4. Energie, Arbeit, Leistung

Größe: px
Ab Seite anzeigen:

Download "4. Energie, Arbeit, Leistung"

Transkript

1 Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on Enege: eechte Gechwndgket: at knetche Enege: entelle Enege: t Bewegung ebundene Enege ( Ekn ) t echelwkungen ebundene Enege ( gepechete Enege) Geletete Abet: F a at ( at) E kn! Abet, Enhet Joule De be de Bechleungung geletete Abet wd zu knetche Enege! Ezeugung on Enege duch Kaftanwendung (Tanfe on Enege zwchen Syteen) E glt: Abet Kaft al eg F Bepel: Hubabet F g h (Schwekaft wkt nach unten: de aufgebachte Kaft nach oben) geletete Abet: F gh E genaue: Fd De Abet wd zu entelle Enege

2 44 45 Bepel: Spannen ene Fede x geletete Abet: l l l Kaft ene Fede (Hook che Geetz) F Dx Fdx ( Dx) dx D l E Abet wd zu entelle Enege Gleche Abet! De Potentelle Enege hängt ncht daon ab, we e ezeugt wude! Allgeen: genaue: Vektoelle Bechebung F (fü geaden eg und kontante Kaft) F( ) d F (fü geade Teltücken) 4. egunabhänggket de. Enege Bepel: Hubabet Schweefeld (otunabhängge Kaft) Bepel: chefe Ebene F α F F l h Abet: dekte Heben gh E Abet: übe Rape F g nα l h g nα gh nα n F n x y g z n g z g n z gh Ene Bewegung n x- ode y-rchtung pelt kene Rolle; e zählt nu de Bewegung n Rchtung de Kaft.

3 46 47 Bedeutung on : Lnenntegal F d F d Kaftfeld F( ) d eg Fd I Schweefeld: g dx dy dz Beekung: da Kaftfeld t de negate Gadent de entellen Enege F( ) E E x E y E z En o gebldete Kaftfeld t e koneat! an jede Ot Skalapodukt F d gdzg z Abet hängt nu o Höhenunteched ab! Bepel: Schweefeld F E ( gz) g Defnton: En Kaftfeld, be de da Integal F( ) d nu on Anfang- und Endpunkt, abe ncht o eg abhängt, heßt koneat. Fü en nchtkoneate Kaftfeld glt: F x y z F E glt: ( φ) F y z F z y F x z F z x F y x F x y en al Gadent ene Skalafeld gebldete Kaftfeld t e koneat!

4 Defnton: Potental V ( ) E ( ) Enegeehaltung 49 Dat alo V ( ) F ( ) d Syte wkende Kaft Fü en abgechloene Syte glt: E kn + E kontant De Sue de knetchen und de entellen Enege t kontant; e ändet ch nu, wenn Abet a Syte echtet wd. Da fe wählba t, t da Potental nu b auf ene addte Kontante defnet. Abe: entelle Enege kann n knetche Enege ugewandelt weden und ugekeht E glt dat: F ( ) V ( ) Bepel: fee Fall ohe: nachhe: De Kaft t de negate Gadent de Potental. h h Egenchaften: de Gadent zegt n de Rchtung axale e Stegung; e teht enkecht auf den Äquentallnen bzw. flächen. E gh E kn E E kn de Kaft zegt n de Rchtung axale negate Stegung de Potental ( begab ) Mt de Enegeehaltung folgt: gh und dat: gh

5 5 5 nachechnen: zetabhängge Höhe be Fall Zet be Eechen on z Gechwndgket he Bepel: haonche Schwngung x z( t) h gt h t g gt gh Gleche Egebn! x( t) x coωt t) x ω nωt ( Ständge Uwandeln on entelle n knetche Enege und ugekeht. Köpe n de Mtte: knetche Enege t axal E kn ax ( xω) entelle Enege t nal Dx n E Köpe a äußeen Ukehpunkt: knetche Enege t nal E kn n entelle Enege t axal egen de Enegeehaltung glt dat: Andee Heletung: E glt e t alo da heßt alo ( xω) ω D ω D Dx E Dxax Dx a( t) x ω coωt a ω x( t) F a Dx ω x ω D Schwngungfequenz Fedependel

6 Letung Letung t Abet po Zet genaue: Geletete Abet t P t d P dt Pt Enhet att [] [J/][/] 4.4 Dpaton: Rebung De olltändge Uwandlung on Abet an ene Köpe n knetche und entelle Enege de Köpe E + E E folgen Bepele fü Rebung Coulob-Rebung (Obeflächen-Rebung) kn bzw. de Enegeehaltung, wenn kene Abet geletet wd E kn + E kontant glt nu be Abweenhet dpate Effekte (Rebung) bzw. t Pdt F R Klotz bewegt ch t Gechwndgket paallel zu Obefläche. Fü de Rebungkaft glt: Bepel: Hubabet kg weden u angehoben F ( F ) R µ F Gletebung Abet: geletet n 5 n (3): geletet n : gh J P J 3. t 3 3 J P Rebungkoeffzent Anpekaft Rchtung de Bewegung entgegengeetzt

7 Folgeungen: Aunahe: Köpe uht: Typche ete: - Kaft t unabhängg on de Gechwndgket - Kaft t unabhängg on de Auflagefläche - Stäke wd nu bett duch Anpekaft und Matealkobnaton Fa FR µ F ( ) F Stahl auf Stahl (polet) µ.7 µ.4 Gu auf Aphalt µ. a µ. Haftebung tocken 54 au t de Rebung unabhängg on de Auflagefläche A? Fläche A F Mkokopch nd Flächen ne glatt. Jede Mateal efot ch ab ene ktchen Duck p kt. an den Beühpunkten efoen ch de Sptzen, b de ktche Duck untechtten wd: Beühpunkte kt (Kontaktfläche A*) A* p A* F F p kt 55 µ.6 µ.4 naß De tatächlche Kontaktfläche t fü ene gegebene Anduckkaft e glech, und unabhängg on de Fläche A! de Rebungkaft t unabhängg on A Bepel: axal öglche Bechleungen ene Auto Dehende Räde können axal de Haftebungkaft auf de Staße auüben, blockeende Räde de Gletebungkaft. De axal öglche (e ode negate!) Bechleungung t dat: bzw. FR µ F µ g a µ g F R a µ g En Fahzeug t Guefen kann auf Aphalt alo t axal. g bechleungen! ewton-rebung F R Gechwndgket Schnelle Köpe n lechte Flügket ode Ga He glt fü de Rebungkaft: c A F c A ( ) ρ detandbewet de Köpe Quechnttfläche de Köpe (enkecht zu Gechwndgket)

8 De Kaft t popotonal zu Quadat de Gechwndgket! Be de Bewegung aufgebachte Letung: Bepel: Auto P F t F c k/h (7.8 /) : k/h (56 /) : Heletung ewton-rebung ρ A 3 A.5 ρ.9 kg/ 3 (Luft) c.3 F 374 P 393 ( 4 PS) F 495 P 8346 ( 3 PS) Anahe: en Köpe bechleungt alle Ga n ene Bahn auf ene Gechwndgket. I Zetnteall dt t: zuückgelegte Stecke d dt duchtchene Voluen bechleungte Gaae ezeugte knetche Enege dv Ad Adt dm ρdv ρ Adt de dm ρ Adt 56 geletete Abet d Fd Fdt de Kaft F ρ A cht alle Ga wd bechleungt; wd duch Fakto c w beückchtgt. Unte Anweenhet on Rebung wd en Tel de geleteten Abet n äeenege ugewandelt: Ekn + E + E Defnton: äeenege t de Dffeenz zwchen tatächlche und nal öglche ttlee entelle und knetche Enege de Atoe ene Syte Ebeno kann knetche Enege dekt n äeenege ugewandelt weden E kn E e glt ene ewetete Enegeehaltung Ekn + E + E Bepel: Klotz auf Ebene kontant F Klotz uht a Ende:geate Abet wd n äeenege ugewandelt a Fl µ gl E 57

9 4.5 Ipul etee zentale Göße! Heletung au Reaktonpnzp (he fü zwe Köpe) F F F F acto eacto 58 t t F a a a d a dt dt dt d ( ) + dt + alo blebt kontant! 59 De Käfte fühen zu Bechleungung bede Köpe; de geate knetche Enege wächt kontnuelch De an jede Köpe po Zetnteall echtete Abet t d de F dt dt F de kn, F dt t : kn, Zunahe de geaten knetchen Enege: de kn dt F + F Defnton: Ipul: p de Sue de Ipule bede Köpe blebt kontant! Fü enen enzelnen Köpe glt: Mutplzet t : t t F( t) ( t) + a( t) dt + dt t + p( t) p F( t) dt Abe e gbt ene Ehaltunggöße: F F E glt Be kontante Kaft und p p F t Ipul t Kaft al Zet!

10 4.6 Ipulehaltung Stöße 6 acto eacto glt auch fü en Syte au belebg elen Köpen: Stoß: Autauch on Ipul und Enege zwchen Köpen n endlchen Zetnteallen; kene echelwkung Anfang- und Endzutand. F F F F F F F Fü de Sue de Ipule glt: p p F dt p F dt t t ( + ) + t t t pge + t p ge F dt Anfangzutand p, p, p3... E, E, E3... E glt: elatche Stoß: Dann glt echelwkung p kn E p E kn Endzutand p, p, p 3... E, E, E 3... Ipulehaltung kene Uwandlung on knetche Enege n entelle ode äeenege (kene Anegung nnee Fehetgade de Köpe) Enegeehaltung 4.7. Zentale elatche Stoß zwchen zwe Köpen In ene Syte, auf da kene äußeen Käfte wken, t de Geatpul ene Ehaltunggöße Zentale Stoß: geate Bewegung fndet auf ene Geaden tatt

11 + + Ipulehaltung: end. Bewegung: kn. Enegeehaltung: Bepel: zwete Köpe uht ( ) Zwe Glechungen, zwe Unbekannte (, ) endeutge Löung fü gegebene Paaete,,, (unabhängg on de At de echelwkung!) Dann glt: und + Enetzen: Fü dee Glechung gbt e zwe Löungen: Löung : Löung : ( Tale Löung: Stoß hat ncht tattgefunden) + Dkuon dee Reultat fü echedene Fälle: +. he glt: De Ipul (und de knetche Enege) weden olltändg auf den getoßenen Köpe übetagen. 63

12 << he glt: De toßende Köpe wd eflektet; de getoßene Köpe ehält den doppelten Ipul de toßenden Köpe! ( p p!) 3. >> he glt: De toßende Köpe wd kau elangat; de getoßene Köpe ehält de doppelte Gechwndgket de toßenden Köpe! 3. >> he glt: Allgeen: dedenonale Stoß De toßende Köpe wd kau elangat; de getoßene Köpe ehält de doppelte Gechwndgket de toßenden Köpe! Effzenz de Enegeübetagung: E E ( + ) ( + ) 4 E ( + ) Maxal fü! (he t E E ) Fü t E < E; de getoßene Köpe ehält nu enen Tel de Enege de toßenden Köpe. + He glt: + + De nd 4 Glechungen t 6 Unbekannten ( ) + Ipulehaltung, Enegeehaltung Löung bett b auf zwe fee Paaete! (z.b. legt de ahl de Rchtung on alle andeen ete fet)

13 4.7.3 Anwendung de Ipulehaltung: Rakete w + E glt: Ipulehaltung: Voteb duch uf: Peon n Boot n Ruhe wft ene Kugel t ufgechwndgket w (Gechwndgket elat zu Peon) Daduch ehält da Boot (und de Peon) enen Ipul bzw. ene Gechwndgket n Gegenchtung ( ) alo Fü << wd de zu: + + und Autoß on Mae ezeugt Voteb! 66 Jetzt: Rakete D heße Gae Bennkae und Düe Tebtoff In de Zet dt wd de Mae d Ga t Gechwndgket D augetoßen. Gechwndgketändeung de Rakete daduch (d R << R ) : Ufoen: Integaton übe : d d Ga R d D D R R d d D d d d Autoß füht zu Abnahe de Raketenae: D d ( ) ( ) D (ln( ) ln( )) D ln( ) Fall ( ) t (Statgechwndgket ull): Gagechw. D ln( ) d Ga - d R Raketengechwndgket Vehältn Stat- zu Endae 67

14 De on ene Rakete eechbae Gechwndgket hängt on de Vehältn de Stat- und Endae und de Gagechwndgket ab. Typche ete: 6 Dat: Inelatche Stoß D End 36 Rebungeffekte (Uwandlung knetche Enege n äeenege) eänden Stöße. Bepel: ollnelatche zentale Stoß 68 Fü de knetche Enege glt: ohe: nachhe: Ekn E kn + ( + ) E + + De knetche Enege wd enget! De fehlende Enege wd n äeenege ewandelt: E kn + E E + E + kn E kn E kn E kn + E kn 69 E glt: Kugeln bleben zuaen Däpfe P Ipulehaltung (glt e!) ge P ge + + ( ) Meke: be nelatchen Pozeen glt Ipulehaltung, abe ncht de Ehaltung de knetchen Enege! (onden nu de Ehaltung de Geatenege) + Vollnelatche Stoß

15 Stöße n 3D Stoß zwchen zwe Köpen t belebgen Gechwndgketen 4.8 Schwepunkt Defnton:Schwepunktkoodnate ene Syte au Maenpunkten + + He glt: Ipulehaltung (3 Glechungen!) Bewegung de Schwepunkt: Schwepunkt: Gewchtete Mttel de Otkoodnaten Be ene elatchen Stoß: + + Enegeehaltung, De nd 4 Glechungen t 6 Unbekannten ( ; de beden Vektoen haben je 3 Koponenten) Löung bett b auf zwe fee Paaete! ( Glechung) (z.b. legt de ahl de Rchtung on alle andeen ete fet) t und den Bezechnungen glt alo: ɺɺ ɺɺ ( F F ) a + ɺɺ F M F a ge a a F F ge äußee Käfte (Reaktonpnzp) M geate äußee Kaft Geatae De Schwepunkt bewegt ch we en Maenpunkt t de Geatae de Syte, an de ätlche Käfte angefen!

16 Folgeung: ohne äußee Käfte ändet de Schwepunkt ene Syte enen Bewgungzutand ncht! 4.9 Schwepunktyte Da Schwepunktyte t en Koodnatenyte, deen Upung de Schwepunkt de Syte t. Gechwndgket de Schwepunkt: ɺ ɺ M Galle-Tanfoaton n da Schwepunktyte: Fü den Geatpul Schwepunktyte glt: p ( ) ge Relatkoodnaten! M M De Geatpul Schwepunktyte t ull! 7 Fü de knetche Enege Schwepunktyte glt: E kn + E + ge kn E M + M ge kn E ge kn M Ugefot: ge E M + E kn. Enege alle Köpe kn kn kn. Enege de Schwepkt. nnee kn. Enege de Syte De knetche Enege läßt ch auftelen n de knetche Enege de Bewegung de Geatyte und de Bewegung Schwepunktyte! Bepel: Stoß, zwe Köpe gleche Mae,. Köpe uht

17 74 75 I Schwepunktyte glt: Bewegung Laboyte nach de Stoß: + + Be de Stoß Schwepunktyte glt Ipulehaltung: + + alo auch Be elatchen Stoß glt Enegeehaltung: α In dee Fall haben de Endgechwndgketen Laboyte zuenande enen nkel on 9! (Thaleke!) Enetzen: Ke t Radu / De Betäge bleben glech! Al Endzutände nd alle entgegengeetzten Vektoen t Sptzen auf de Ke elaubt! Allgeene Fall:,, > I Schwepunktyte bleben be elatchen Stoß de Betäge de Gechwndgketen de Köpe ehalten; da de Geatpul ull t, nd e e entgegengeetzt augechtet.

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2.

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2. INHSERZEIHNIS S IRKIHE ERHEN ER SOFFE HEEROGENE ZUSNSGEBIEE 3. Geche 3. afgehalt 3.3 Sezfche olue v 3. Ethale 3.5 Etoe.6 af/ga Geche, Feuchte uft 3 ÄREÜBERRGUNG 6 3. äeletug 6 3. äeübegag 7 3.3 äeübetagug

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

α Winkel der Schrägen

α Winkel der Schrägen Glechföge Bewegung eg Gechwndgket t π d n t Glechföge echleungte Bewegung Bewegung ohne nfng- t gechwndgket t t t d n t eg Gechwndgket et Duchee Dehhl eg Bechleungung et Gechwndgket - n - - - chefe Eene

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio.

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio. SBWL GK nanzwtschaft Schedelseke otefeulletheoe Ene Enfühung. akowtz-odell (a) nnahen De Entschedungen de Investoen snd ewels auf ene eode gechtet. Investoen vefügen übe subektve Wahschenlchketsvostellungen

Mehr

Signaltransport in Koaxialkabeln

Signaltransport in Koaxialkabeln Sgnaltanspot n Koaxalkabeln Inhaltsvezechns SIGNALTRANSPORT IN KOAXIALKABELN... 1 SKRIPT... 1 1. VERWENDUNGSZWECK UND AUFBAU DES KOAXIALKABELS...1. ERSATZSCHALTBILD DES KOAXIALKABELS....1 Beechnung des

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen ORMESRI Zuammehäge zwche de etale Stoffezahle etale Reflexogad ( ( geamt ( ( fü läche etale Retamogad ( a ( b a b Setale amogad ee laaallele latte au otoem homogee Medum ( ( mt

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission Kompaktwssen fü den Außenhandel Ausgabe 4/2013 LISTENREGELN ZUM NPU? De Pläne de EU-Kommsson 6 DOS & DON TS Ogansaton ene Zoll- und Außenwtschaftsabtelung ES KÖNNTE BESSER SEIN! Felx Neugat (DIHK) zu Lage

Mehr

Formelsammlung zu Antriebe I

Formelsammlung zu Antriebe I Forelalung zu Antrebe I Verfaern: Studengang: ehatronk und kroytetehnk Hohhule Helbronn Hohhule Helbronn Forelalung AT rof. Dr.-Ing.. Kern ehatronk und kroytetehnk Antrebe Glehtroahne Dfferentalglehungen

Mehr

Physikalische Grundlagen der Biomechanik

Physikalische Grundlagen der Biomechanik Physkalsche Gundlagen de Bomechank Dplomabet zu Elangung des Magstegades an de Natuwssenschaftlchen Fakultät de Leopold-Fanzens-Unvestät Innsbuck engeecht be Hen A. Unv.-Pof. D. Chstoph LEUBNER Insttut

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Arbeit, Energie, Impuls und Erhaltungssätze

Arbeit, Energie, Impuls und Erhaltungssätze Abe, Enege, Ipls n Ehalngssäze De Enfühng on physkalschen Gößen, fü e en Ehalngssaz gl, lefe seh lesngsfähge Saegen z Beechnng on physkalschen Vogängen. In e klassschen Mechank s e Gesaasse enes abgeschlossenen

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Gundlagen de Elektotechnk I Pof. D. Suchaneck WS 5/6 Inhaltsvezechns Sete. llgeenes... 7. SI-Enhetensyste... 7. Schebwese von Gößen (DIN 33)... 8.3 Glechungsaten... 9.4 Gafsche Dastellungen, Dagae... 9.

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Supply Chain Management

Supply Chain Management 1 Supply Chan Management Supply Chan Metcs - The key to mpovement - Lay Lapde: What About Measung Supply Chan Pefomance? (Potal ode http://www.ascet.com/) http://www.supply-chan.og/ (SCOR Model) Supply

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen.

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen. - 14.1 - Antrebstechnk Der technsche Stand der Antrebstechnk ener Volkswrtschaft läßt sch an hrem Exportantel am Gesamtexportvolumen aller Industreländer messen. Mt 27,7 % des gesamten Weltexportvolumens

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Nichtlineare Optik Vorlesung - Zusammenfassung

Nichtlineare Optik Vorlesung - Zusammenfassung Nchtlneae Opt Volesung - Zusammenfassung Inhalt Pof. Menes SS 998. GRUNDLAGN (DR LINARN KRISTALLOPTIK). Wellenausbetung n ansotopen Meden.... Indexellpsod (Indatx)... 5.3 Optsche Kstalllassen... 6.4 Doppelbechung

Mehr

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A Fomelsammlung EM. Allgemenes De Enhet de Stomstäke st das Ampee [A]. De Enhet de adung Q st das oulomb [][As]. Q bzw. t dq dt De Enhet de Spannung st das Volt [V]. W st das Enegegefälle zwschen zwe Punkten

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Kurzinformation zu ergänzenden Modulen und Dienstleistungen der B.K.L.-isos GmbH beim Einsatz von SER DOMEA

Kurzinformation zu ergänzenden Modulen und Dienstleistungen der B.K.L.-isos GmbH beim Einsatz von SER DOMEA B.K.L. - Integratnervce für ffene Syteme Kurznfrmatn zu ergänzenden Mdulen und Dentletungen der B.K.L.- bem Enatz vn SER DOMEA Stand: 5/2003 De B.K.L.- t et velen Jahren DOMEA -Partner und hat für Kunden

Mehr

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale Mefacntegale Mae ene Quade: M wenn de Quade nomogen t: (,, ) M (,, ) M N M N N (,, ) M lm (,, ) (,, ) dd d N Integal de Funkton (,, ) üe da olumen. Mefacntegale mt kontanten Integatongenen Integaton mefac

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

Begleitmaterial zum Buch

Begleitmaterial zum Buch egetmte zum uch etet vo Mg. Ev Swy u t We t we? Vebe e Sätze mt em chtge Nme. Fo Pu Nko Ko Vkto Emm... t e ckche ebe Mäche, eh gee cht.... ht ee Sptzme vo eem Refet übe Aute.... ht chefe Zähe u mu ee Zhpge

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorthmche Bonformatk HMM Algorthmen: Forward-Backward Baum-Welch Anwendung m equenzalgnment Ulf Leer Wenmanagement n der Bonformatk Formale Defnton von HMM Defnton Gegeben Σ. En Hdden Markov Modell t

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Modellbildung und Simulation

Modellbildung und Simulation /8 Modellbldung und Smulaton Grundätzlche Be der Modellerung komplexer Syteme ollte nach folgenden Schrtten ytematch vorgegangen werden (ehe z. B. [] ):. Zuammentragen der Vorgaben Zel: Sammeln und Aufbereten

Mehr

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1 Aufaben zu Ipul. Zwei Kueln it den Maen 5,0 k und 0 k toßen it den Gecwindikeiten 5,0 / und 8,0 / erade eeneinander. Wie cnell ind die Kueln nac de Stoß, wenn dieer a) elatic b) unelatic it? c) Wieiel

Mehr

folgende Wärmeübergangsbeziehung: Nu = 0, 664 Re

folgende Wärmeübergangsbeziehung: Nu = 0, 664 Re Aufgabe 3.5: Berechnung ene Wärmeübergangkoezenten En Körper mt der Oberäche A = 1 m 2 und der Temperatur ϑ W = 30 C wrd mt Luft der Temperatur ϑ F = 10 C (Druck p = 1 bar) angetrömt. De Gechwndgket der

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Mechanisches Trennen 9 AUSWAHL MECHANISCHER TRENNEINRICHTUNGEN... 37

Mechanisches Trennen 9 AUSWAHL MECHANISCHER TRENNEINRICHTUNGEN... 37 Mechansches Tennen 1 SEDIMENTIEREN... KLASSIEREN... 6 3 FLOCKUNG UND FLOTATION... 8 3.1 FLOCKUNG (FIOCCULATION, COAGULATION)... 8 3. FLOTATION (FLOTATION)... 8 4 ZENTRIFUGIEREN... 9 4.1 PRINZIP UND AUFBAU

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

MULTI ASSET TREND III INDEX

MULTI ASSET TREND III INDEX MULTI ASSET TREND III INDEX De Mult Asset Tend III Index (de "Index") (ISIN: DE000A11RDD4; WKN: A11RDD4) st en von de UnCedt Bank AG ode hem Rechtsnachfolge (de "Indexsponso") entwckelte und gestaltete

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wtschaftswssenschaften Desdne Betäge zu Quanttatven Vefahen N. 58/1 Rato calculand pecul - en analytsche Ansatz zu Bestmmung de Velustvetelung enes Kedtpotfolos

Mehr

Aufgabe 1 Welche Eigenschaften muss ein mechanisches System besitzen, damit es periodische Schwingungen ausführen kann?

Aufgabe 1 Welche Eigenschaften muss ein mechanisches System besitzen, damit es periodische Schwingungen ausführen kann? Aufgabe 1 Welche Eigenchaften u ein echaniche Syte beitzen, dait e periodiche Schwingungen auführen kann? Aufgabe 2 Ein Federpendel wurde u die Strecke = 15 c au der Ruhelage augelenkt und dann logelaen.

Mehr

Rotation starrer Körper

Rotation starrer Körper Rotation tae Köpe De tae Köpe Eine Menge von Maepunkten, die fet iteinande vebunden ind, wid al tae Köpe bezeichnet. Diee Modell wid vewendet, wenn die Becheibung de Dehbewegung it de Modell de Maepunkte

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

Formelsammlung Nachrichtentechnik

Formelsammlung Nachrichtentechnik Fomelammlung Nachchtentechnk Inhaltvezechn.... Dgtale Daten.... Sgnale... 3 3. etungtheoe... 8 4. Modulaton... 5.Flte... 4 6.Dgtallte... 7 7. Up and Downamplng... 8 8. ule Shapng... 9 Auto: Dte Macel Datum:

Mehr

Lagrangesche Mechanik

Lagrangesche Mechanik Kaptel Lagrangesche Mechank De Newtonsche Mechank hat enge Nachtele. 1) De Bewegungsglechungen snd ncht kovarant, d.h. se haben n verschedenen Koordnatensystemen verschedene Form. Z.B., zwedmensonale Bewegungsglechungen

Mehr