über Rape g snα l h g snα snα gh Bespel: Hubarbet Schwerefeld (ortsunabhängge Kraft) n F s n x y g z n n g z g z gh Ene Bewegung n x- oder y-rchtung spelt kene Rolle; es zählt nur de Bewegung n Rchtung der Kraft.

3 38 39 efnton: En Kraftfeld, be de das Integral r F( r ) ds r nur on Anfangs- und Endpunkt, aber ncht o eg abhängt, heßt konserat. 4. Energeerhaltung Für en abchlossenes Syste glt: E kn + E konstant e Sue der knetschen und der entellen Energe st konstant; se ändert sch nur, wenn Arbet a Syste errchtet wrd. Beerkung: das Kraftfeld st der negate Gradent der entellen Energe Bespel: Schwerefeld F( r ) E E x E y E z En so gebldetes Kraftfeld st er konserat! F E ( gz) g Aber: entelle Energe kann n knetsche Energe ugewandelt werden und ugekehrt Bespel: freer Fall orher: h E gh E kn Mt der Energeerhaltung folgt: und dat: gh nachher: h E E kn gh

4 4 4 nachrechnen: zetabhängge Höhe be Fall Zet be Errechen on z Geschwndgket her Bespel: haronsche Schwngung x z( t) h gt h t g gt gh Gleches Ergebns! x( t) x cosωt t) x ω snωt ( Ständ Uwandeln on enteller n knetsche Energe und ugekehrt. Körper n der Mtte: knetsche Energe st axal E kn ω ax ( x ) entelle Energe st nal x n E Körper a äußeren Ukehrpunkt: knetsche Energe st nal E kn n entelle Energe st axal egen der Energeerhaltung glt dat: Andere Herletung: Es glt es st also das heßt also ω ( x ) ω ω x E xax x a( t) x ω cosωt a ω x( t) F a x ω x ω Schwngungsfrequenz Federpendel

5 Lestung Lestung st Arbet pro Zet genauer: P t d P dt Enhet att [] [J/s][N/s] Bespel: elektrsche Brne, P (Lestung) brennt h: Pt * h h h *36s s 3.6 MJ e gleche Arbet wrd benötgt, u 36 kg u anzuheben! Gelestete Arbet st bzw. Bespel: Hubarbet Pt t Pdt kg werden u angehoben Arbet: gelestet n 5 n (3s): gelestet n s: gh J P J 3. t 3s 3 J P s 4.4 Ipuls Herletung : es glt acto reacto t t F Kräfte: F F F a a a d a d d dt dt dt d ( ) + dt F also + blebt konstant!

6 44 45 efnton: Ipuls: p 4.5 Ipulserhaltung acto reacto glt auch für en Syste aus belebg elen Körpern: Für enen enzelnen Körper glt: ( t) Mutplzert t : + t a( t) dt + p( t) p t + F( t dt ) Be konstanter Kraft und p p F t t F( t) dt Ipuls st Kraft al Zet! F F F F F F F Für de Sue der Ipulse glt: N p N ( p + Ft) N N p + t N F P + t P (Ernnerung: Arbet st Kraft al eg) In ene Syste, auf das kene äußeren Kräfte wrken, st der Gesatpuls ene Erhaltungsgröße

7 4.6 Zentraler Stoß Ipuls- und Energeerhaltung besten, welche Endzustände enes Systes nach ener echselwrkung (Austausch on Energe und Ipuls) erlaubt snd. 46 Energeerhaltung: E E' ' + ' her: endensonal (Bewegung auf ener Lne) 47 orher p, p, p3... E, E, E3... Es glt: echselwrkung p E p ' E' nachher p', p', p' 3... E', E', E' 3... at lauten de beden Glechungen: Ensetzen: ' ' + ' ' Zwe Glechungen, zwe Unbekannte (, ) endeutge Lösung! Bespel: zentraler Stoß zwschen zwe Massen,. Masse ruht Ipulserhaltung: ' ' p p' ' + ' ' ' daraus folgt: ' ' + + ' + ' ' ' + ' + ' + ' ' ' ' +

8 Zwe Lösungen: Lösung : ' Lösung : ' ( Trale Lösung: Stoß hat ncht stattgefunden) ' + skusson deses Resultats für erschedene Fälle: ' ' >> her glt: ' ' er stoßende Körper wrd kau erlangsat; der toßene Körper erhält de doppelte Geschwndgket des stoßenden Körpers! Allgeen: dredensonaler Stoß 49 '. her glt: ' er Ipuls (und de knetsche Energe) werden ollständg auf den toßenen Körper übertragen.. << her glt: ' ' er stoßende Körper wrd reflektert; der toßene Körper erhält den doppelten Ipuls des stoßenden Körpers! ( p!) ' p + ' ' Her glt: + ' + ' es snd 4 Glechungen t 6 Unbekannten ( ) + Ipulserhaltung ', Energeerhaltung ' Lösung bestt bs auf zwe free Paraeter! (z.b. legt de ahl der Rchtung on ' alle anderen erte fest)

9 4.7 Anwendung der Ipulserhaltung: Rakete w Es glt: + Vortreb durch urf: Person n Boot n Ruhe wrft ene Kugel t urfchwndgket w (Geschwndgket relat zur Person) adurch erhält das Boot (und de Person) enen Ipuls bzw. ene Geschwndgket n Gegenrchtung Ipulserhaltung: also ) Für << wrd des zu: ( + + und Ausstoß on Masse erzeugt Vortreb! 5 Jetzt: Rakete heße Gase Brennkaer und üse Trebstoff Geschwndgketszunahe dadurch ( <<): In der Zet t wrd de Masse - t Geschwndgket austoßen. ( st de Raketenasse; de Masse der austoßenen Gase st - ) Uforen und Übergang zu nfntesal klener Zet ( t dt): Integraton über : d d d d d d ( ) ( ) (ln( ) ln( )) ln( ) Falls ( ) st (Startchwndgket Null): ln( ) Raketenchwndgket 5

10 5 53 e on ener Rakete errechbare Geschwndgket hängt on de Verhältns der Start- und Endasse und der üsengaschwndgket ab. Für de Rebungskraft glt: Körper bewegt sch ( Gletrebung ): Typsche erte: 6 at: End s 36 s Körper ruht ( Haftrebung ): F R µ F F R Rebungskoeffzent ' µ ' F 4.8 Rebung Rebung erwandelt Arbet n äreenerge Verlust on knetscher Energe ohne Erzeugung on enteller Energe e Rebungskraft st unabhängg on der Geschwndgket und der Auflagefläche! Typsche erte: Es gbt erschedene Foren der Rebung; dese lassen sch näherungswese durch Gesetze beschreben. Stahl auf Stahl (polert) µ '.7 µ.4. Coulob-Rebung F R F Oberflächenrebung: de Bewegung enes t Anpresskraft F auf de Oberfläche gedrückten Körpers erzeugt ene Rebungskraft F R Gu auf Asphalt µ '. µ. µ '.6 µ.4 trocken naß

11 Bespel: axal öglches Beschleungen enes Autos Newton-Rebung 55 rehende Räder können axal de Haftrebungskraft auf de Straße ausüben, blockerende Räder de Gletrebungskraft. e axal öglche (poste oder negate!) Beschleungung st dat: bzw. FR µ F µ g a µ g F' R a' µ ' g En Fahrzeug t Gurefen kann auf Asphalt also t axal. g beschleungen! F R Geschwndgket Schneller Körper n lechter Flüssgket oder Gas Her glt für de Rebungskraft: c A F c ρ A derstandsbewert des Körpers Querschnttsfläche des Körpers (senkrecht zur Geschwndgket). Stokes-Rebung F R Kugel n skoser (zäher) Flüssgket Her glt für de Rebungskraft: e Kraft st proportonal zu Quadrat der Geschwndgket! Be der Bewegung aufgebrachte Lestung: P Fs t F c ρ A 3 Geschwndgket η r F 6πηr Vskostätskonstante der Flüssgket Kugelradus Bespel: Auto k/h (7.8 /s) : A.5 ρ.9 kg/ 3 (Luft) c.3 F 374 N P 393 ( 4 PS) e Kraft st proportonal zur Geschwndgket! k/h (56 /s) : F 495 N P 8346 ( 3 PS)

12 Inelastscher Stoß Rebungseffekte (Uwandlung knetscher Energe n äreenerge) erändern Stöße. Bespel: ollnelastscher zentraler Stoß ' ' äpfer Kugeln bleben zusaen e knetsche Energe wrd errngert. Es glt nur de Erhaltung der Gesatenerge: E kn + E + E Her st E E' at glt für de äreenerge: E ' E E + E + E' + E' + E' kn kn E' kn E kn + Es glt: Ipulserhaltung P ' ' + ' P ( + ) ' ' + e fehlende knetsche Energe st n äreenerge ugewandelt worden. Merke: be nelastschen Prozessen glt Ipulserhaltung, aber ncht de Erhaltung der knetschen Energe! (sondern nur de Erhaltung der Gesatenerge) Für de knetsche Energe glt: orher: nachher: E kn E' kn ' + ' ( + ) ' + + kn E

4. Energie, Arbeit, Leistung

4. Energie, Arbeit, Leistung 4 43 4. Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) Physkalsh-heshes Praktku für Pharazeuten C. Nahberetungstel (NACH der Versuhsdurhführung lesen!) 4. Physkalshe Grundlagen 4.1 Starke und shwahe Elektrolyte Unter Elektrolyten versteht an solhe heshen Stoffe,

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? rmatonen rund ums Handy INHALT 2 3 4/5 6 7 8 9 10 11 12 Moblfunk: Fakten So werden Funksgnale übertragen So funktonert en Telefonat von Handy zu Handy So wrkt

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Donnerstag, 27.11.2014

Donnerstag, 27.11.2014 F ot o: BMW AGMünc hen X Phone nmot on E x ec ut v epr ev ew 2 7.Nov ember2 01 4 BMW Wel tmünc hen Donnerstag, 27.11.2014 14:00 15:00 15:00 16:00 16:00 17:00 17:00 17:45 Apertf Meet & Greet Kaffee & klener

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Thema Einführung in Teilchenbeschleuniger

Thema Einführung in Teilchenbeschleuniger emnar W 1/ RWTH Moderne Methoden/Expermente der Telchen- und Astrotelchenphysk Thema Enführung n Telchenbeschleunger precher Chrstoph Gehlen Enletung Bedeutung hoher Telchenenergen Kräfte zur Beschleungung

Mehr

RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN

RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN Stand Jul 2014 Lebe Vermeter, wr möchten dem Suchenden das bestmöglche Portal beten, damt er be Ihnen bucht und auch weder unser Portal besucht. Um den Ansprüchen

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen:

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen: - Zahlendarstellung n Rechnern Wr wssen berets aus der Dgtaltechnk we Ganzzahlen bnär dargestellt (codert) werden und können de Grundrechenoperatonen ausführen. I nachfolgenden Kaptel wrd auf deser Matere

Mehr

Transportphänomene Diffusion, elektrische Leitfähigkeit

Transportphänomene Diffusion, elektrische Leitfähigkeit Elektrocheme Transportphänomene Dffuson, elektrsche Letfähgket 3.5.7 Vorlesung Elektrocheme 65 Elektrocheme Transportphänomene, Dffuson, elektrsche Letfähgket Fluss J von Telchen n enem homogenen Medum

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

Energie, Masse und Information

Energie, Masse und Information Energe, Masse und Informaton Professor Dr. Klaus Hofer De Beschrebung unserer Welt mt Hlfe der ver Naturelemente Feuer, Wasser, Erde, und Luft geht auf den grechschen Naturphlosophen Empedokles (473 v.ch.)

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Was haben Schüler und Großbanken gemein?

Was haben Schüler und Großbanken gemein? Armn Fügenschuh Aleander Martn Was haben Schüler und Großbanken gemen? Mathematsche Modellerung Analyse und Lösung am Bespel des Rucksackproblems Unter gegebenen Randbedngungen optmale Entschedungen zu

Mehr

"Physikalische Chemie für Verfahrenstechniker (Fernstudium) WS 2012/2013 Sammlung von Fundamentalkonstanten 2

Physikalische Chemie für Verfahrenstechniker (Fernstudium) WS 2012/2013 Sammlung von Fundamentalkonstanten 2 Prof. Dr. Thomas Wolff Phskalsche Cheme "Phskalsche Cheme für Verfahrenstechnker (Fernstudum) WS 01/013 Sammlung von Fundamentalkonstanten Ka. 1: Enletung 3 Was st Phskalsche Cheme Begrffe Zustandsgrößen

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Chair of Software Engineering

Chair of Software Engineering 1 2 Enführung n de Programmerung Bertrand Meyer Vorlesung 13: Contaner-Datenstrukturen Letzte Bearbetung 1. Dezember 2003 Themen für dese Vorlesung 3 Contaner-Datenstrukturen 4 Contaner und Genercty Enthalten

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung 3 Lösungen 3. Mschungen und Lösungen Homogene Phasen, n denen alle Komonenten glechartg behandelt werden, heßen Mschungen. Wenn ene Komonente m Überschuß vorlegt, kann man von Lösungen srechen. Sezfsche

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

SteigLeitern Systemteile

SteigLeitern Systemteile 140 unten 420 2 0 9 12 1540 1820 Länge 140 StegLetern Leterntele/Leterverbnder Materal Alumnum Stahl verznkt Sprossenabstand 2 mm Leternholme 64 mm x 25 mm 50 x 25 mm Leternbrete außen 500 mm Sprossen

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt Inhalt MULTIVAC Kundenportal Enletung Errechbarket rund um de Uhr Ihre ndvduellen Informatonen Enfach und ntutv Hlfrech und aktuell Ihre Vortele m Überblck

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

5. Transmissionsmechanismen der Geldpolitik

5. Transmissionsmechanismen der Geldpolitik Geldtheore und Geldpoltk Grundzüge der Geldtheore und Geldpoltk Sommersemester 2013 5. Transmssonsmechansmen der Geldpoltk Prof. Dr. Jochen Mchaels Geldtheore und Geldpoltk SS 2013 5. Transmssonsmechansmen

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service.

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service. smart Center Esslngen Compact-Car GmbH & Co. KG Plochnger Straße 108, 73730 Esslngen Tel. 0711 31008-0, Fax 0711 31008-111 www.smart-esslngen.de nfo@smart-esslngen.de Wr nehmen Ihren smart nach velen Klometern

Mehr

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN ZUSAZBEIRAG UND SOZIALER AUSGLEICH IN DER GESEZLICHEN KRANKENVERSICHERUNG: ANREIZEFFEKE UND PROJEKION BIS 2030 Martn Gasche 205-2010 Zusatzbetrag und sozaler Ausglech n der Gesetzlchen Krankenverscherung:

Mehr

Online-Services Vorteile für Mandanten im Überblick

Online-Services Vorteile für Mandanten im Überblick Onlne-ervces Vortele für en m Überblck Fgur-enzeln E-Mal Dgtales Belegbuchen Fgur-Gruppe teuerberater austausch mt Kassenbuch der Fnanzverwaltung onlne hreschluss Jahresbschluss De Entfernung zu Ihrem

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

6 Makromoleküle. Π = c i RT [1 + B c i +... ], (6.01) Kapitel 6, Seite 1

6 Makromoleküle. Π = c i RT [1 + B c i +... ], (6.01) Kapitel 6, Seite 1 Kaptel 6, Sete 1 6 Makromoleküle Klene Moleküle bestehen aus zwe oder zumndest wenger als zehn Atomen. Bekannte Vertreter der großen Moleküle snd de Chlorophylle, deren Molmasse noch unter 1000 legt. Makromoleküle

Mehr

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung Moble cherhet durch effzente ublc-key-verschlüsselung Hagen loog Drk Tmmermann Unverstät Rostock, Insttut für Angewandte Mkroelektronk und Datenverarbetung Rchard-Wagner-tr., 9 Rostock Hagen.loog@un-rostock.de

Mehr

Technische Mechanik III Teil 1. Formelsammlung

Technische Mechanik III Teil 1. Formelsammlung Unverstät Stuttgart Insttut für Mechank Prof. Dr.-Ing. W. Ehers www.mechbau.un- stuttgart.de Ergänzung zur Voresung Technsche Mechank III Te Formesammung Stand SS 204 etzte Änderung: 30.07.204 Lehrstuh

Mehr

Grundzüge der Geldtheorie und Geldpolitik

Grundzüge der Geldtheorie und Geldpolitik Grundzüge der Geldtheore und Geldpoltk Sommersemester 2012 8. Monetäre Transaktonskanäle Prof. Dr. Jochen Mchaels SoSe 2012 Geldtheore & -poltk 8. De Übertragung monetärer Impulse auf de Gesamtwrtschaft

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Universität Koblenz Landau Fachbereich Informatik

Universität Koblenz Landau Fachbereich Informatik Unverstät Koblenz Landau Fachberech Informatk Computergenererte Federzechnungen (Strchzechnungen, Pen-And-Ink Drawngs) Gudo Stegmann Matrkelnummer 882022 Semnar Computergraphk betreut von Prof. Dr.-Ing.

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Anlage Netznutzungsentgelte Erdgas 2014 der Stadtwerke Eschwege GmbH

Anlage Netznutzungsentgelte Erdgas 2014 der Stadtwerke Eschwege GmbH Entgelte be Erdgas-Ersatzbeleferung für Industre- und Geschäftskunden mt Lestungsmessung und enem Jahresverbrauch von mehr als 1.500.000 kh. Gültg ab 01.01.2014 De Ersatzversorgung endet sobald de Erdgasleferung

Mehr

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements Unser Auftrag st de aktve Umsetzung der frohen Botschaft Jesu m Denst am Menschen. Ene Herausforderung, der wr täglch neu begegnen. Mt modernster Technk und Kompetenz. Und vor allem mt Menschlchket. Letlnengerechte

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

WÄRMEÜBERTRAGUNG - Doppelrohr

WÄRMEÜBERTRAGUNG - Doppelrohr WÄRMEÜBERTRAGUNG - Doppelrohr Dpl.-Ing. Eva Drenko 1. Voraussetzungen Für de Durchführung deses Übungsbespels snd folgende theoretsche Grundlagen erforderlch: a. Gesetzmäßgketen von Transportprozessen;

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

Rainer Diaz-Bone/Harald Künemund. Einführung in die binäre logistische Regression

Rainer Diaz-Bone/Harald Künemund. Einführung in die binäre logistische Regression Free Unverstät Berln Fachberech Poltk u. Sozalwssenschaften Insttut für Sozologe Abtelung Methodenlehre und Statstk Garystr. 55 14195 Berln Raner Daz-Bone/Harald Künemund Enführung n de bnäre logstsche

Mehr

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Enführung n de Robotk Selbstlokalserung Mohamed Oubbat Insttut für Neuronformatk Tel.: (+49) 731 / 50 4153 mohamed.oubbat@un-ulm.de 08. 01. 013 Dr. Oubbat, Enführung n de Robotk (Neuronformatk, Un-Ulm)

Mehr

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Prvate Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Angeln Se sch Ihr Extra be der Rester-Rente. Rendtestark vorsorgen mt ALfonds Rester, der fondsgebundenen Rester-Rente der ALTE LEIPZIGER. Beste Rendtechancen

Mehr

Leitfaden zu den Volatilitätsindizes der Deutschen Börse

Leitfaden zu den Volatilitätsindizes der Deutschen Börse Letfaden zu den Volatltätsndzes der Deutschen Börse Verson.4 Deutsche Börse AG Verson.4 Letfaden zu den Volatltätsndzes der Deutschen Börse Sete Allgemene Informaton Um de hohe Qualtät der von der Deutsche

Mehr

5. IS LM - Modell. Literatur: Blanchard / Illing, Kap. 4-5 Kromphardt, Teil D. Keynesianische Konsumtheorie

5. IS LM - Modell. Literatur: Blanchard / Illing, Kap. 4-5 Kromphardt, Teil D. Keynesianische Konsumtheorie 5. IS LM - Modell Lteratur: Blanchard / Illng, Kap. 4-5 Kromphardt, Tel D 1 Keynesansche Konsumtheore De Keynesansche Konsumtheore beschrebt en Glechgewcht auf dem Gütermarkt unter folgenden Annahmen:

Mehr

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum W08 Physklsches Prktkum Wärmedämmung En Modellhus mt usechselbren Setenänden dent zur Bestmmung von Wärmedurchgngszhlen (k-werten) verschedener Wände und Fenster soe zur Ermttlung der Wärmeletfähgket verschedener

Mehr

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 4

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 4 45 www.rsknews.de 11.2002 Kredtrsko Sere: Bestmmung von Ausfallwahrschenlchketen - Tel 4 Ausfallwahrschenlchketen m Konjunkturzyklus Credt Portfolo Vew En Betrag von Uwe Wehrspohn Wr haben n unserer Sere

Mehr

Ein Reservierungsverfahren für die Rechtsschutzversicherung nach Art der Lebensversicherung

Ein Reservierungsverfahren für die Rechtsschutzversicherung nach Art der Lebensversicherung En Reserverungsverfahren für de Rechtsschutzverscherung nach Art der Lebensverscherung Detar Pfefer Soeren Hennges Doreen Straßburger Alce Wnkel 1 Zusaenfassung In der vorlegenden Arbet wrd ene de spezfschen

Mehr

Numerische Methoden der Thermo- und Fluiddynamik

Numerische Methoden der Thermo- und Fluiddynamik Technsche Unverstät Berln HERMANN FÖTTINGER INSTITUT FÜR STRÖMUNGSMECHANIK Numersche Methoden der Thermo- und Fluddynamk von T. Rung, L. Xue, J. Yan, M. Schatz, F. Thele vorläufge Verson 2002 Redakton:

Mehr

Reale Außenwirtschaft

Reale Außenwirtschaft Vorlesungsskrpt Reale Außenwrtschaft. Auflage (erwetert und verbessert), 007 Mchael Rauscher Glederung. Vorbemerkungen. Gegenstand der realen Außenwrtschaftstheore?. En emprsches Bld der nternatonalen

Mehr

Verbrennungsprozesse. Quelle: Kugeler, Energietechnik. Fakultät für Ingenieurwissenschaften Energietechnik. KJ mol. KJ mol. KJ mol.

Verbrennungsprozesse. Quelle: Kugeler, Energietechnik. Fakultät für Ingenieurwissenschaften Energietechnik. KJ mol. KJ mol. KJ mol. Verbrennungsprozesse usgehend von desem enfchen Blnzmodell können nhnd der stöchometrschen Umsetzungen der enzelnen Komponenten enes Brennstoffs m Verbrennungsprozess Stoffblnzen erstellt werden, lso z.b.

Mehr

Mechanismus und Charakteristik der elektrischen Leitung

Mechanismus und Charakteristik der elektrischen Leitung Ergänzungen zu Physk II Elektrsche Ströme bestehen n der Bewegung elektrscher Ladungsträger. Damt Materalen Leter snd, müssen se beweglche elektrsche Ladungsträger enthalten; en angelegtes elektrsches

Mehr

Ein stochastisches Modell zur Ertragsoptimierung bei Versicherungen

Ein stochastisches Modell zur Ertragsoptimierung bei Versicherungen En stochastsches Modell zur Ertragsoptmerung be Verscherungen Clauda Garschhammer und Rud Zagst Clauda Garschhammer Bahnhofstr. 34, 8340 aufen Tel: 0868 / 548, c.garschhammer@web.de Prof. Dr. Rud Zagst,

Mehr

Das gratis ebook fur deinen erfolgreichen Blogstart

Das gratis ebook fur deinen erfolgreichen Blogstart Das grats ebook fur denen erfolgrechen Blogstart präsentert von www.pascromag.de DAS ONLINE-MAGAZIN für dene täglche Inspraton aus den Berechen Desgn, Fotografe und Resen. Mt velen wertvollen Tpps. 1.

Mehr

Formelsammlung Bauphysik. Wärme - Feuchte

Formelsammlung Bauphysik. Wärme - Feuchte Unverstät Dusburg-Essen Insttut für Bauphysk und Materalwssenschaft Unv. Prof. Dr. Max J. Setzer Formelsammlung Bauphysk Wärme - Feuchte De vorlegende Formelsammlung kann n der Klausur Materalwssenschaft

Mehr

Dr. Leinweber & Partner Rechtsanwälte

Dr. Leinweber & Partner Rechtsanwälte Referent: Rechtsanwalt Johannes Rothmund Dr. Lenweber & Partner Rechtsanwälte Lndenstr. 4 36037 Fulda Telefon 0661 / 250 88-0 Fax 0661 / 250 88-55 j.rothmund@lenweber-partner.de Defnton: egenständge Bezechnung

Mehr

Ihr geschützter Bereich Organisation Einfachheit Leistung

Ihr geschützter Bereich Organisation Einfachheit Leistung Rev. 07/2012 Ihr geschützter Berech Organsaton Enfachhet Lestung www.vstos.t Ihr La geschützter tua area rservata Berech 1 MyVstos MyVstos st ene nformatsche Plattform für den Vstos Händler. Se ermöglcht

Mehr

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung IP Kamera 9483 - Konfguratons-Software Gebrauchsanletung VB 612-3 (06.14) Sehr geehrte Kunden......mt dem Kauf deser IP Kamera haben Se sch für en Qualtätsprodukt aus dem Hause RAEMACHER entscheden. Wr

Mehr

2014 Jetzt neu! Finanzielle Vorteile und Fördermöglichkeiten für Ihr Studium

2014 Jetzt neu! Finanzielle Vorteile und Fördermöglichkeiten für Ihr Studium Fnanzelle Vortele und Fördermöglchketen für Ihr Studum 2014 Jetzt neu! Steuerlche Vortele Stpenden Studenförderung Bldungsfonds Bldungskredte Förderung durch de Bundeswehr Förderung von Zertfkatskursen

Mehr

Grundlagen der Wärme- und Stoffübertragung

Grundlagen der Wärme- und Stoffübertragung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG Fkultät für Verfhrens- und Systemtechnk Insttut für Strömungstechnk und Thermodynmk Prof Dr-Ing E Specht Vorlesungsmnuskrpt Grundlgen der Wärme- und Stoffübertrgung

Mehr

Bewertung von Derivaten mit finiten Differenzen

Bewertung von Derivaten mit finiten Differenzen Bewertung von Dervaten mt fnten Dfferenzen Lutz Kruschwtz und Rolf Ketzler 22 Jul 2002 Inhaltsverzechns 1 Enführung 2 2 Rekaptulaton des Black Scholes Modells 2 3 Fnte Dfferenzen 3 31 Gtter und Dfferenzenbldung

Mehr

6 Numerische Simulation von druckentlasteten Gasexplosionen

6 Numerische Simulation von druckentlasteten Gasexplosionen 6 Numersche Smulaton von drucentlasteten Gasexplosonen Explosonen von brennbaren Gasen und Dämpfen stellen omplexe Prozesse mt gegensetger Beenflussung physalscher und chemscher Prozesse dar. Se snd dadurch

Mehr

Vertrieb / CRM. Erfolgreiches Kundenmanagement mit staffitpro WEB

Vertrieb / CRM. Erfolgreiches Kundenmanagement mit staffitpro WEB Vertreb / CRM Erfolgreches Kundenmanagement mt staffitpro WEB Vertreb /CRM Aufgabe des Leadsmoduls Kontaktanbahnung: Enen neuen Lead erfassen Mt dem Leadsmodul halten Se de Kundendaten m Geschäftskontaktemodul

Mehr

Faszination Photovoltaik. Das reine Vergnügen. Unabhängig mit Solarstrom

Faszination Photovoltaik. Das reine Vergnügen. Unabhängig mit Solarstrom Fasznaton Photovoltak Das rene Vergnügen Unabhängg mt Solarstrom Deutschland Sonnenland Sonnenenstrahlung pro m2 und Jahr Kel Rostock Hamburg Bremen Berln Hannover Magdeburg Dortmund Lepzg Kassel Köln

Mehr

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio.

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio. SBWL GK nanzwtschaft Schedelseke otefeulletheoe Ene Enfühung. akowtz-odell (a) nnahen De Entschedungen de Investoen snd ewels auf ene eode gechtet. Investoen vefügen übe subektve Wahschenlchketsvostellungen

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Cloud Computing: Willkommen in der neuen Welt der Geschäftsanwendungen

Cloud Computing: Willkommen in der neuen Welt der Geschäftsanwendungen Cloud Computng: Wllkommen n der neuen Welt der Geschäftsanwendungen Marktforscher und Analysten snd sch eng: Cloud Computng st das IT-Thema der Zukunft. Doch was verbrgt sch genau hnter dem Begrff Cloud

Mehr

Fachlabor Wärmeübertrager

Fachlabor Wärmeübertrager Fachlabor Wärmeübertrager RUHR UNIVERSITÄT BOCHUM Fachlabor Wärmeübertrager Wasser Wasser Wärmeübertragung Lehrstuhl für Verfahrenstechnsche Transportprozesse Insttut für Thermo und Fluddynamk Inhaltsverzechns

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK

TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK Insttut für Regelungs- und Steuerungstheore D I P L O M A R B E I T Thema: Regelungstechnsche Untersuchung enes nversen Pendels

Mehr

Messtechnik (Modul B09)

Messtechnik (Modul B09) - /9 - Messtechnk (Modul B09) Prof. Dr.-Ing. h. eck Stand WS 0/3 Messtechnk B09 Prof. Dr.-Ing. h. eck - /9 - Inhaltsverzechns Lteratur 4 Begrffe 6 3 Maßenheten 7 3. SI-Enheten 7 4 Messfehler 9 4. Fehlerarten

Mehr

Einführung in das quantitative Asset Management

Einführung in das quantitative Asset Management Enführung n das quanttatve sset Management 1. Enletung Unter sset Management, zu Deutsch Vermögensverwaltung, versteht man kurz gesagt den strukturerten ufbau und de Verwaltung von Vermögen n der Zet.

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

Telekom-Bonus-Garant 2009-2014/1 der Volksbank Vorarlberg eingetragene Genossenschaft bis zu Nominale EUR 3.000.000,--

Telekom-Bonus-Garant 2009-2014/1 der Volksbank Vorarlberg eingetragene Genossenschaft bis zu Nominale EUR 3.000.000,-- Telekom-Bonus-Garant 2009-2014/1 der Volksbank Vorarlberg engetragene Genossenschaft bs zu Nomnale EUR 3.000.000,-- mt Aufstockungsmöglchket AT0000A0FP19 Zechnungsangebot Zechnungsfrst: Ausgabekurs: Ab

Mehr

6 Einige physikalische Grundlagen der optischen Spektroskopie

6 Einige physikalische Grundlagen der optischen Spektroskopie Kaptel 6, Sete 6 Enge physkalsche Grundlagen der optschen Spektroskope Mt optschen Verfahren lassen sch de Rotatonsspektren klener Moleküle, alle Raman- Rotatonsspektren, de Schwngungsspektren enschleßlch

Mehr

Eine Sonderausgabe des Magazins zum Thema Strukturiertes. Vielfalt bei Strukturierten Produkten Ein Universum voller Möglichkeiten

Eine Sonderausgabe des Magazins zum Thema Strukturiertes. Vielfalt bei Strukturierten Produkten Ein Universum voller Möglichkeiten Ene Sonderausgabe des Magazns zum Thema Strukturertes Velfalt be Strukturerten Produkten En Unversum voller Möglchketen Inhaltsverzechns Kaptalschutz-Zertfkate 04 Be deser Struktur garantert der Emttent,

Mehr