4 ARBEIT UND LEISTUNG

Größe: px
Ab Seite anzeigen:

Download "4 ARBEIT UND LEISTUNG"

Transkript

1 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid n ihm die Abei veihe. E gil: : Abei de Kf : Beg de Kf : zuükgelege Seke Köpe Einhei de Abei Die SI-Einhei de Abei i d Joule (Einheizeihen: J, zu Ehen von Jme Peo Joule, , biihe Phyike): [ ] [ ] [ ] 1 N 1 m 1 J enn eine Kf von 1 N n einem Köpe wik und diee Kf ihen Angiffpunk um 1 m in egihung velge, dnn wid n dieem Köpe eine Abei von 1 J veihe enn die Kf nih in egihung wik N α T α: inkel zwihen Kf und eg T + N * Die Kf knn in 2 Komponenen zeleg weden: eine ngenile Komponene T (pllel zu egihung) und eine nomle Komponene (enkeh zu egihung) N Um die Abei de Kf zu beehnen mu die Komponene benuz weden die in egihung wik. Dhe gil: ( ) Duh Benuzen de igonomeihen unkionen knn mn uh heiben: T ( ) oα *

2 Gegenkhee 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 28 Anmekung **: Im ehwinkligen Deiek gil: (igonomeihe unkionen) Hypoenue Ankhee b Ankhee oα Hypoenue Gegenkhee inα Hypoenue nα Gegenkhee Ankhee Beipiel: Une de Annhme, d α 25 und 8 m knn beehne weden: b b o α o α 8 m o 25 8 m 0, , 25 m Eine ähnlihe Rehnung knn nülih uh mi Käfen duhgefüh weden Spezilfll: die Kf wik in egihung * In dieem ll gil: α 0. oα o Die enpih de einfhen omel, die im Abhni dikuie wude. In dieem ll i die Abei mximl Kf und egihung ehen enkeh zueinnde * In dieem ll gil: α 90. oα o Eine enkeh zu egihung wikende Kf veihe keine Abei!

3 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG Beipiel: Hubbei Beim Heben eine Köpe um die Höhe h wid Hubbei veihe. m m Hub Hub G h Die igu zeig, d die Hubkf in egihung wik und wi wien d beim Heben mi konne Gehwindigkei de Beg de Hubkf dem Beg de Gewihkf enpih. Hub G m g i können dhe die von de Hubkf veihee Abei einfh beehnen: Hub Hub h Hub G h m g h Dhe gil: Hub Hub m g h Hub 4.2 Mehnihe Leiung Definiion de Leiung Beim Veihen de gleihen Abei i die Leiung umo göße, je wenige Zei mn buh. Die Leiung i umo göße, je meh Abei mn in eine beimmen Zei veihe. Die mehnihe Leiung wid definie l Quoien u de veiheen Abei und de dfü benöigen Zei. Die omel zeig: P P: mehnihe Leiung : veihee Abei : zum Veihen de Abei benöige Zei P ~ : wenn in de gleihen Zei die doppele Abei veihe wid, dnn i die mehnihe Leiung doppel o goß, P ~ 1 : wenn fü die gleihe Abei die doppele Zei benöig wid, dnn i die mehnihe Leiung nu hlb o goß.

4 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG Einhei de Leiung Die SI-Einhei de Leiung i d (Einheizeihen, zu Ehen von Jme, hoihe Efinde): [ ] [ ] [] 1 J P 1 1 enn eine Abei von 1 J in 1 veihe wid, dnn beäg die Leiung 1. Of weden die folgenden dezimlen Vielfhe benuz: 0,001 1 m (Milliw) k (Kilow) M (Megw) Anmekung: Die Einhei Kilowunde (kh) i keine Einhei de Leiung! Sie i vielmeh eine Einhei de Abei. In de T: J 1 kh 1 k 1 h J 3,6MJ 1 kh J 3,6MJ Pfedeäke PS Jme w de Meinung, d ein Pfed eine Me von 75 kg in 1 uf eine Höhe von 1 m heben knn. Die dzugehöige Leiung definie mn l Pfedeäke. De Zummenhng zwihen de Einhei Pfedeäke und de Einhei knn einfh hegeleie weden. E wid Hubbei veihe und e gil die dzugehöige Leiung zu beimmen. Hub h P m g h 75 kg 9,81 N / kg 1 m Dhe gil: 1 PS 0,736 k 1 k 1,36 PS Beipiel De Moo eine Auo h eine Leiung von P 110 k. Seine Leiung in Pfedeäken enpih demenpehend P 145,6 PS.

5 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG Zummenhng zwihen Leiung und Gehwindigkei * Eine Kf, die ihen Angiffpunk mi de Gehwindigkei v pllel in egihung beweg, veihe die Abei und h die Leiung P: P P v v Anmekung: Al Gehwindigkei v eine Köpe bezeihne mn den Quoienen u de Seke die de Köpe zuükleg und de Zei, die de Köpe dfü benöig: v Beipiel * Ein Auo fäh uf eine hoizonlen Sße. Die Reibungkäfe (beding duh den Rollwidend und den hwind) begen 500 N. elhe Leiung mu de Moo hben, dmi de gen mi eine konnen Gehwindigkei von 80 km / h fäh? Löung: Die Aniebkf A de Auo mu die Reibungkäfe R übewinden. E gil: A R 500 N Die den Räden zugefühe Leiung knn lo beehne weden nh: P A v 500 N 80 km h m N 80 11, J 11,1 k 4.3 Zummenfung Abei Einhei: Joule (J) : Abei de Kf : Beg de Kf : zuükgelege Seke Hubbei Hub m g h Hub : Hubbei m: Me de gehobenen Köpe h: Hubhöhe Leiung P Einhei: () P: mehnihe Leiung : veihee Abei : zum Veihen de Abei benöige Zei Zuz einheien 1 kh (Abei) 3,6MJ 1 k 1,36 PS (Leiung)

6 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG AUGABEN Speln von Quden E weden 3 qudefömige Köpe von je 30 m Höhe und eine Me von 20 kg ufeinndegehihe.. elhe Abei i dfü efodelih? b. ie goß i die Leiung wenn d Speln in 5 efolg? Holzqude Ein Abeie zieh einen Holzqude (m 50kg) übe den Boden.. elhe Zugkf mu e uüben (µ G 0.5)? b. elhe Abei veihe e, wenn e den Qude 150 m wei zieh?. ie goß i eine Leiung, wenn e dfü 3 Minuen benöig? Hubkn Ein Moo heb ein 500 kg hwee Objek, welhe n einem Seil häng, mi eine konnen Gehwindigkei von 2,0 m/. elhe Leiung, in PS, liefe de Moo? Lwgen * Ein Lwgen von 10 Tonnen Me fäh mi eine konnen Gehwindigkei von 60 km/h uf eine hoizonlen Sße. Die Rolleibungzhl beäg µ 0,15; zuäzlih wik eine Reibungkf von N beding duh den hwind. elhe Leiung mu de Moo de Lwgen ufbingen? Shlien ** Ein Shlien wid miel eine Kf mi eine konnen Gehwindigkei übe den Boden gezogen. Die Kf wik duh ein m Shlien befeige Seil, d mi dem Boden einen inkel von 39 einhließ. Die Reibungkf beäg 65 N. Beehne die efodelihe Zugkf m Seil! b. Beehne die veihee Abei, wenn de Shlien 15 m wei gezogen wid!. Beehne die Leiung, wenn die 15 m in 20 übewunden weden!

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

Gebiet Basisgröße Formelzeichen Basiseinheit Einheitenzeichen

Gebiet Basisgröße Formelzeichen Basiseinheit Einheitenzeichen 141 Phik I Einfühun Die Phik i ein Teilebie de Nuwienchfen und bechäfi ich mi de lebloen Umwel. In de Phik wid euch, die Geezmäßikeien de unbeleben Meie duch Beobchunen und Meunen zu efen und in eine mhemichen

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Formeln Informationsund Systemtechnik

Formeln Informationsund Systemtechnik EUROA-ACHBUCHREIHE fü elekoecnice un elekonice Beufe omeln Infomionun Syemecnik Auoen Monik Bugmie Suieniekoin Sug Ulic G.. eye Dipl.-Ing., Anly fü Meienecnik Kln Ben Gimm Oeuien Leoneg, Sinelfingen Gego

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Physik A VL4 ( )

Physik A VL4 ( ) Physik A VL4 (16.1.1) Beschreibung on Bewegungen - Kinemik in einer Rumrichung II Die beschleunige Bewegung Der Freie Fll Der senkreche Wurf Berchung ungleichförmiger Beschleunigung miels Inegrlrechnung

Mehr

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes Zusmmenfssung Kpiel Mechnik eines Mssenpunkes 1 Mechnik eines Mssenpunkes idelisiees Gebilde : lle Msse des Köpes in einem Punk konzenie keine Beücksichigung de Ausdehnung eines Köpes Ausdehnung d sei

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

5.5. Anwendungsaufgaben aus der Physik

5.5. Anwendungsaufgaben aus der Physik .. Anwendungsaufgaben aus de Physik Aufgabe 1: Kinemaik Skizzieen Sie die Geschwindigkeis-Zei- und Weg-Zei Diagamme im Beeich < < 1 s und sellen Sie die Funkionsgleichungen fü v() und s() auf. a) Ein Köpe

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

2 Mechanik des Massenpunkts und starrer Körper

2 Mechanik des Massenpunkts und starrer Körper 8 Mechanik des Massenpunks und sae Köpe MEV Mechanik des Massenpunks und sae Köpe Bewegung In diese Kapiel geh es u Bewegung: Geschwindigkei, Beschleunigung, Roaion ec Und zwa nu u den Velauf de Bewegung,

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Grundlen der Kineik Gecwindikei und Becleuniun Die Gecwindikei i definier l der pro Zeieinei zurückelee We eine Körper = bzw = Die Becleuniun i definier l die Änderun der Gecwindikei pro Zeieinei: = bzw

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

Affine Geometrie 11. Jahrgang

Affine Geometrie 11. Jahrgang Affine Geomeie. Jhgng Gliedeung. Vekoen. Dellung von Vekoen. Rechnen mi Vekoen. Linee Ahängigkei. Geden- und Eenengleichungen. Gedengleichungen. Eenengleichungen in Pmeefom. Inzidenzpoleme. Punk und Gede

Mehr

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v 4. Supeposiionspinip Beweun in 3 Koodinaenicunen sind unabäni oneinande! Beispiel: Sciefe Wuf ( ) ( ) a () nfansbedinunen Beweun in de --Ebene Eliminaion on () ( ) () ( ) 4. Tes des Supeposiionspinip fei

Mehr

Ohne Anspruch auf Vollständigkeit!!!

Ohne Anspruch auf Vollständigkeit!!! Mhemik Veuch eine Zummenfung de Abiu-Soffe Ohne Anpuch uf Volländigkei!!! ANALYSIS: Funkionuneuchung Funkionen: gnzionle Funkionen b e-funkionen c igonomeiche Funkionen Tngenen- und Nomlenbeimmung Okuven

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

Nennen Sie Vor- und Nachteile von Wasserkraftwerken Vorteile: Speicherkraftwerke, Pumpspeicherkraftwerke

Nennen Sie Vor- und Nachteile von Wasserkraftwerken Vorteile: Speicherkraftwerke, Pumpspeicherkraftwerke 1 Waerkraf Nennen Sie Vor- und Nacheile von Waerkrafwerken Voreile: regeneraive Energie. Keine CO 2 -Emiion! kein Primärenergierägerverbrauch Spizenlafähigkei, Energiepeicherfunkion hohe Zuverläigkei hoher

Mehr

1. Klausur Physik Leistungskurs Klasse

1. Klausur Physik Leistungskurs Klasse 1. Kluur Phyik Leiungkur Kle 11 1.1.1 1. uf einer gerden, horizonlen Srße fähr ein Moorrd i der konnen Gechwindigkei 9kh -1. pier zur Zei eine Mrke M. Zu elben Zeipunk re i Punk P ein Moorrd (Me einchließlich

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen,

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen, Aufgben zur bechl. Bewegung 66. (Abi 007) Ein Lieferwgen der Me,5 wird u de Sillnd durch eine konne Krf i de k Berg,0 kn bechleunig. Nchde die Gechwindigkei 7 erreich i, fähr der h Lieferwgen gleichförig

Mehr

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten 6. Flüe un Zuornungen Fluß In ieem Kapiel weren Bewerungen von Kanen al maximale Kapaziäen inerpreier, ie üer iee Kane pro Zeieinhei ranporier weren können. Wir können un einen Graphen al Verorgungnezwerk

Mehr

/ 01. design. process / 02. simple mind. Responsible Design

/ 01. design. process / 02. simple mind. Responsible Design m s e e s i s 01 espnsible design design pcess b c e l e s i s 02 simple mind n n u l e p Respnsible Design Respnsible 03 Design biee di ls eweiendes Hcsculngeb die Möglickei, einzelne Abeisscie Deine

Mehr

6. Numerische Filterung: Polfilter, Diffusion und Lärmfilter. 6.1 Polfilter

6. Numerische Filterung: Polfilter, Diffusion und Lärmfilter. 6.1 Polfilter 6. Numeice Fileug: Polfile Diffuio ud Lämfile 6. Polfile De e geige zoale ieuabad i Poläe efode eie e uze Zeici de da Modell ieffizie mac. Diee Naceil wid veige idem ma ab eie beimme Beie die ieue albie

Mehr

VORANSICHT. Die Affen rasen durch den Wald Auf dem Weg zum Klassen-Rap. Nach Claudia Dorn-Schmidt, Bad Langensalza, bearbeitet von Katrin Bückmann

VORANSICHT. Die Affen rasen durch den Wald Auf dem Weg zum Klassen-Rap. Nach Claudia Dorn-Schmidt, Bad Langensalza, bearbeitet von Katrin Bückmann I Musik-Paxis Beitag 34 ie ffen asen duch den Wald uf dem Weg zum Klassen-Rap 1 ie ffen asen duch den Wald uf dem Weg zum Klassen-Rap Nach Claudia on-schmidt, Bad Langensalza, beabeitet von Katin Bückmann

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

3 GERADL. GLEICHM. BESCHL. BEWEGUNG

3 GERADL. GLEICHM. BESCHL. BEWEGUNG PS KINEMATIK P. Rendulić 0 GERADL. GLEICHM. BESCHL. BEWEGUNG 7 3 GERADL. GLEICHM. BESCHL. BEWEGUNG 3. Experimenelle Herleiung de WegZeiGeeze 3.. Veruchbechreibung Wirk läng der Bahn eine konane Kraf in

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen.

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen. 7. Die Skizze tellt den Velauf de Siene eine Loopingban da. I Punkt at de Wagen die Gewindigkeit 6,1 /. I Punkt C oll e eine Zentifugalkaft vo 1,5faen Betag eine Gewitkaft augeetzt ein. De Punkt C befindet

Mehr

Aufgabe 1. Übungsblatt 7. Woche

Aufgabe 1. Übungsblatt 7. Woche T II SS Übunsb 7. Woche Pof. Oseeye Aufbe Zeichnen Sie die Le de oennpoe fü Sb, und Sb und beechnen Sie die Winkeeschwindikei ω des dien Sbes fü die ezeichnee Le. ω Geeben:, ω. b Zeichnen Sie die Le de

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinknn hp://brinknn-du.de Seie 5..03 Kle 0: Ergebnie und uführliche Löungen der Aufgben zur bechleunigen Bewegung Ergebnie E E E3 E4 E5 Erkläre die Begriffe: ) gleichförige Bewegung b) bechleunige

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen leomagneische Wellen In einem Wechselsomeis mi Spule und Kondensao (Schwingeis wechsel die negie peiodisch wischen -Feld im Kondensao und -Feld in de Spule. Spule und Kondensao sind geschlossen aufgebau

Mehr

Techn. Physik. Formelsammmlung. zum Lehrfach Technische Physik von. P. Heinrich

Techn. Physik. Formelsammmlung. zum Lehrfach Technische Physik von. P. Heinrich [Geerbliche Schule] [Öhrinen] echn. Phyik achchule für echnik Machinenechnik Sand: r. 008 orelalun zu Lehrfach echniche Phyik on P. Heinrich Diee Manukri dien zur Unerüzun de Unerriche i o.a. ach und i

Mehr

Übungsaufgaben zur Finanzmathematik - Lösungen

Übungsaufgaben zur Finanzmathematik - Lösungen Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

498. Über ein kräftiges Holzbrett soll ein Heizkessel aus Stahl auf einen LKW gezogen werden. Das

498. Über ein kräftiges Holzbrett soll ein Heizkessel aus Stahl auf einen LKW gezogen werden. Das Aufgben zur eibung 498. Über ein kräfige olzbre oll ein eizkeel u Shl uf einen LKW gezogen werden. D Bre i 4 lng, die LKW-Priche befinde ich,0 über de Erdboden. Der eizkeel h eine Me von 60 kg. ) Welche

Mehr

2.Absorption, Reflexion und Durchlässigkeit

2.Absorption, Reflexion und Durchlässigkeit "Floin Pbs" pope_666@homil.com Pbs Floin 5M (98/99) Wämeshlung.Gundlgen ls Wäme und empeushlung bezeichne mn den negiesom eines offes de nu von dessen emp. bhängig is. Die Wämeshlung wächs mi seigende

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Wirtschaftswissenschaftliche Fakultät der Eberhard-Karls-Universität Tübingen

Wirtschaftswissenschaftliche Fakultät der Eberhard-Karls-Universität Tübingen Wichfwienchfliche Fkulä de Ebehd-Kl-Univeiä Tübingen Die individuelle Voeilhfigkei de iven Renenveicheung - Seuevoeile, Lebenewung und Sonoiiken Michel Thu Tübinge Dikuionbeig N. 264 Juli 2003 Wichfwienchfliche

Mehr

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert -0 - Kapiel Kapialwe und Endwe Kapielübesich. De Ein-Peioden-Fall. De Meh-Peioden-Fall. Diskonieung. Veeinfachungen.5 De Unenehmenswe.6 Zusammenfassung und Schlussfolgeungen -. De Ein-Peioden-Fall: Endwe

Mehr

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen.

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen. Aufben Arbei und Enerie 547. Ein Tnk oll i Hilfe einer Pupe i Wer efüll werden. Der Tnk für den Scluc zwei Anclüe, oben und unen. Wie eräl e ic i der durc die Pupe zu erriceen Arbei, u den Tnk olländi

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

α Winkel der Schrägen

α Winkel der Schrägen Glechföge Bewegung eg Gechwndgket t π d n t Glechföge echleungte Bewegung Bewegung ohne nfng- t gechwndgket t t t d n t eg Gechwndgket et Duchee Dehhl eg Bechleungung et Gechwndgket - n - - - chefe Eene

Mehr

Induktivität und Energie des Magnetfeldes

Induktivität und Energie des Magnetfeldes Induktivität und Enegie de Mgnetfelde 1. D CMS (Compct Muon Solenoid) m CERN it ein ieige Teilchendetekto fü den HC (ge Hdon Collide). D Kentück de CMS it ein upleitende Elektomgnet de änge = 13m und mit

Mehr

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0 Vktohnung Vkton, sind Gößn, u dn vollständig Chktisiung sowohl in Mßhl, d Btg, ls uh in Rihtung im Rum fodlih sind. Bispil: Kft, Gshwindigkit, Bshlunigung, Winklgshwindigkit, Winklshlunigung sowi lktish

Mehr

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: Gleichförmige Bewegungen und Überholvorgang

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: Gleichförmige Bewegungen und Überholvorgang bungaufgaben Pyik p://pyik.lern-online.ne p://.lern-online.ne THEMA: leicförmige Beegungen und berolvorgang Vorgeclagene Arbeizei: Vorgeclagene Hilfmiel: Beerung: Hinei: ea 30 Minuen Tacenrecner (nic programmierbar,

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

4. Chemische Bindung

4. Chemische Bindung 4. Chemische Bindung 4... Vlenzindungs-Modell: Oktettegel Die Bildung enegetisch egünstigte Elektonenkonfigutionen (die esondes stil sind) wid ngestet Eine esondes stile Konfigution ist die Edelgskonfigution

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

Aufgaben Newtonsche Gesetze

Aufgaben Newtonsche Gesetze Aufgben Newtonche Geetze. Ein Her der Me 500 g chlägt wgerecht it 4,0 - uf einen Ngel. Dieer gibt c nch. Wie groß it die ittlere Krft de Her? Wie groß it ie, wenn der Ngel feter itzt und nur u 0,5 nchgibt?

Mehr

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad R. Brinkann http://brinkann-du.de Seite 5..03 FOS: Löungen Aufgaben zu Arbeit, Energie, Leitung und de Wirkunggrad. Welche Größen betien die Arbeit in der Phyik? Wie wird die Arbeit berechnet und in welchen

Mehr

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei

Mehr

Amateurfunkkurs. Themen Übersicht. Leistung. Erstellt: Landesverband Wien im ÖVSV. 1 Was ist Leistung? 2 Anpassung. 3 Fragen.

Amateurfunkkurs. Themen Übersicht. Leistung. Erstellt: Landesverband Wien im ÖVSV. 1 Was ist Leistung? 2 Anpassung. 3 Fragen. Was is? Amaeurfunkkurs Landesverband Wien im ÖVSV Ersell: 010-011 Leze Bearbeiung: 4. März 016 Themen Was is? 1 Was is? 3 Energie und Was is? Definiion Wechselsrom is der Energieumsaz pro benöiger Zei.

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

Wien Tulln Hadersdorf am Kamp Krems a.d. Donau

Wien Tulln Hadersdorf am Kamp Krems a.d. Donau Tulln Kems a.d. Donau Fahpl 2015 gültig 14. 1 2014 Sofotige Zug-Echtzeitinfo am Hdy! Einge: "at Stationsname" pe SMS 0828 20200 Zustieg in REX, R- und S-Bahn-Züge nu mit gültige Fahkate, auße Stationen

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Physik. als Manuskript gedruckt

Physik. als Manuskript gedruckt Uniesiä e Bunesweh München Suiengang lie Coue an Counicaion Technology (B. Eng.) Pof. D. e. na. Klaus Uhlann Physik als Manuski geuck. EINFÜHRUNG 3. Poga un Mehoe e Physik 3. Physikalische Gößen, Gößengleichungen

Mehr

Mechanik 2. Addition von Geschwindigkeiten 1

Mechanik 2. Addition von Geschwindigkeiten 1 Mechanik. Addition on Gechwindigkeiten 1. Addition on Gechwindigkeiten Wa beeinflut die Gechwindigkeit de Boote? a. Wind b. Waergechwindigkeit Haben beide die gleiche Richtung, o addieren ie ich. Haben

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

Versuch 31: Bestimmung der Licht- und Signalgeschwindigkeit Seite 1

Versuch 31: Bestimmung der Licht- und Signalgeschwindigkeit Seite 1 Vesuch 31: Bestimmun de icht- und Sinleschwindikeit Seite 1 Teil 1: ichteschwindikeit Aufben: Messvefhen: Vokenntnisse: ehinhlte: itetu: Bestimmun de ichteschwindikeit im Zeit- und Fequenzbeeich. Diffeenzielle

Mehr

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker Beibläe zu Volesung Physik fü Elekoechnike und Infomike, Mschinenbue und Mechonike WS 4/5 Pof. D. Min Senbeg, Pof. D. Eckehd Mülle Ohne Veändeungen zugelssen zu Klusu GPH Kinemik Dynmik Abei und Enegie

Mehr

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart: E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge

Mehr

Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor-Lösung. Schaltung mit MOS-Transistor-Lösung

Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor-Lösung. Schaltung mit MOS-Transistor-Lösung Schaung mi MOSranior In id 8 i eine Verärkerchaung mi dem MOSranior dargee. er ranior o im akiven ereich mi einem Srom I = m berieben werden. ranior Parameer ind bekann: GS = = V, n cox und W. V L Weiere

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate 9. Speiheelemete Die Wiug vo Rüoppluge Shaltetze habe eie haateitihe Eigehaft: ie ethalte eie Rüoppluge. Welhe Wiug eie Rüopplug habe a, oll a folgedem Beipiel gezeigt wede. 1 1 1 1 1 1 Duh die Rüoppluge

Mehr

M4/I Bewegungs-und Leistungsaufgaben Name: 1) Verwandle in Minuten! 1 min 30 s = 7 min 15 s = 3 min 45 s =

M4/I Bewegungs-und Leistungsaufgaben Name: 1) Verwandle in Minuten! 1 min 30 s = 7 min 15 s = 3 min 45 s = ) erwandle in Minuen! 30 s 7 5 s 3 5 s 2) erwandle in gemische Einheien! 2,5 2,25,75 3) erwandle in Sekunden! 0,6 0, 0,9 ) erwandle in Minuen! 2 s s 36 s 5) erwandle in Minuen! 0,2 h 0,3 h 0, h 6) erwandle

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr