Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm"

Transkript

1 Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden Werte ( r = Radius, A S = Fläche des Kreisausschnitts, b = Länge des Kreisbogens, α = Mittelpunktswinkel ) a) α = 60, b = 6 cm b) r = 8,5 cm, A S = 199 cm² 3. Aufgabe: Für einen kreisförmigen Tisch ( Durchmesser 118 cm ) soll ein Tischtuch genäht werden, das ringsum 10 cm überhängt. Wie viel m² Stoff ist erforderlich? 4. Aufgabe: Das Rad einer Lokomotive hat den Durchmesser d = 80 cm. Wie oft muss es sich drehen, um 1 km zurückzulegen? 5. Aufgabe: In einem kreisförmigen Blumenbeet mit dem Radius 5 m soll die Fläche eines einbeschriebenen Quadrates mit roten, die restliche Fläche mit gelben Tulpen bepflanzt werde. Welche Menge Tulpenzwiebeln jeder Sorte benötigt man, wenn man pro m² 80 Zwiebeln benötigt. 6. Aufgabe: Bei einem Kreisring beträgt ist der Radius des inneren Kreises 10 cm. Welchen Wert muss der Radius des äußeren Kreises besitzen, damit der Flächeninhalt des Kreisringes genauso groß ist wie der Flächeninhalt des inneren Kreises? 7. Aufgabe: Berechne den Flächeninhalt der grün markierten Figur in Abhängigkeit von r (dies ist der Radius des kleineren Kreises).

2 Lösungen 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 4,3 cm 2,9 cm 23,7 cm 2,45 m d 8,6 cm 5,8 cm 47,4 cm 4,9 m A 58,1 cm² 26,3 cm² 1766,7 cm² 18,86 m² u 27 cm 18,2 cm 149 cm 15,4 m Die Formeln A = πr² und U = 2πr werden hier verwendet. Weiterhin muss man wissen, dass gilt d = 2r. 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden Werte ( r = Radius, A = Fläche des Kreisausschnitts, b = Länge des Kreisbogens, α = Mittelpunktswinkel ) a) α = 60, b = 6 cm b) r = 8,5 cm, A = 199 cm² Es gelten hier folgende Formeln, die umgestellt werden müssen: πr² A = α 360 πr b = α 180 Für Aufgabe a, wird die 2. Formel nach r freigestellt. Man erhält dann r = 5,73 cm. Diesen Wert setzt man in die 1. Formel ein und erhält A = 17,2 cm². Für Aufgabe b werden die Werte in die 1. Gleichung eingesetzt und sie wird nach α freigestellt. Man erhält einen Winkel von 315,6. Wenn man nun die bekannten Werte in die 2.Gleichung einsetzt, erhält man b = 46,8 cm. 3. Aufgabe: Für einen kreisförmigen Tisch ( Durchmesser 118 cm ) soll ein Tischtuch genäht werden, das ringsum 10 cm überhängt. Wie viel m² Stoff ist erforderlich? d = 118 cm + 20 cm = 138 cm r = d/2, also r = 69 cm = 0,69 m A = πr² 1,5 m² Man benötigt also etwa 1,5 m² Stoff. 4. Aufgabe: Das Rad einer Lokomotive hat den Durchmesser d = 80 cm. Wie oft muss es sich drehen, um 1 km zurückzulegen? Es gilt: d = 80 cm. Also U = πd 251 cm = 2,51 m. 1 km = 1000 m 1000 m : 2,51 m 398 Das Rad dreht sich also etwa 398 mal. 5. Aufgabe: In einem kreisförmigen Blumenbeet mit dem Radius 5 m soll die Fläche eines einbeschriebenen Quadrates mit roten, die restliche Fläche mit gelben Tulpen bepflanzt

3 werde. Welche Menge Tulpenzwiebeln jeder Sorte benötigt man, wenn man pro m² 80 Zwiebeln benötigt. Das Problem der Aufgabe liegt darin, dass die Seitenlänge a des Quadrates unbekannt ist. Wir wissen aber, dass der Radius r des Kreises 5 cm ist. Die Diagonale des Quadrates ist also 10 cm lang. Nun haben wir ein rechtwinkliges Dreieck. a 10 cm a Mit Hilfe des Pythagoras können wir a bestimmen: a² + a² = 100 cm² a = Fläche Kreis: πr² = π*25cm² 78,54 cm² Fläche Quadrat: 50 cm² Rote Zwiebeln: 50 * 80 = 4000 Restfläche Kreis = Fläche Kreis Fläche Quadrat = 28,54 cm² Gelbe Zwiebeln: 28,54 * 80 = 2283 Es werden also 4000 rote und 2283 gelbe Zwiebeln benötigt. 50 cm. 6. Aufgabe: Bei einem Kreisring beträgt ist der Radius des inneren Kreises 10 cm. Welchen Wert muss der Radius des äußeren Kreises besitzen, damit der Flächeninhalt des Kreisringes genauso groß ist wie der Flächeninhalt des inneren Kreises? Elegante Methode: Wir haben gelernt, dass der Flächeninhalt quadratisch wächst, d.h. wenn ich den Radius verdopple, dann vervierfacht sich der Flächeninhalt. Der Flächeninhalt des äußeren Kreises ist nun doppelt so groß. Begründung: Fläche des Kreisringes ist genauso groß wie die Fläche des inneren Kreises. Der Flächeninhalt des äußeren Kreises ist also so groß wie die Fläche des inneren Kreises und des Kreisringes. Wenn der Flächeninhalt des äußeren Kreises nun doppelt so groß ist, muss der Radius des äußeren Kreises folglich 2 mal so groß sein wie der Radius des inneren Kreises. Also beträgt der Radius etwa 14,14 cm. Man kann diese Aufgabe auch rechnerisch lösen. Man muss dafür die Flächeninhalte des inneren Kreises und des äußeren Kreises bestimmen. Dann kann man den Radius leicht berechnen. 7. Aufgabe Zunächst ist zu klären, aus welchen Teilstücken sich die Figur zusammensetzt.

4 Durch das Einzeichnen der Hilfslinien AM 1, BM 1 und AB kann abgelesen werden: A 1 : Sektor, Mittelpunkt M 1, Radius 2r, Mittelpunktswinkel 90 A 2 : Sektor, Mittelpunkte M 2 und M 3, Radius r, Mittelpunktswinkel 180 Man erhält für die gesuchte Fläche A: A=A 1-2 A 2 +A 3 Allerdings hat man so die mit A 3 bezeichnete Fläche 2-mal subtrahiert, da sie in beiden mit A 2 bezeichneten Flächeninhalten enthalten ist; diese Fläche ist demnach 1- mal dem Ergebnis zuzuschlagen: A=A 1-2 A 2 +A 3 +A 3 A=A 1-2 A 2 +2 A 3 Die Strecke M 1 C teilt A 4 in zwei gleichgroße Teile. Beide Teile setzen sich folgendermaßen zusammen:

5 A 4 : Sektor, Mittelpunkt M 3 und M 2, Radius r, Mittelpunktswinkel 90 A 5 : Dreieck M 1 M 3 C und M 2 M 1 C, Grundseite = Höhe = r Es ist: A 3 =2 (A 4 -A 5 ) und damit: A=A 1-2 A (A 4 -A 5 ) A=A 1-2 A 2 +4 (A 4 -A 5 )

Kreis und Kreisteile. - Aufgaben Teil 1 -

Kreis und Kreisteile. - Aufgaben Teil 1 - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht. a) Gib das Bogenmaß,3 im Gradmaß an. b) Gib das Bogenmaß im Gradmaß an. 9 c) Gib das Gradmaß 44 im Bogenmaß als Bruchteil von an. d) Gib das

Mehr

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9 Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man

Mehr

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms Parallelogramm Umfang des Parallelogramms Gegeben ist ein Parallelogramm mit den Seitenlängen a und b. Um den Umfang (u P ) zu berechnen, wird folgende Formel verwendet: u P = 2a + 2b a b a = 6 cm; b =

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben

Mehr

2. Strahlensätze Die Strahlensatzfiguren

2. Strahlensätze Die Strahlensatzfiguren 2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Drei Kreise Was ist zu tun?

Drei Kreise Was ist zu tun? 1 Drei Kreise Der Radius der Kreise beträgt drei Zentimeter. Zeichnet die Abbildung nach, falls ihr einen Zirkel zur Hand habt. Ansonsten genügt auch eine Skizze. Bestimmt den Flächeninhalt der schraffierten

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Mathematik 36 Ähnlichkeit 01 Name: Vorname: Datum:

Mathematik 36 Ähnlichkeit 01 Name: Vorname: Datum: Mathematik 36 Ähnlichkeit 01 Name: Vorname: Datum: Aufgabe 1: Berechne die fehlenden Variablen: a) b) 12 cm 5 cm 8 cm 6 cm 4 cm 6 cm 10 cm 8 cm c) d) u 6 dm 3 dm 9 dm 5 dm 12 m v 6 m 6 m 8 m 15 m Aufgabe

Mehr

MATHEMATIK 8. Schulstufe Schularbeiten

MATHEMATIK 8. Schulstufe Schularbeiten MATHEMATIK 8. Schulstufe Schularbeiten 1. S c h u l a r b e i t Terme Lineare Gleichungen mit einer Variablen Bruchterme Gleichungen mit Bruchtermen Der Preis einer Ware beträgt x Euro. Dieser Preis wird

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2011 REALSCHULABSCHLUSS MATHEMATIK. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2011 REALSCHULABSCHLUSS MATHEMATIK. Arbeitszeit: 180 Minuten Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 8 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Bei einem Experiment entstand

Mehr

Raumgeometrie WORTSCHATZ 1

Raumgeometrie WORTSCHATZ 1 Raumgeometrie WORTSCHATZ 1 Video zur Raumgeometrie : http://www.youtube.com/watch?v=qbqbd0b3vzu VOKABEL : eine Angabe ; angeben ; was angegeben ist : ce qui est donné (les données) eine Annahme ; annehmen

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

4.7 Der goldene Schnitt

4.7 Der goldene Schnitt 4.7 Der goldene Schnitt Aus Faust I: MEPHISTO: Gesteh' ich's nur! Dass ich hinausspaziere,verbietet mir ein kleines Hindernis: Der Drudenfuß auf Eurer Schwelle --- FAUST: Das Pentagramma macht dir Pein?

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Seiten 6 / 7 / 8 / 9 Berechnungen mit Pythagoras in der Ebene 1 Tipps:

Seiten 6 / 7 / 8 / 9 Berechnungen mit Pythagoras in der Ebene 1 Tipps: Seiten 6 / 7 / 8 / 9 Berechnungen mit Pythagoras in der Ebene 1 Tipps: a= b= c= a) 15 cm 6 cm 61 =16.16 b) 148 cm 65137 =807.55 81 cm c) 155.5 =1.46 15 cm 19.5 cm d) 16 cm.5 cm 61.065 =16.16 e) 13 cm cm

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Liebe Studierende, wenn Sie Mathematik an der Pädagogischen Hochschule Karlsruhe erfolgreich studieren möchten,

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Oberflächenberechnung bei Prisma und Pyramide

Oberflächenberechnung bei Prisma und Pyramide Lösungscoach Oberflächenberechnung bei Prisma und Pyramide Aufgabe Ein Schokoladenhersteller bekommt zwei Vorschläge für eine neue Verpackung: 5,9 cm 3 cm 2 cm 3 cm 3 cm Das linke Modell ist ein gerades

Mehr

Materialien zur Mathematik II

Materialien zur Mathematik II Joachim Stiller Materialien zur Mathematik II Die Quadratur des Kreises Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Pflichtaufgaben Pflichtaufgabe 1 1 a) Berechnen Sie das Quadrat der Summe aus 8 und 4. b)

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Y b 2 - a 2 = p 2 - q 2 (*)

Y b 2 - a 2 = p 2 - q 2 (*) Um den Flächeninhalt eines Dreieckes zu bestimmen, das keinen rechten Winkel besitzt, muss man bekanntlich die Längen einer Seite mit der dazugehörigen Höhe kennen Wir setzen voraus, dass uns alle 3 Seitenlängen

Mehr

Maturitätsprüfung Mathematik

Maturitätsprüfung Mathematik Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen

Mehr

WAchhalten und DIagnostizieren

WAchhalten und DIagnostizieren WAchhalten und DIagnostizieren von Grundkenntnissen und Grundfertigkeiten im Fach Mathematik Klassenstufe 9/10 Teil 1 Annette Kronberger Thomas Weizenegger Stand: 02.04.2016 Einführung 2 Durchgeführte

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Zentrale Klassenarbeit 2003

Zentrale Klassenarbeit 2003 Zentrale Klassenarbeit 2003 Tipps ab Seite 21, Lösungen ab Seite 31 ZK Mathematik 2003 1. Aufgabe (8 Punkte) [ b 3 a) Vereinfache so weit wie möglich b) Löse die Gleichung 3 2x 3 x = 6. b5 : an 2 c 2n

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 8 LU Nr nhaltliche * * V* Titel MB 8 LU 5 * nhaltliche mein Raumvorstellungsvermögen weiter entwickeln und ebene wie räumliche V Figuren erkennen die Eigenschaften eines regelmässigen Tetraeders

Mehr

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Formeln für Flächen und Körper

Formeln für Flächen und Körper Formeln für Flächen und Körper FLÄCHENBERECHNUNG... QUADRAT... RECHTECK... 3 PARALLELOGRAMM... 3 DREIECK... 4 GLEICHSCHENKLIGES DREIECK... 5 GLEICHSEITIGES DREIECK... 6 TRAPEZ... 7 GLEICHSCHENKLIGES TRAPEZ...

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Kreis - Umfang und Fläche - Approximationsverfahren

Kreis - Umfang und Fläche - Approximationsverfahren Kreis - Umfang und Fläche - Approximationsverfahren 1 Kästchen zählen Lösung: Bestimme den Flächeninhalt des Kreises möglichst genau! 2 Vom Umfang zum Flächeninhalt 1 Kannst du entdecken, wie Umfang und

Mehr

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist.

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist. I Körper II 33. Umfang und Flächeninhalt eines Kreises Lösungen Ein Blumenbeet hat die Form eines Viertelkreises mit gegebenem Radius. Fertige eine Skizze an. Berechne den Umfang des Beetes. a) r = 3,9

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

5 Flächenberechnung. 5.1 Vierecke Quadrat

5 Flächenberechnung. 5.1 Vierecke Quadrat 98 5 Flächenberechnung Wussten Sie schon, dass (bezogen auf die Fläche) Ihr größtes Organ Ihre Haut ist? Sie hat durchschnittlich (bei Erwachsenen) eine Größe von ca. 1,6 bis 1,9 m 2. Wozu brauche ich

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (1/5) 1 Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer 1,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (40 km; x km) Fahrt als Term dar. 2

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011 Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium

Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium Aufgabe 1: LKW-Ladung...3 Aufgabe 2: Katzenfutter...3 Aufgabe 3: Mittig...3 Aufgabe 4: Sonderangebot...4 Aufgabe 5: Quersumme...4

Mehr

1.4 Steigung und Steigungsdreieck einer linearen Funktion

1.4 Steigung und Steigungsdreieck einer linearen Funktion Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer

Mehr

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung Flächenberechnung Flächenberechnung Einleitung Mögliche Schritte zur Einführung Wie groß ist diese Form? Mit diesem Material kannst du erfahren, wie man bei geometrischen Formen die Fläche berechnen kann.

Mehr

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Klasse 9 Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse 9 Dieser Download ist ein Auszug aus dem Originaltitel Mathe an Stationen

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt. Fachbereich Mathematik Tag der Mathematik 0. Oktober 00 Klassenstufen 7, 8 Aufgabe (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

MATHEMATIK - LEHRPLAN UNTERSTUFE

MATHEMATIK - LEHRPLAN UNTERSTUFE INSTITUTO AUSTRIACO GUATEMALTECO MATHEMATIK - LEHRPLAN UNTERSTUFE Der Lehrplan für Mathematik wurde in Anlehnung an den österreichischen Lehrplan ( 11. Mai 2000 ) erstellt. Durch die Verwendung von österreichischen

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Lösungen Jahresprüfung Mathematik. 1. Klassen Kantonsschule Reussbühl Luzern. 26. Mai 2015

Lösungen Jahresprüfung Mathematik. 1. Klassen Kantonsschule Reussbühl Luzern. 26. Mai 2015 Lösungen Jahresprüfung Mathematik 1. Klassen Kantonsschule Reussbühl Luzern 26. Mai 2015 Zeit: Hilfsmittel: 90 Minuten (13.10-14.40 Uhr) Taschenrechner (TI-30) Punktemaximum: 75 Punkte Notenmassstab: 68

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Lösungen Kapitel A: Zuordnungen

Lösungen Kapitel A: Zuordnungen Windgeschwindigkeiten Lösungen Kapitel A: Zuordnungen Arbeitsblatt 01: Graphen einer Zuordnung 5 4 3 2 1 0 1 2 3 4 5 6 Tage Strandabschnitte 1 2 3 4 5 6 Muscheln 4,2 2,1 0,7 1,2 7,3 0,5 Arbeitsblatt 02:

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes

Mehr

Verlauf Material LEK Glossar Lösungen. Passend konstruiert ein Puzzle aus Dreiecken und Vierecken. Wolfgang Göbels, Bergisch Gladbach VORANSICHT

Verlauf Material LEK Glossar Lösungen. Passend konstruiert ein Puzzle aus Dreiecken und Vierecken. Wolfgang Göbels, Bergisch Gladbach VORANSICHT Reihe 5 S 1 Verlauf Material Passend konstruiert ein Puzzle aus Dreiecken und Vierecken Wolfgang Göbels, Bergisch Gladbach Klasse: 7 9 (G8) Dauer: Inhalt: 3 4 Stunden In ein Puzzle eingekleidete Dreiecks-

Mehr

Übertrittsprüfung 2015

Übertrittsprüfung 2015 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2015 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23

Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23 Inhalt Algebra-Wiederholung...................................... 5. Termumformungen: Rechengesetze... 6.2 Termumformungen: Ausmultiplizieren, binomische Formeln............ 8 Abschlusstest............................................

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.

Mehr

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r. gerader Zylinder 1 Ein gerader Kreiszylinder hat die Höhe h und den Radius r (a) Erklären Sie, wie man die Formel M = rh2π für den Inhalt der Mantelfläche des Zylinders herleiten kann (b) Für den Inhalt

Mehr

Download. Mathe an Stationen Klasse 9. Quadratische Gleichungen. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Klasse 9. Quadratische Gleichungen. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Klasse Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse Dieser Download ist ein Auszug aus dem Originaltitel Mathe an Stationen Klasse

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 150 Minuten Tafelwerk Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen CAS-Taschencomputer

Mehr

Tafelbild zum Einstieg

Tafelbild zum Einstieg Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung

Mehr

Original-Prüfungsaufgaben 2009

Original-Prüfungsaufgaben 2009 Zentrale Prüfung 10 Finale Prüfungstraining NRW 2010 Original-Prüfungsaufgaben 2009 Prüfungsteil 1: Aufgabe 1 a) Bestimme den Inhalt der grauen Fläche. Beschreibe z. B. mithilfe der Abbildung, wie du vorgegangen

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Lösungen Prüfung Fachmaturität Pädagogik

Lösungen Prüfung Fachmaturität Pädagogik Fachmaturität Mathematik 7.0.009 Lösungen Prüfung Lösungen Prüfung Fachmaturität Pädagogik. (7 min,7.5 P.) Brüche Forme so um, dass im Ergebnis maximal ein Bruchstrich vorkommt und nicht mehr weiter gekürzt

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Etrem- und Wendepunkte und zeichne ein Schaubild

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr