Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Größe: px
Ab Seite anzeigen:

Download "Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs"

Transkript

1 Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs

2 Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

3 Arbeit und Leistung F tot = F Zug F h F Zug F m g l = s cos α s α Gleichmässige F zug = F Bewegung: F = m g sin α A = F s ; s = A = mg sin αh sin α h sin α = mgh

4 Arbeit und Leistung Wunder ist kein Wunder Simon Stevin, um 1600

5 Arbeit und Leistung E = d s F = ds F cos α F α d s

6 Arbeit und Leistung Arbeit ist Kraft mal Weg [Arbeit] = N m = J = W s Leistung = Arbeit pro Zeit [Leistung] = N m/s = J/s = W Beispiel: 100 kg Backsteine 10 m hochtragen. E = mgh = 100 9, kg m 2 /s 2 = 9810 J = 2, 725 Wh dito innerhalb von 10 Minuten: Leistung P = 9810/600 J/s = 16, 35 W.

7 Potentielle und kinetische Energie Energie: gespeicherte, mögliche (potentielle) Arbeit potentielle Energie: Lageenergie (Wasser im Stausee,... ) kinetische Energie: Bewegungsenergie E pot = mgh v h = 2gh h = v2 h 2g = mgh = mgv2 h 2g = m 2 v2 h = E kin

8 Energieerhaltung Energie bleibt erhalten bzw. wird umgewandelt, d. h. E = E pot + E kin = const. Beispiele: Pendel Galilei sches Hemmungspendel Formal: E = dx ma = m dx dv dt = m v dv = m 2 v2. Umwandlung von potentieller in kinetische Energie. Oft wird Energie auch in andere Formen umgewandelt, wie Wärme, Schall, Deformation, etc.

9 Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein System von n Bewegungsgleichungen gelöst werden. Vereinfachend beginnen wir mit n = 2. F 1 + F 21 = d p 1 dt, F 2 + F 12 = d p 2 dt, wobei F21 die Kraft darstellt, welche Massenpunkt 2 auf Massenpunkt 1 ausübt.

10 F 1 stellt die Kraft dar, welche von außen auf Massenpunkt 1 wirkt. Die Kräfte können z. B. vom Ort oder der Geschwindigkeit abhängen. Nach Newton 3 ist F 21 = F 12. Damit fallen die inneren Kräfte beim Bilden der Summe der Bewegungsgleichungen heraus: F = F 1 + F 2 = d p 1 dt + d p 2 dt = d p dt. Ist F = 0, so ist d p dt = 0, bzw. p = const., analog zum zweiten Newtonschen Gesetz. Ohne Einwirkung äußerer Kräfte ( F = 0) bleibt in einem System von n Massenpunkten der Gesamtimpuls erhalten ( d p dt = 0).

11 Impuls und Impulserhaltung v 1 = v 2 = 0 u 1 m1 m 2 u 2 Danach muss gelten m 1 u 1 + m 2 u 2 = 0, woraus sofort folgt, dass u 2 = m 1 u 1. m 2 Beispiel: Rakete, hier verändert sich allerdings m mit der Zeit...

12 Impuls und Impulserhaltung Anwendung: Ballistisches Pendel v 1 m M α l u 2 M + m h u 2 = 2g h mv 1 = (m + M)u 2 v 1 =... Übung! Frage: Wie groß ist der Anteil der Energie, der in Wärme und Deformation umgewandelt wird?

13 Stöße Man unterscheidet verschiedene Sorten von Stößen: inelastischer Stoß: endotherm, Umwandlung kinetischer Energie in innere Energie (z. B. Wärme) elastischer Stoß: Energieerhaltung schiefer Stoß: Geometrieeffekte (exothermer Stoß: Umwandlung innerer Energie in kinetische Energie (z. B. e e + 2γ))

14 Inelastische Stöße v 1 u 1 u 2 v 2 teilweise inelastisch v 1 v 2 u vollständig inelastisch

15 Inelastische Stöße II Vollständig inelastischer Stoß: m 1 v 1 + m 2 v 2 = (m 1 + m 2 )u, also u = m 1v 1 + m 2 v 2 (m 1 + m 2 ). Vorzeichen von v 1 und v 2 beachten! Für m 1 = m 2 gilt offensichtlich u = v 1 + v 2. 2 Aus den Geschwindigkeiten lässt sich die in innere Energie verwandelte kinetische Energie berechnen (Übung!).

16 Elastische Stöße Zusätzlich bleibt kinetische Energie erhalten! 1 2 m 1v m 2v2 2 = 1 2 m 1u m 2u 2 2, m 1 v 1 + m 2 v 2 = m 1 u 1 + m 2 u 2. Zwei Unbekannte, zwei Gleichungen! Sortiere nach Körpern 1 und 2: 1 2 m ( 1 v 2 1 u 2 1) = 1 2 m ( 2 u 2 2 v2) 2, (1) m 1 (v 1 u 1 ) = m 2 (u 2 v 2 ). (2) Dividiere Gleichung 1 durch Gleichung 2 und löse nach u 1 und u 2 auf.

17 Elastische Stöße u 1 = m 1 m 2 m 1 + m 2 v 1 + u 2 = m 2 m 1 m 1 + m 2 v 2 + 2m 2 v 2 m 1 + m 2 (3) 2m 1 v 1 m 1 + m 2 (4) Spezialfälle: m 1 = m 2 = u 1 = v 2 und u 2 = v 1 m 1 m 2 = u 1 v 1 und u 2 2v 1 v 2

18 Stoß mit einer unbeweglichen Wand m 1, u 1 m 1, v 1 m 2 = v 2 = 0 u 2 = 0

19 Mehrere Körper auf einer Linie v 1 v 2 m 2 m 1 n n 1 m 1 v 1 = n 2 m 2 v 2 (Impulssatz); n 1 2 m 1v 2 1 = n 2 2 m 2v 2 2 (Energiesatz). m 1 = m 2 = n 1 = n 2

20 Bewegung in der Ebene y x v 1,y v 1 v 1,x α α v 2,y v 2 v 2,x Überlagerung einer Bewegung entlang von x mit einer Reflexion an einer Wand. v 2,x = v 1,x ; v 2,y = v 1,y

21 m 2 Wie soll nun ein Stoß in der Ebene behandelt werden, wenn m 2? Aus der Impuls- und Energieerhaltung m 1 v 1 + m 2 v 2 = m 1 u 1 + m 2 u 2, 1 2 m 1v m 2v2 2 = 1 2 m 1u m 2u 2 2 ergeben sich nur drei Bedingungen an die vier Unbekannten u 1,x, u 1,y, u 2,x und u 2,y. Offensichtlich wird die Situation in drei Dimensionen noch schlimmer, 6 Unbekannten stehen nur vier Gleichungen gegenüber. Diese prinzipielle Schwierigkeit lässt sich nicht beheben, wohl aber in handlichere Teilprobleme unterteilen.

22 Der Schwerpunkt eines Systems m 1 m 2 z r 1 r 2 r S m 3 r 3 x y r S. = N i=1 m i r i N i=1 m i = 1 M N m i r i i=1

23 Schwerpunktgeschwindigkeit Greifen keine äußeren Kräfte an, so bleibt der Impuls des Systems konstant. N i=1 d p i dt = 0. Verändern sich die Massen nicht, so ändert sich auch die Geschwindigkeit des Systems nicht, genauer, N d v i m i dt = 0. i=1 Damit lässt sich eine mittlere Geschwindigkeit definieren, welche unverändert

24 bleibt: v S. = 1 M N m i v i. Offensichtlich ist v S = d r S dt, d. h. die Geschwindigkeit des Schwerpunktes des Systems bleibt erhalten. Oft vereinfachen sich die auftretenden Gleichungen erheblich, wenn man in das Schwerpunktsystem transformiert, denn i=1 p S = N m i v i = M v S i=1 p S,S = N m i ( v i v i,s ) = N m i v i N m i v i,s = M v S M v S = 0. i=1 i=1 i=1

25 Die kinetische Energie transformiert sich ebenso einfach: E kin = 1 2 m 1v m 2v 2 2 = 1 2 ( m1 ( v 1,S + v S ) 2 + m 2 ( v 2,S + v S ) 2) = 1 ( m1 v1,s 2 + m 2 v 2 ) 1 2,S = 1 ( m1 v1,s 2 + m 2 v 2 ) 1 2,S E kin = E (S) kin Mv2 S ( m1 vs 2 + m 2 vs 2 ) + (m1 v 1,S + m 2 v 2,S ) v S ( m1 vs 2 + m 2 vs 2 ) + 0 weil ja ( m 1 v 2 S + m 2v 2 S) = 0.

26 Bewegung zweier Teilchen im Schwerpunktsystem Nach Voraussetzung wirken keine äußeren Kräfte auf das System, d. h. es wirken nur die inneren Kräfte F 12 und F 21. d v 1,S dt = F 21 m 1 ; d v 2,S dt = F 12 m 2 Subtraktion (unter Berücksichtigung von F 12 = F 21 ) liefert d( v 1,S v 2,S ) dt = ( 1 m m 2 ) F 21, wo ( v 1,S v 2,S ) = v 12,S die Relativgeschwindigkeit zwischen den Teilchen

27 darstellt. Mit der Definition der reduzierten Masse µ µ. = m 1m 2 m 1 + m 2 kann so eine besonders einfache Bewegungsgleichung gefunden werden F 21 = µ dv 12,S dt Die Bewegung der beiden Teilchen kann also auf die Bewegung eines einzelnen Teilchens der reduzierten Masse µ reduziert werden..

28 Elastische Stöße im Schwerpunktsystem Wegen p S,S = 0 muss auch gelten p 1,S = p 2,S und p 1,S = p 2,S. Einsetzen in den Energiesatz ergibt ( ) p 2 1,S = 1 2 m 1 m 2 2 Verwende reduzierte Masse µ, so p 2 1,S 2µ = p2 1,S 2µ + Q. ( ) p 2 1,S + Q. m 1 m 2

29 Für elastische Stöße ist Q = 0 (nach Definition), folglich p 2 1,S = p2 1,S und p 2 2,S = p2 2,S. Dies lässt lediglich eine Drehung der Impulse zu! v 1 v 2 v 2,S v 1,S θ v 1,S v 2 Laborsystem v 2,S v 1 Schwerpunktsystem

30 Relativistische Formulierung y y K u = 0 K v A v B u A A B u B x Wir betrachten nun zwei Körper derselben Masse m A = m B = m, die sich bei relativistischen Geschwindigkeien begegnen. Wie sieht ein Stoß in diesem Falle aus? Dabei bewegen wir uns in einem System K so, dass sich der Körper A in y Richtung nur sehr langsam bewegt und diese Impulskomponente beim Stoß umgekehrt wird, v ya = u ya. Dasselbe geschehe mit Körper B und Körper A bewege sich immer noch mit Geschwindigkeit v xa in x-richtung. Der Impuls ist also erhalten. v A u = v xa A B u A x Nun betrachten wir den Stoß im System K, welches sich mit v = v xa entlang der x-achse bewegt. In diesem System sind also die Rollen von A und B vertauscht. Die Geschwindigkeiten transformieren sich gemäß der u B v B

31 Lorentz-Transformation, v y = v y /γ 1 v x v/c 2. Nun ist im System K für die beiden Teilchen die Geschwindigkeit in x-richtung verschieden, weshalb sich auch die y-komponenten der Geschwindigkeit anders transformieren! v ya = v yb = v ya /γ 1 v xa v/c 2 = v ya/γ 1 v 2 /c 2 = γv xa, da v = v xa, v yb /γ 1 v xb v/c 2 = v xb/γ, da v xb = 0, während die entsprechenden Geschwindigkeiten im System K die Beträge v ya

32 und v yb haben, also v ya v ya = γ und v yb v yb = γ. In beiden Systemen gilt der Impulssatz und insbesondere für die y-komponente gilt m A v ya + m B v yb = 0 = m Av ya + m Bv yb. Dies ist aber für m A = m A und m B = m B nicht möglich, weil ja die y- Komponenten der Geschwindigkeiten verschieden sind. Also müssen die Massen m und m verschieden sein! Für kleine y-komponenten gilt die Näherung v A v xa = v, v A 0, V B 0, v B v xb = v.

33 Damit können wir mit m 0. = m(v = 0) schreiben m(v)v ya + m 0 v yb = 0, m 0 v ya + m(v)v y B = 0. Wir nehmen die Terme mit v yb bzw. v yb und erhalten m 2 (v) m 2 0 Damit erhalten wir = v yb v ya v yb m(v) = γm 0 = nach rechts, dividieren die Gleichungen = γ 2. v ya m 0 1 v2 /c 2.

34 Relativistische Energie: E = mc 2 x E Lichtblitz L Schwerpunkt E Wir wollen nun noch die bekannt Energie- Masse Beziehung E = mc 2 verstehen. Dazu betrachten wir einen leichten Wagen, an dessen linker Wand ein Lichtblitz der Energie E ausgesandt wird. Nach den Gesetzen der klassischen Physik hat er einen Impuls p = E/c (Stoff kommt im zweiten Semester). Weil der Wagen vor dem Blitz ruhen soll, muss auch nach dem Blitz der Schwerpunkt am selben Ort bleiben, der Gesamtimpuls bleibt erhalten. Deshalb muss sich der Wagen ein klein wenig nach links bewegen mit einer Geschwindigkeit v = p/m = E/Mc. Weil diese Geschwindigkeit sehr klein ist im Vergleich zur Lichtgeschwindigkeit,

35 v c, erreicht der Lichtblitz die rechte Wand nach einer Zeit t = L/c, während der sich der Wagen lediglich um x = v t = EL/Mc 2 nach links bewegt hat. Erreicht der Blitz die rechte Wand, so hält der Wagen an. Damit der Schwerpunkt unbewegt bleibt, muss dem Licht eine Masse m zugeschrieben werden! ml + M x = 0. Daraus folgt ml MEL/Mc 2 = 0, = E = mc 2. Setzen wir darin nun unseren Ausdruck für die Masse ein, so finden wir E = m 0 c 2 1 v2 /c 2 = m 0c 2 (m(v) m 0 )c 2, wobei der erste Term dies sog. Ruheenergie und der zweite die eigentliche

36 kinetische Energie ist. Für diese gilt mit einer Potenzreihenentwicklung für γ E kin = (m(v) m 0 ) c 2 = 1 2 m 0v m v 4 0 c Für kleine Geschwindigkeiten v c finden wir den klassischen Ausdruck wieder. Für richtige Rechnungen ist es oft nützlicher, die Energie-Impuls Beziehung zu kennen: E = c m 2 0 c2 + p 2.

37 Relativistische Kraft Wir nehmen den relativistischen Impuls p = γm 0 v und das zweite Newtonsche Gesetz und erhalten F = ( ) d p dt = d dt (m v) = d m 0 v, dt 1 v2 /c 2 = ( ) d m 0 v + m a. dt 1 v2 /c 2 Die innere Ableitung in der Klammer wird mit d/dt = (dv/dt)(d/dv) durch-

38 geführt: ( m ) 0 v/c 2 a F = (1 v 2 /c 2 3/2 v + m a, ) { ) } v = γ 3 2 v m 0 a (1 c 2 v + v2 a c 2. a Die Kraft hat also nicht nur eine Komponente in Beschleunigungsrichtung a/a, sondern auch in Geschwindigkeitsrichtung v/v! Diese wird aber für kleine Geschwindigkeiten v c vernachläßigbar.

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

5) Impuls und Energie

5) Impuls und Energie 5) Impuls und Energie 5.) Arbeit und Energie 5.) Energieerhaltung 5.3) Impuls und Impulserhaltung 5.4) Stöße 5.) Arbeit und Energie 5..) Arbeit 5..) Arbeit bei konseratien Kräften 5..3) Zusammenhang Potential

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

4.1.1 Die Energie als fundamentale physikalische Grösse

4.1.1 Die Energie als fundamentale physikalische Grösse Kapitel 4 Energie Im Prinzip kann man die Newtonschen Gesetze, die die Kraft und die Beschleunigung verbinden, verwenden, um ein beliebiges Bewegungsproblem, zu lösen. Die Gesetze können allgemein und

Mehr

Energie und Implus(energía, la; impulso (el)

Energie und Implus(energía, la; impulso (el) 4 4.1 Energie und Implus(energía, la; impulso (el) 1 o ímpetu, el ) Arbeit (trabajo, el ) Abb.1: Eine Zugmaschine übt auf den Anhänger eine Kraft F längs eines Weges s aus. Dabei wird Arbeit verrichtet.

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

9 Relativistische Mechanik

9 Relativistische Mechanik 9 Relativistische Mechanik Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind In diesem Kapitel stellen wir die relativistische

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213 Energieerhaltung 8. Konservative und nichtkonservative Kräfte... 2 8.2 Potenzielle Energie... 23 8 8.3 Mechanische Energie und ihre Erhaltung... 28 8.4 Anwendungen des Energieerhaltungssatzes der Mechanik...

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Die Leistung und ihre Messung

Die Leistung und ihre Messung Die Leistung und ihre Messung Bei der Definition der Arbeit spielt die Zeit, in der die Arbeit verrichtet wird, keine Rolle. In vielen Fällen ist es aber wichtig, anzugeben, in welcher Zeit eine bestimmte

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

A. ENERGIE = GESPEICHERTE ARBEIT

A. ENERGIE = GESPEICHERTE ARBEIT 1. Steine, die arbeiten! Die Frage, ob Steine Arbeit verrichten können, ist wohl merkwürdig. Betrachten wir aber das untenstehende Bild, bekommt diese Frage doch einen Sinn. Steine können - wenn auch unerwünschte

Mehr

4.5 Wegunabhängige Arbeit, konservative Kräfte

4.5 Wegunabhängige Arbeit, konservative Kräfte 4 Arbeit, Energie, Leistung 4.0 Exkurs: Skalarprodukt 4. Arbeit 4. Energie 4.3 Energieformen 4.4 Leistung 4.5 Wegunabhängige Arbeit, konservative Kräfte 4.7 Einfache Maschinen R. Girwidz 4 Arbeit, Energie,

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V Bedeutung hoher Teilchenenergien Dann ist die Spannung Die kleinsten Dimensionen liegen heute in der Physik unter d < 10 15 m Die zur Untersuchung benutzten Wellenlängen dürfen ebenfalls nicht größer sein.

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Aufnahme und Abgabe von Energie Kernumwandlungen (grundlegende Betrachtungen zur Energiebilanz) Ph 10.2 Die Mechanik Newtons

Aufnahme und Abgabe von Energie Kernumwandlungen (grundlegende Betrachtungen zur Energiebilanz) Ph 10.2 Die Mechanik Newtons Staatsinstitut für Schulqualität und Bildungsforschung Referat Naturwissenschaften / Physik Die Energie als Erhaltungsgröße ein Unterrichtskonzept Ausgangspunkt für die nachfolgend beschriebene Vorgehensweise

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Arbeit, Energie und Impuls I (Energieumwandlungen)

Arbeit, Energie und Impuls I (Energieumwandlungen) Übungsaufgaben Mechanik Kursstufe Arbeit, Energie und Impuls I (Energieumwandlungen) 36 Aufgaben mit ausführlichen Lösungen (35 Seiten Datei: Arbeit-Energei-Impuls Lsg) Eckhard Gaede Arbeit-Energie-Impuls_.doc

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: uf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

Grimsehl Lehrbuch der Physik

Grimsehl Lehrbuch der Physik Grimsehl Lehrbuch der Physik BAND 1 Mechanik Akustik Wärmelehre 27., unveränderte Auflage mit 655 Abbildungen BEGRÜNDET VON PROF. E. GRIMSEHL WEITERGEFÜHRT VON PROF. DR. W. SCHALLREUTER NEU BEARBEITET

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung

1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung 1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung Findet in den ausliegenden Schulbüchern und physikalischen Fachbüchern verschiedene Definitionen der Begriffe Arbeit, Energie und Leistung.

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

Deutsche Schule Tokyo Yokohama

Deutsche Schule Tokyo Yokohama Deutsche Schule Tokyo Yokohama Schulcurriculum KC-Fächer Sekundarstufe I Klassen 7-10 Physik Stand: 21. Januar 2014 eingereicht zur Genehmigung Der schulinterne Lehrplan orientiert sich am Thüringer Lehrplan

Mehr

Grundlagen der Biomechanik. Ewa Haldemann

Grundlagen der Biomechanik. Ewa Haldemann Grundlagen der Biomechanik Ewa Haldemann Was ist Biomechanik 1 Unter Biomechanik versteht man die Mechanik des menschlichen Körpers beim Sporttreiben. 2 Was ist Biomechanik 2 Bewegungen entstehen durch

Mehr

Unterrichtsmaterialien:

Unterrichtsmaterialien: Unterrichtsmaterialien: Energieumwandlungen in der Halfpipe Fach: Physik Jahrgangstufe: 5./6. Inhaltsverzeichnis 2 Inhalt Seite 1. Lernziele und curriculare Bezüge 3 2. Die Lernsituation 4 3. Der Unterrichtsverlauf

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner

Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner Themen und Inhalte des Physikunterrichtes für die Jahrgangsstufe 11 an beruflichen Gymnasium von Erhard Werner Jahrgangsstufe 11: Mechanik Grundlagen wissenschaftspropädeutischen Arbeitens und naturwissenschaftlicher

Mehr

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Dieser Vortrag, von kleinen Änderungen abgesehen, wurde im SS 05 von Jessica Rinninger zusammengestellt. Inhalt: Arbeit: Was ist Arbeit? Wozu

Mehr

Physik Prof. Dr. H.-Ch. Mertins, FB Physikalische Technik

Physik Prof. Dr. H.-Ch. Mertins, FB Physikalische Technik Physik Prof. Dr. H.-Ch. Mertins, FB Physikalische Technik Richtung 1. Wirtschaftsingenieurwesen Physikalische Technologien 2. Chemieingenieurwesen & 3. Wirtschaftsingenieurwesen Chemietechnik 4. Technische

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 21. Oktober 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 21. Oktober 2009 Physik für Studierende der Biologie und Chemie Uniersität Zürich, HS 29, U. Straumann Version 2. Oktober 29 Inhaltserzeichnis 3. Energie und Energieerhaltung.......................... 3. 3.. Arbeit und

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Kapitel III Arbeit, Leistung und Energie

Kapitel III Arbeit, Leistung und Energie Kapitel III Arbeit, Leistung und Energie 3.1 Arbeit Betrachtet man die Momentaufnahme eines Gewichtsstück, welches an einem Kran hängt, so kann man an den Kräften zunächst nicht unterscheiden, ob die Last

Mehr

Elektrische Arbeit und Leistung

Elektrische Arbeit und Leistung Elektrische Arbeit und Leistung 1. Tom möchte eine Glühbirne mit der Aufschrift 23 V/46 W an das Haushaltsnetz ( = 230 V) anschließen. Er hat dazu zwei Präzisionswiderstände mit dem jeweiligen Wert R =

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

2. Chemische Reaktionen und chemisches Gleichgewicht

2. Chemische Reaktionen und chemisches Gleichgewicht 2. Chemische Reaktionen und chemisches Gleichgewicht 2.1 Enthalpie (ΔH) Bei chemischen Reaktionen reagieren die Edukte zu Produkten. Diese unterscheiden sich in der inneren Energie. Es gibt dabei zwei

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

WEG, GESCHWINDIGKEIT, BESCHLEUNIGUNG; WECHSELWIRKUNG ZWISCHEN KÖRPERN, KRÄFTE (UFP)

WEG, GESCHWINDIGKEIT, BESCHLEUNIGUNG; WECHSELWIRKUNG ZWISCHEN KÖRPERN, KRÄFTE (UFP) FAKULTÄT FÜR PHYSIK Arbeitsgruppe Didaktik der Physik WEG, GESCHWINDIGKEIT, BESCHLEUNIGUNG; WECHSELWIRKUNG ZWISCHEN KÖRPERN, KRÄFTE (UFP) INHALTE UND ZIELE DES ANFANGSUNTERRICHTS IN DER MECHANIK Im Anfangsunterricht

Mehr

Grundwissen, Jahrgangsstufe 10, Physik, Übersicht

Grundwissen, Jahrgangsstufe 10, Physik, Übersicht Lehrplan 10.1 Astronomische Weltbilder Entwicklung, geozentrisch, heliozentrisch, Kepler Gesetze (Mitteilung) Aspekte moderner Kosmologie Überblick, Urknall, Expansion, Struktur 10.2 Mechanik Newtons Newtons-Gesetze

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Skript zur Vorlesung 20 800: Physik für Studierende der Biologie, Biochemie, Chemie, Geowissenschaften, Informatik, Mathematik und Pharmazie

Skript zur Vorlesung 20 800: Physik für Studierende der Biologie, Biochemie, Chemie, Geowissenschaften, Informatik, Mathematik und Pharmazie Skript zur Vorlesung 20 800: Physik für Studierende der Biologie, Biochemie, Chemie, Geowissenschaften, Informatik, Mathematik und Pharmazie erstellt von Prof. W. D. Brewer mit Modifikationen von Prof.

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes Schulinterner Lehrplan der DS Las Palmas im Fach Physik Klassenstufe 7 Lerninhalte 1. Einführung in die Physik Überblick,Physik im Alltag 2.Optik 2.1. Ausbreitung des Lichtes Eigenschaften des Lichtes,Lichtquellen,Beleuchtete

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Schulcurriculum des Faches Physik. für die Klassenstufen 7 10

Schulcurriculum des Faches Physik. für die Klassenstufen 7 10 Geschwister-Scholl-Gymnasium Schulcurriculum Schulcurriculum des Faches Physik für die Klassenstufen 7 10 Gesamt Physik 7-10 09.09.09 Physik - Klasse 7 Akustik Schallentstehung und -ausbreitung Echolot

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Gefesselte Masse. Jörg J. Buchholz 23. März 2014

Gefesselte Masse. Jörg J. Buchholz 23. März 2014 Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei

Mehr

Alltagsmechanik mit GPS

Alltagsmechanik mit GPS Didaktik der Physik Frühjahrstagung Berlin 2005 Alltagsmechanik mit GPS U. Backhaus, Universität Essen Abbildung 1: Energieumsatz bei einer Spazierfahrt mit dem Fahrrad Mit GPS-Empfängern stehen seit einiger

Mehr

6. Transporteigenschaften von Metallen

6. Transporteigenschaften von Metallen 6. Transporteigenschaften von Metallen 6. llgemeine Transportgleichung a) elektrische Leitung b) Wärmeleitung c) Diffusion llgemeine Transportgleichung: j C Φ j : C : Φ : Stromdichte Proportionalitätskonstante

Mehr

Warum gibt es Reibung? Man unterscheidet: Haftreibung (Haftung) und Gleitreibung

Warum gibt es Reibung? Man unterscheidet: Haftreibung (Haftung) und Gleitreibung 7. eibung Warum gibt es eibung? 7.1 eibung zwischen Oberflächen Einschränkung auf trockene eibung Phänomenologische esetze der eibung Die eibungskraft ist unabhängig von Auflagefläche proportional zur

Mehr

DOWNLOAD VORSCHAU. Physik kompetenzorientiert: Mechanik 7. 7. / 8. Klasse. zur Vollversion

DOWNLOAD VORSCHAU. Physik kompetenzorientiert: Mechanik 7. 7. / 8. Klasse. zur Vollversion DOWNLOAD Anke Ganzer Physik kompetenzorientiert: Mechanik 7 7. / 8. Klasse Bergedorfer Unterrichtsideen Anke Ganzer Downloadauszug aus dem Originaltitel: Physik II kompetenzorientierte Aufgaben Optik,

Mehr

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft 4. Die Energiebilanz 4.1. Mechanische Formen der Energie 4.1.1 Energie und Arbeit Arbeit einer Kraft Die auf dem Weg von 1 nach 2 geleistete Arbeit berechnet sich durch Integration entlang der Bahnkurve

Mehr

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1 Computer-Animation Oliver Deussen Animation 1 Unterscheidung: Interpolation/Keyframing Starrkörper-Animation Dynamische Simulation Partikel-Animation Verhaltens-Animation Oliver Deussen Animation 2 Keyframing

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr