4. Energie, Arbeit, Leistung

Größe: px
Ab Seite anzeigen:

Download "4. Energie, Arbeit, Leistung"

Transkript

1 Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on Enege: eechte Gechwndgket: at knetche Enege: entelle Enege: t Bewegung ebundene Enege ( Ekn ) t echelwkungen ebundene Enege ( gepechete Enege) Geletete Abet: F a at ( at) E kn! Abet, Enhet Joule De be de Bechleungung geletete Abet wd zu knetche Enege! Ezeugung on Enege duch Kaftanwendung (Tanfe on Enege zwchen Syteen) E glt: Abet Kaft al eg F Bepel: Hubabet F g h (Schwekaft wkt nach unten: de aufgebachte Kaft nach oben) geletete Abet: F gh E genaue: Fd De Abet wd zu entelle Enege

2 44 45 Bepel: Spannen ene Fede x geletete Abet: l l l Kaft ene Fede (Hook che Geetz) F Dx Fdx ( Dx) dx D l E Abet wd zu entelle Enege Gleche Abet! De Potentelle Enege hängt ncht daon ab, we e ezeugt wude! Allgeen: genaue: Vektoelle Bechebung F (fü geaden eg und kontante Kaft) F( ) d F (fü geade Teltücken) 4. egunabhänggket de. Enege Bepel: Hubabet Schweefeld (otunabhängge Kaft) Bepel: chefe Ebene F α F F l h Abet: dekte Heben gh E Abet: übe Rape F g nα l h g nα gh nα n F n x y g z n g z g n z gh Ene Bewegung n x- ode y-rchtung pelt kene Rolle; e zählt nu de Bewegung n Rchtung de Kaft.

3 46 47 Bedeutung on : Lnenntegal F d F d Kaftfeld F( ) d eg Fd I Schweefeld: g dx dy dz Beekung: da Kaftfeld t de negate Gadent de entellen Enege F( ) E E x E y E z En o gebldete Kaftfeld t e koneat! an jede Ot Skalapodukt F d gdzg z Abet hängt nu o Höhenunteched ab! Bepel: Schweefeld F E ( gz) g Defnton: En Kaftfeld, be de da Integal F( ) d nu on Anfang- und Endpunkt, abe ncht o eg abhängt, heßt koneat. Fü en nchtkoneate Kaftfeld glt: F x y z F E glt: ( φ) F y z F z y F x z F z x F y x F x y en al Gadent ene Skalafeld gebldete Kaftfeld t e koneat!

4 Defnton: Potental V ( ) E ( ) Enegeehaltung 49 Dat alo V ( ) F ( ) d Syte wkende Kaft Fü en abgechloene Syte glt: E kn + E kontant De Sue de knetchen und de entellen Enege t kontant; e ändet ch nu, wenn Abet a Syte echtet wd. Da fe wählba t, t da Potental nu b auf ene addte Kontante defnet. Abe: entelle Enege kann n knetche Enege ugewandelt weden und ugekeht E glt dat: F ( ) V ( ) Bepel: fee Fall ohe: nachhe: De Kaft t de negate Gadent de Potental. h h Egenchaften: de Gadent zegt n de Rchtung axale e Stegung; e teht enkecht auf den Äquentallnen bzw. flächen. E gh E kn E E kn de Kaft zegt n de Rchtung axale negate Stegung de Potental ( begab ) Mt de Enegeehaltung folgt: gh und dat: gh

5 5 5 nachechnen: zetabhängge Höhe be Fall Zet be Eechen on z Gechwndgket he Bepel: haonche Schwngung x z( t) h gt h t g gt gh Gleche Egebn! x( t) x coωt t) x ω nωt ( Ständge Uwandeln on entelle n knetche Enege und ugekeht. Köpe n de Mtte: knetche Enege t axal E kn ax ( xω) entelle Enege t nal Dx n E Köpe a äußeen Ukehpunkt: knetche Enege t nal E kn n entelle Enege t axal egen de Enegeehaltung glt dat: Andee Heletung: E glt e t alo da heßt alo ( xω) ω D ω D Dx E Dxax Dx a( t) x ω coωt a ω x( t) F a Dx ω x ω D Schwngungfequenz Fedependel

6 Letung Letung t Abet po Zet genaue: Geletete Abet t P t d P dt Pt Enhet att [] [J/][/] 4.4 Dpaton: Rebung De olltändge Uwandlung on Abet an ene Köpe n knetche und entelle Enege de Köpe E + E E folgen Bepele fü Rebung Coulob-Rebung (Obeflächen-Rebung) kn bzw. de Enegeehaltung, wenn kene Abet geletet wd E kn + E kontant glt nu be Abweenhet dpate Effekte (Rebung) bzw. t Pdt F R Klotz bewegt ch t Gechwndgket paallel zu Obefläche. Fü de Rebungkaft glt: Bepel: Hubabet kg weden u angehoben F ( F ) R µ F Gletebung Abet: geletet n 5 n (3): geletet n : gh J P J 3. t 3 3 J P Rebungkoeffzent Anpekaft Rchtung de Bewegung entgegengeetzt

7 Folgeungen: Aunahe: Köpe uht: Typche ete: - Kaft t unabhängg on de Gechwndgket - Kaft t unabhängg on de Auflagefläche - Stäke wd nu bett duch Anpekaft und Matealkobnaton Fa FR µ F ( ) F Stahl auf Stahl (polet) µ.7 µ.4 Gu auf Aphalt µ. a µ. Haftebung tocken 54 au t de Rebung unabhängg on de Auflagefläche A? Fläche A F Mkokopch nd Flächen ne glatt. Jede Mateal efot ch ab ene ktchen Duck p kt. an den Beühpunkten efoen ch de Sptzen, b de ktche Duck untechtten wd: Beühpunkte kt (Kontaktfläche A*) A* p A* F F p kt 55 µ.6 µ.4 naß De tatächlche Kontaktfläche t fü ene gegebene Anduckkaft e glech, und unabhängg on de Fläche A! de Rebungkaft t unabhängg on A Bepel: axal öglche Bechleungen ene Auto Dehende Räde können axal de Haftebungkaft auf de Staße auüben, blockeende Räde de Gletebungkaft. De axal öglche (e ode negate!) Bechleungung t dat: bzw. FR µ F µ g a µ g F R a µ g En Fahzeug t Guefen kann auf Aphalt alo t axal. g bechleungen! ewton-rebung F R Gechwndgket Schnelle Köpe n lechte Flügket ode Ga He glt fü de Rebungkaft: c A F c A ( ) ρ detandbewet de Köpe Quechnttfläche de Köpe (enkecht zu Gechwndgket)

8 De Kaft t popotonal zu Quadat de Gechwndgket! Be de Bewegung aufgebachte Letung: Bepel: Auto P F t F c k/h (7.8 /) : k/h (56 /) : Heletung ewton-rebung ρ A 3 A.5 ρ.9 kg/ 3 (Luft) c.3 F 374 P 393 ( 4 PS) F 495 P 8346 ( 3 PS) Anahe: en Köpe bechleungt alle Ga n ene Bahn auf ene Gechwndgket. I Zetnteall dt t: zuückgelegte Stecke d dt duchtchene Voluen bechleungte Gaae ezeugte knetche Enege dv Ad Adt dm ρdv ρ Adt de dm ρ Adt 56 geletete Abet d Fd Fdt de Kaft F ρ A cht alle Ga wd bechleungt; wd duch Fakto c w beückchtgt. Unte Anweenhet on Rebung wd en Tel de geleteten Abet n äeenege ugewandelt: Ekn + E + E Defnton: äeenege t de Dffeenz zwchen tatächlche und nal öglche ttlee entelle und knetche Enege de Atoe ene Syte Ebeno kann knetche Enege dekt n äeenege ugewandelt weden E kn E e glt ene ewetete Enegeehaltung Ekn + E + E Bepel: Klotz auf Ebene kontant F Klotz uht a Ende:geate Abet wd n äeenege ugewandelt a Fl µ gl E 57

9 4.5 Ipul etee zentale Göße! Heletung au Reaktonpnzp (he fü zwe Köpe) F F F F acto eacto 58 t t F a a a d a dt dt dt d ( ) + dt + alo blebt kontant! 59 De Käfte fühen zu Bechleungung bede Köpe; de geate knetche Enege wächt kontnuelch De an jede Köpe po Zetnteall echtete Abet t d de F dt dt F de kn, F dt t : kn, Zunahe de geaten knetchen Enege: de kn dt F + F Defnton: Ipul: p de Sue de Ipule bede Köpe blebt kontant! Fü enen enzelnen Köpe glt: Mutplzet t : t t F( t) ( t) + a( t) dt + dt t + p( t) p F( t) dt Abe e gbt ene Ehaltunggöße: F F E glt Be kontante Kaft und p p F t Ipul t Kaft al Zet!

10 4.6 Ipulehaltung Stöße 6 acto eacto glt auch fü en Syte au belebg elen Köpen: Stoß: Autauch on Ipul und Enege zwchen Köpen n endlchen Zetnteallen; kene echelwkung Anfang- und Endzutand. F F F F F F F Fü de Sue de Ipule glt: p p F dt p F dt t t ( + ) + t t t pge + t p ge F dt Anfangzutand p, p, p3... E, E, E3... E glt: elatche Stoß: Dann glt echelwkung p kn E p E kn Endzutand p, p, p 3... E, E, E 3... Ipulehaltung kene Uwandlung on knetche Enege n entelle ode äeenege (kene Anegung nnee Fehetgade de Köpe) Enegeehaltung 4.7. Zentale elatche Stoß zwchen zwe Köpen In ene Syte, auf da kene äußeen Käfte wken, t de Geatpul ene Ehaltunggöße Zentale Stoß: geate Bewegung fndet auf ene Geaden tatt

11 + + Ipulehaltung: end. Bewegung: kn. Enegeehaltung: Bepel: zwete Köpe uht ( ) Zwe Glechungen, zwe Unbekannte (, ) endeutge Löung fü gegebene Paaete,,, (unabhängg on de At de echelwkung!) Dann glt: und + Enetzen: Fü dee Glechung gbt e zwe Löungen: Löung : Löung : ( Tale Löung: Stoß hat ncht tattgefunden) + Dkuon dee Reultat fü echedene Fälle: +. he glt: De Ipul (und de knetche Enege) weden olltändg auf den getoßenen Köpe übetagen. 63

12 << he glt: De toßende Köpe wd eflektet; de getoßene Köpe ehält den doppelten Ipul de toßenden Köpe! ( p p!) 3. >> he glt: De toßende Köpe wd kau elangat; de getoßene Köpe ehält de doppelte Gechwndgket de toßenden Köpe! 3. >> he glt: Allgeen: dedenonale Stoß De toßende Köpe wd kau elangat; de getoßene Köpe ehält de doppelte Gechwndgket de toßenden Köpe! Effzenz de Enegeübetagung: E E ( + ) ( + ) 4 E ( + ) Maxal fü! (he t E E ) Fü t E < E; de getoßene Köpe ehält nu enen Tel de Enege de toßenden Köpe. + He glt: + + De nd 4 Glechungen t 6 Unbekannten ( ) + Ipulehaltung, Enegeehaltung Löung bett b auf zwe fee Paaete! (z.b. legt de ahl de Rchtung on alle andeen ete fet)

13 4.7.3 Anwendung de Ipulehaltung: Rakete w + E glt: Ipulehaltung: Voteb duch uf: Peon n Boot n Ruhe wft ene Kugel t ufgechwndgket w (Gechwndgket elat zu Peon) Daduch ehält da Boot (und de Peon) enen Ipul bzw. ene Gechwndgket n Gegenchtung ( ) alo Fü << wd de zu: + + und Autoß on Mae ezeugt Voteb! 66 Jetzt: Rakete D heße Gae Bennkae und Düe Tebtoff In de Zet dt wd de Mae d Ga t Gechwndgket D augetoßen. Gechwndgketändeung de Rakete daduch (d R << R ) : Ufoen: Integaton übe : d d Ga R d D D R R d d D d d d Autoß füht zu Abnahe de Raketenae: D d ( ) ( ) D (ln( ) ln( )) D ln( ) Fall ( ) t (Statgechwndgket ull): Gagechw. D ln( ) d Ga - d R Raketengechwndgket Vehältn Stat- zu Endae 67

14 De on ene Rakete eechbae Gechwndgket hängt on de Vehältn de Stat- und Endae und de Gagechwndgket ab. Typche ete: 6 Dat: Inelatche Stoß D End 36 Rebungeffekte (Uwandlung knetche Enege n äeenege) eänden Stöße. Bepel: ollnelatche zentale Stoß 68 Fü de knetche Enege glt: ohe: nachhe: Ekn E kn + ( + ) E + + De knetche Enege wd enget! De fehlende Enege wd n äeenege ewandelt: E kn + E E + E + kn E kn E kn E kn + E kn 69 E glt: Kugeln bleben zuaen Däpfe P Ipulehaltung (glt e!) ge P ge + + ( ) Meke: be nelatchen Pozeen glt Ipulehaltung, abe ncht de Ehaltung de knetchen Enege! (onden nu de Ehaltung de Geatenege) + Vollnelatche Stoß

15 Stöße n 3D Stoß zwchen zwe Köpen t belebgen Gechwndgketen 4.8 Schwepunkt Defnton:Schwepunktkoodnate ene Syte au Maenpunkten + + He glt: Ipulehaltung (3 Glechungen!) Bewegung de Schwepunkt: Schwepunkt: Gewchtete Mttel de Otkoodnaten Be ene elatchen Stoß: + + Enegeehaltung, De nd 4 Glechungen t 6 Unbekannten ( ; de beden Vektoen haben je 3 Koponenten) Löung bett b auf zwe fee Paaete! ( Glechung) (z.b. legt de ahl de Rchtung on alle andeen ete fet) t und den Bezechnungen glt alo: ɺɺ ɺɺ ( F F ) a + ɺɺ F M F a ge a a F F ge äußee Käfte (Reaktonpnzp) M geate äußee Kaft Geatae De Schwepunkt bewegt ch we en Maenpunkt t de Geatae de Syte, an de ätlche Käfte angefen!

16 Folgeung: ohne äußee Käfte ändet de Schwepunkt ene Syte enen Bewgungzutand ncht! 4.9 Schwepunktyte Da Schwepunktyte t en Koodnatenyte, deen Upung de Schwepunkt de Syte t. Gechwndgket de Schwepunkt: ɺ ɺ M Galle-Tanfoaton n da Schwepunktyte: Fü den Geatpul Schwepunktyte glt: p ( ) ge Relatkoodnaten! M M De Geatpul Schwepunktyte t ull! 7 Fü de knetche Enege Schwepunktyte glt: E kn + E + ge kn E M + M ge kn E ge kn M Ugefot: ge E M + E kn. Enege alle Köpe kn kn kn. Enege de Schwepkt. nnee kn. Enege de Syte De knetche Enege läßt ch auftelen n de knetche Enege de Bewegung de Geatyte und de Bewegung Schwepunktyte! Bepel: Stoß, zwe Köpe gleche Mae,. Köpe uht

17 74 75 I Schwepunktyte glt: Bewegung Laboyte nach de Stoß: + + Be de Stoß Schwepunktyte glt Ipulehaltung: + + alo auch Be elatchen Stoß glt Enegeehaltung: α In dee Fall haben de Endgechwndgketen Laboyte zuenande enen nkel on 9! (Thaleke!) Enetzen: Ke t Radu / De Betäge bleben glech! Al Endzutände nd alle entgegengeetzten Vektoen t Sptzen auf de Ke elaubt! Allgeene Fall:,, > I Schwepunktyte bleben be elatchen Stoß de Betäge de Gechwndgketen de Köpe ehalten; da de Geatpul ull t, nd e e entgegengeetzt augechtet.

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2.

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2. INHSERZEIHNIS S IRKIHE ERHEN ER SOFFE HEEROGENE ZUSNSGEBIEE 3. Geche 3. afgehalt 3.3 Sezfche olue v 3. Ethale 3.5 Etoe.6 af/ga Geche, Feuchte uft 3 ÄREÜBERRGUNG 6 3. äeletug 6 3. äeübegag 7 3.3 äeübetagug

Mehr

α Winkel der Schrägen

α Winkel der Schrägen Glechföge Bewegung eg Gechwndgket t π d n t Glechföge echleungte Bewegung Bewegung ohne nfng- t gechwndgket t t t d n t eg Gechwndgket et Duchee Dehhl eg Bechleungung et Gechwndgket - n - - - chefe Eene

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio.

Das Risiko ist jedoch nicht nur vom Risiko der einzelnen Aktien, sondern auch von deren Kovarianz abhängig: Bsp. 2-Aktien-Portfolio. SBWL GK nanzwtschaft Schedelseke otefeulletheoe Ene Enfühung. akowtz-odell (a) nnahen De Entschedungen de Investoen snd ewels auf ene eode gechtet. Investoen vefügen übe subektve Wahschenlchketsvostellungen

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D. Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome

Mehr

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission Kompaktwssen fü den Außenhandel Ausgabe 4/2013 LISTENREGELN ZUM NPU? De Pläne de EU-Kommsson 6 DOS & DON TS Ogansaton ene Zoll- und Außenwtschaftsabtelung ES KÖNNTE BESSER SEIN! Felx Neugat (DIHK) zu Lage

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Arbeit, Energie, Impuls und Erhaltungssätze

Arbeit, Energie, Impuls und Erhaltungssätze Abe, Enege, Ipls n Ehalngssäze De Enfühng on physkalschen Gößen, fü e en Ehalngssaz gl, lefe seh lesngsfähge Saegen z Beechnng on physkalschen Vogängen. In e klassschen Mechank s e Gesaasse enes abgeschlossenen

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Supply Chain Management

Supply Chain Management 1 Supply Chan Management Supply Chan Metcs - The key to mpovement - Lay Lapde: What About Measung Supply Chan Pefomance? (Potal ode http://www.ascet.com/) http://www.supply-chan.og/ (SCOR Model) Supply

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorthmche Bonformatk HMM Algorthmen: Forward-Backward Baum-Welch Anwendung m equenzalgnment Ulf Leer Wenmanagement n der Bonformatk Formale Defnton von HMM Defnton Gegeben Σ. En Hdden Markov Modell t

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

2.4 Dynamik (Dynamics)

2.4 Dynamik (Dynamics) .4 Dynaik (Dynaics) Def.: In de Dynaik wid die Kaft als Usache de Bewegung betachtet, hie wid die Statik (.) it de Kineatik (.3) zusaengefüht. Inhalt: Bewegungsgleichungen, Enegiesatz, Abeit, Leistung,

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Aufgabe 1 Welche Eigenschaften muss ein mechanisches System besitzen, damit es periodische Schwingungen ausführen kann?

Aufgabe 1 Welche Eigenschaften muss ein mechanisches System besitzen, damit es periodische Schwingungen ausführen kann? Aufgabe 1 Welche Eigenchaften u ein echaniche Syte beitzen, dait e periodiche Schwingungen auführen kann? Aufgabe 2 Ein Federpendel wurde u die Strecke = 15 c au der Ruhelage augelenkt und dann logelaen.

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wtschaftswssenschaften Desdne Betäge zu Quanttatven Vefahen N. 58/1 Rato calculand pecul - en analytsche Ansatz zu Bestmmung de Velustvetelung enes Kedtpotfolos

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen Phyikaliche Grundlagen. Dichte ρ it die Dichte eine Körper / einer lüigkeit / eine Gae, die Mae de Körper / der lüigkeit / de Gae, ρ = V da zugehörige Voluen. V. Gewichtkraft G it der Betrag der auf einen

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft VU Quanave BWL.Tel: odukon und Logsk [Sefan Rah] 2.Tel: Fnanzwschaf [Tomáš Sedlačk] Quanave BWL: Fnanzwschaf Ogansaosches De LV beseh aus zwe Telen:. Tel: odukon und Logsk [4.0.203 22..203] Sefan Rah Insu

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Formel -Sammlung Physik

Formel -Sammlung Physik oel -Salng Physk nhalsezechns. Kneak.... Kneak de Dehbewegng... 3 3. assenanzehng,gaaon... 5 4. odlaon... 8 5. Dehpls... 7 echank de lüssgkeen... 3. Wäelehe (Kalok, heodynak)... 4 3. Schwngngen... 47.

Mehr

Dynamisches Verhalten einer Asynchronmaschine

Dynamisches Verhalten einer Asynchronmaschine ehtuhl fü Elektiche Antiebe und Mechatonik Pof. D.-ng. D.-ng. S. Kulig Paktikumveuch BENT 6 Dynamiche Vehalten eine Aynchonmachine c S-EAM (9) Veuchthematik Die Aynchonmachine, die übe eine Welle mit eine

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service.

Weil so ähnlich nicht dasselbe ist. Besser durch den Winter mit dem smart Original-Service. smart Center Esslngen Compact-Car GmbH & Co. KG Plochnger Straße 108, 73730 Esslngen Tel. 0711 31008-0, Fax 0711 31008-111 www.smart-esslngen.de nfo@smart-esslngen.de Wr nehmen Ihren smart nach velen Klometern

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Donnerstag, 27.11.2014

Donnerstag, 27.11.2014 F ot o: BMW AGMünc hen X Phone nmot on E x ec ut v epr ev ew 2 7.Nov ember2 01 4 BMW Wel tmünc hen Donnerstag, 27.11.2014 14:00 15:00 15:00 16:00 16:00 17:00 17:00 17:45 Apertf Meet & Greet Kaffee & klener

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen:

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen: - Zahlendarstellung n Rechnern Wr wssen berets aus der Dgtaltechnk we Ganzzahlen bnär dargestellt (codert) werden und können de Grundrechenoperatonen ausführen. I nachfolgenden Kaptel wrd auf deser Matere

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) Physkalsh-heshes Praktku für Pharazeuten C. Nahberetungstel (NACH der Versuhsdurhführung lesen!) 4. Physkalshe Grundlagen 4.1 Starke und shwahe Elektrolyte Unter Elektrolyten versteht an solhe heshen Stoffe,

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Lastenzuschuss (für Eigentümer von Wohnraum)

Lastenzuschuss (für Eigentümer von Wohnraum) Wohngeldantag af Mietzch (fü Miete von Wohnam) Latenzch (fü Eigentüme von Wohnam) De Wohngeldantag wid getellt al: Etantag Weiteleitngantag Ehöhngantag Feitaat Sachen Eingangtempel de Wohngeldbehöde Gemeinde-

Mehr

2. Stationäre Wärmeleitung

2. Stationäre Wärmeleitung Sttonäre Wärmeletung Von ttonärer Wärmeletung prcht mn, fll ch de Temperturen nur mt dem Ort, jedoch ncht mt der Zet ändern Der Wärmetrom t dnn bezüglch Ort und Zet kontnt ( Q ɺ kontnt) De Wärmetromdchte

Mehr

Anstelle einer Schlichtung kann auf Antrag sämtlicher Parteien eine Mediation durchgeführt werden.

Anstelle einer Schlichtung kann auf Antrag sämtlicher Parteien eine Mediation durchgeführt werden. M u s t e v o l a g e fü Fodeungsklage aus Abeitsecht (Steitwet bis maximal 30'000.--, das Vefahen ist kostenlos) HINWEIS: Vo Eineichung de Klage beim Geicht, muss das Schlichtungsvefahen vo de zentalen

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Transportphänomene Diffusion, elektrische Leitfähigkeit

Transportphänomene Diffusion, elektrische Leitfähigkeit Elektrocheme Transportphänomene Dffuson, elektrsche Letfähgket 3.5.7 Vorlesung Elektrocheme 65 Elektrocheme Transportphänomene, Dffuson, elektrsche Letfähgket Fluss J von Telchen n enem homogenen Medum

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

Deskriptive Statistik und moderne Datenanalyse

Deskriptive Statistik und moderne Datenanalyse homas Cleff Destve tatst ud modee Dateaalse Ee comutegestützte Efühug mt Ecel ud AA 0XX /. Auflage Fomelsammlug Cleff Destve tatst ud modee Dateaalse Gable Velag Wesbade 0XX GableL Zusatzfomatoe zu Mede

Mehr

Zur Gleichgewichtsproblematik beim Fahrradfahren

Zur Gleichgewichtsproblematik beim Fahrradfahren technic-didact 9/4, 57 (984). u Gleichgewichtspoblematik beim Fahadfahen Hans Joachim Schlichting Gleichgewicht halten ist die efolgeichste Bewegung des Lebens. Beutelock. Einleitung Die physikalische

Mehr

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern)

b) Rentendauer Anzahl der Rentenzahlungen 1) endliche Renten 2) ewige Renten (z.b. Verpachtung an Verpächter bzw. seinen Rechtsnachfolgern) HTL Jebach. eeechug Maheak Sask.. Gudbegffe ee = egeläßg wedekehede Zahlug 4 weselche Mekale ee ee a) eehöhe ) glechblebede ee ) veädelche ee a) egeläßg (z.b. Idex-ageaß) ) egellos b) eedaue Azahl de eezahluge

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

Proximitätsmaße Strategieoptionen unter Missing Values

Proximitätsmaße Strategieoptionen unter Missing Values Protätaße Strategeoptonen unter ng Value Dpl.-Wrtch.-Ing. attha Runte Unvertät Kel, Lehrtuhl für arketng Wetrng 45, 4098 Kel Tel 043/880-535 Eal: attha@runte.e URL: http://www.runte.e/attha attha Runte:

Mehr

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung 3 Lösungen 3. Mschungen und Lösungen Homogene Phasen, n denen alle Komonenten glechartg behandelt werden, heßen Mschungen. Wenn ene Komonente m Überschuß vorlegt, kann man von Lösungen srechen. Sezfsche

Mehr

"Physikalische Chemie für Verfahrenstechniker (Fernstudium) WS 2012/2013 Sammlung von Fundamentalkonstanten 2

Physikalische Chemie für Verfahrenstechniker (Fernstudium) WS 2012/2013 Sammlung von Fundamentalkonstanten 2 Prof. Dr. Thomas Wolff Phskalsche Cheme "Phskalsche Cheme für Verfahrenstechnker (Fernstudum) WS 01/013 Sammlung von Fundamentalkonstanten Ka. 1: Enletung 3 Was st Phskalsche Cheme Begrffe Zustandsgrößen

Mehr

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Enführung n de Robotk Selbstlokalserung Mohamed Oubbat Insttut für Neuronformatk Tel.: (+49) 731 / 50 4153 mohamed.oubbat@un-ulm.de 08. 01. 013 Dr. Oubbat, Enführung n de Robotk (Neuronformatk, Un-Ulm)

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Was haben Schüler und Großbanken gemein?

Was haben Schüler und Großbanken gemein? Armn Fügenschuh Aleander Martn Was haben Schüler und Großbanken gemen? Mathematsche Modellerung Analyse und Lösung am Bespel des Rucksackproblems Unter gegebenen Randbedngungen optmale Entschedungen zu

Mehr

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum W08 Physklsches Prktkum Wärmedämmung En Modellhus mt usechselbren Setenänden dent zur Bestmmung von Wärmedurchgngszhlen (k-werten) verschedener Wände und Fenster soe zur Ermttlung der Wärmeletfähgket verschedener

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

WÄRMEÜBERTRAGUNG - Doppelrohr

WÄRMEÜBERTRAGUNG - Doppelrohr WÄRMEÜBERTRAGUNG - Doppelrohr Dpl.-Ing. Eva Drenko 1. Voraussetzungen Für de Durchführung deses Übungsbespels snd folgende theoretsche Grundlagen erforderlch: a. Gesetzmäßgketen von Transportprozessen;

Mehr

Scheduling. Scheduling. Noch Wiederholung: Prozess als virtueller Prozessor P 1. Wiederholung: Prozessesbegriff

Scheduling. Scheduling. Noch Wiederholung: Prozess als virtueller Prozessor P 1. Wiederholung: Prozessesbegriff Echtzetyteme Sommeremeter 205 Schedlng. Enführng Echtzetyteme. Kaptel Schedlng Prof. Mattha Werner Profer Betrebyteme Schedlng Aftelng on Reorcen an konkrrerende Verbracher. Wchtgte Reorce: CPU Andere

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Die nachfolgenden Aufgaben und Definitionen ind ein erter intieg in diee Thea. Hier wird unterchieden zwichen den Begriffen Arbeit und nergie. Verwendete Forelzeichen ind in der Literatur nicht ier einheitlich

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Numerische Methoden der Thermo- und Fluiddynamik

Numerische Methoden der Thermo- und Fluiddynamik Technsche Unverstät Berln HERMANN FÖTTINGER INSTITUT FÜR STRÖMUNGSMECHANIK Numersche Methoden der Thermo- und Fluddynamk von T. Rung, L. Xue, J. Yan, M. Schatz, F. Thele vorläufge Verson 2002 Redakton:

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? rmatonen rund ums Handy INHALT 2 3 4/5 6 7 8 9 10 11 12 Moblfunk: Fakten So werden Funksgnale übertragen So funktonert en Telefonat von Handy zu Handy So wrkt

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Fachlabor Wärmeübertrager

Fachlabor Wärmeübertrager Fachlabor Wärmeübertrager RUHR UNIVERSITÄT BOCHUM Fachlabor Wärmeübertrager Wasser Wasser Wärmeübertragung Lehrstuhl für Verfahrenstechnsche Transportprozesse Insttut für Thermo und Fluddynamk Inhaltsverzechns

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg PN Handwek GC-Onine UGL-Schniee Schnenieg Inha GC-Onine UGL-Schniee... 3 Gundneungen fü den auomaichen Daenauauch... 3 Daanom-Daen aben... 4 Akionen de Handweke... 7 Beeung (Liefeaag)... 7 Abaag... 7 Abaag

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

Verbrennungsprozesse. Quelle: Kugeler, Energietechnik. Fakultät für Ingenieurwissenschaften Energietechnik. KJ mol. KJ mol. KJ mol.

Verbrennungsprozesse. Quelle: Kugeler, Energietechnik. Fakultät für Ingenieurwissenschaften Energietechnik. KJ mol. KJ mol. KJ mol. Verbrennungsprozesse usgehend von desem enfchen Blnzmodell können nhnd der stöchometrschen Umsetzungen der enzelnen Komponenten enes Brennstoffs m Verbrennungsprozess Stoffblnzen erstellt werden, lso z.b.

Mehr

Rainer Diaz-Bone/Harald Künemund. Einführung in die binäre logistische Regression

Rainer Diaz-Bone/Harald Künemund. Einführung in die binäre logistische Regression Free Unverstät Berln Fachberech Poltk u. Sozalwssenschaften Insttut für Sozologe Abtelung Methodenlehre und Statstk Garystr. 55 14195 Berln Raner Daz-Bone/Harald Künemund Enführung n de bnäre logstsche

Mehr

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN ZUSAZBEIRAG UND SOZIALER AUSGLEICH IN DER GESEZLICHEN KRANKENVERSICHERUNG: ANREIZEFFEKE UND PROJEKION BIS 2030 Martn Gasche 205-2010 Zusatzbetrag und sozaler Ausglech n der Gesetzlchen Krankenverscherung:

Mehr

NEUEINSTELLUNG GERINGFÜGIG BESCHÄFTIGTE (Minijob bis 450,00 )

NEUEINSTELLUNG GERINGFÜGIG BESCHÄFTIGTE (Minijob bis 450,00 ) Fima: Pesönliche Angaben: Familienname, Voname Gebutsdatum Familienstand Anschift (Staße, Hausnumme, PLZ, Ot) Staatsangehöigkeit Rentenvesicheungsnumme Gebutsname Gebutsot Beschäftigung: Ausgeübte Tätigkeit:

Mehr

Software Engineering Projekt

Software Engineering Projekt FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN Softwae Engineeing Pojekt Softwae Requiements Specification SRS Vesion 1.0 Patick Bündle, Pascal Mengelt, Andy Wyss,

Mehr