Effiziente Algorithmen

Größe: px
Ab Seite anzeigen:

Download "Effiziente Algorithmen"

Transkript

1 Effiziente Algorithmen Aufgabe 5 Gruppe E Martin Schliefnig, Christoph Holper, Ulrike Ritzinger,

2 1. Problemstellung Gegeben ist eine Datei, die eine Million reelle Zahlen enthält. Von dieser Datei kann nur sequentiell gelesen werden. Des weiteren ist zu beachten, dass man möglichst wenig Platz im Hauptspeicher benutzt; man muss mit weniger als sieben Zahlen auskommen. Die Aufgabe besteht darin, einen möglichst effizienten Algorithmus zu entwerfen, welcher unter Verwendung von möglichst wenig Platz im Hauptspeicher den Median dieser Datei findet. Die gegebene Datei befindet sich im unsortiertem Zustand, und darf nicht verändert werden. Es ist auch nicht erlaubt weitere Dateien anzulegen. Hinweis: Es gibt einen Algorithmus, der dieses Problem in Laufzeit O(n log n) löst. Der zweite Teil der Aufgabe besteht darin, einen möglichst effizienten Algorithmus zu entwerfen, der das oben genannte Problem löst, jedoch dürfen hier auch weitere (temporäre) Dateien angelegt werden. Hinweis: Hier existiert eine Lösung mit Laufzeit O(n). 2. Teil I 2.1 Herangehensweise Die Aufgabe erscheint auf den ersten Blick sehr schwierig, da man sofort ans Sortieren der Liste denkt und das mit dem kleinen Hauptspeicher bzw. dem strengen Komplexitätskriterium nicht machbar ist. Der Trick liegt dann schlussendlich aber darin, sich die Eigenschaften des Medians genauer anzusehen und alle anderen Bedingungen für eine Sortierte Liste auszulassen. Die wichtigste Eigenschaft dabei ist die Definition, dass der Median die Liste in genau zwei Teile teilt: Einen linken Teil, in dem alle Zahlen kleiner (oder gleich) dem Median und einen rechten Teil, in dem alle Zahlen größer (oder gleich) dem Median sind. Denkt man ein wenig darüber nach, so bietet sich das Arithmetische Mittel der Zahlen als eventuell ganz gute Näherung für den Median an. Zumindest aber erfüllt es folgende Eigenschaft: Es teilt die Zahlen ebenfalls in zwei Mengen, die zwar unterschiedlich groß sein können, was aber bei iterativem Vorgehen keinen wesentlichen Nachteil bringt, wie wir später sehen werden. Die Idee nutzt im Prinzip diese Annäherung und den Vorteil aus, dass die Zahlen in den Teilmengen nicht sortiert, sondern nur erkannt werden müssen. Dazu ist es ausreichend, sich eine untere und eine oberer Schranke für die jeweilige Teilmenge zu merken. 2.2 Algorithmus Der von uns ausgedachte Algorithmus funktioniert folgendermaßen: Am Beginn wird das arithmetische Mittel über alle Zahlen in der Datei gebildet. Durch dieses Mittel werden zwei Mengen gebildet: eine linke Teilmenge, welche die Zahlen kleiner, gleich dem arithmetischen Mittel beinhaltet, und eine rechte Teilmenge, in welcher sich die Zahlen befinden, die größer als das arithmetische Mittel sind. Danach wird ein Delta (= maximaler Abstand eines Schrankenwertes vom Median) bestimmt, welches zu Beginn n/2 beträgt (abgerundet). Danach wird eine dieser beider Teilmengen gewählt. Dies erfolgt nach folgendem Kriterium: Wenn Delta kleiner ist als die Anzahl der Elemente der linken Teilmenge, dann wird die linke Teilmenge zur weiteren Bearbeitung herangezogen, ansonsten wird die rechte Teilmenge gewählt. Wenn die rechte Teilmenge gewählt wird, wird zusätzlich Delta neu berechnet. Das neue Delta berechnet sich aus dem alten Delta minus der Anzahl der Elemente, die sich in der linken Teilmenge befinden. Befindet man sich in der linken Teilmenge, so wird die obere Schranke dieser Menge bestimmt und der Median ist Delta Elemente von der oberen Schranke entfernt. Ist man in der rechten Teilmenge, so wird die untere Schranke bestimmt, und der Media ist Delta Elemente von der unteren Schranke entfernt. Beide Schrankenwerte werden jeweils aktualisiert und gespeichert, um so immer die aktuelle Teilmenge bestimmen zu können. In den folgenden Iterationen ist es das Ziel, Delta zu minimieren und sich so dem Median zu nähern. Es wird immer von der neu bestimmten Teilmenge das arithmetische Mittel neu berechnet, wieder geteilt, und so weiter. Wenn Delta den Wert 0 erreicht, dann ist der Median die obere bzw. die untere Schranke (je nachdem in welcher Teilmenge man sich befindet). Zum besseren Verständnis ist ein Beispiel unter Punkt 4 gegeben.

3 2.3 Beispiel An dieser Stelle wird ein kleines Beispiel demonstriert, um den oben beschriebenen Algorithmus zu veranschaulichen. gegebene Datei: 7.6, 1.1, 8.0, 9.2, 1.1, 1.4, 1.2, 1.0, 7.7, 9.4, 5.8, 6.2, 7.8, 6.2, 1.3, 8.0, 8.1 Median dieser Werte: 6.2 Arithmetisches Mittel: 5.3 Delta: n/2 = 8 Linke TM: 1.1, 1.1, 1.4, 1.2, 1.0, 1.3 Rechte TM: 7.6, 8.0, 9.2, 7.7, 9.4, 5.8, 6.2, 7.8, 6.2, 8.0, 8.1 Schritt1: -> rechte Teilmenge wird betrachtet, da Delta (8) > Anzahl der Elemente der linken TM (6) neues Delta: altes Delta (8) Anzahl der Elemente der linken TM (6) = 2 Untere Schranke: 5.8 Arithmetisches Mittel der rechten Teilmenge wird berechnet: 7.64 Linke TM: 7.6, 5.8, 6.2, 6.2 Rechte TM: 8.0, 9.2, 7.7, 9.4, 7.8, 8.0, 8.1 Schritt2: -> linke Teilmenge wird betrachtet, Delta bleibt gleich (2) Obere Schranke: 7.6 Arithmetisches Mittel neu berechnen: 6.45 Linke TM: 5.8, 6.2, 6.2 Rechte TM: 7.6 Schritt3: -> linke Teilmenge wird betrachtet, Delta bleibt gleich (2) Obere Schranke: 6.2 Arithmetisches Mittel neu berechnen: 6.1 Linke TM: 5.8; Rechte TM: 6.2, 6.2 Schritt4: -> rechte Teilmenge wird betrachtet neues Delta: altes Delta(2) Anzahl der Elemente der linken TM (1) = 1 Untere Schranke: 6.2 Arithmetisches Mittel der rechten Teilmenge wird berechnet: 6.2 weil AM gleich US, Median ist Pseudocode MEDIANBESTIMMUNG(M) { Input: unsortierte Datei mit reellen Zahlen Output: Median der Datei os = größtes Element der Teilmenge; // obere Schranke us = kleinstes Element der Teilmenge; // untere Schranke // arithmetisches Mittel li = n; // Anzahl Elemente linke Teilmenge delta = n/2; //abgerundet foo() { if (delta < li ) {

4 foolinks(); else { foolinks() { os = obereschranke(us, am); if (am == os) { Median = os; if (delta < li) { foolinks(); else { foorechts() { delta = delta - li; us = untereschranke(os, am); if (delta == 0 or am == us) { Median = us; else { if (delta >= li) { else { foolinks(); 3. Teil II 3.1 Herangehensweise Der 2. Teil befasst sich mit einem Algorithmus mit Laufzeit O(n), wobei man nun Dateien anlegen darf. Der vorgeschlagene Algorithmus findet das k-te Element in einer Menge und benutzt dabei auch Zufallszahlen und rekursive Aufrufe. Dabei verkleinert jeder erneute Aufruf die Problemgröße. Die dargestellte Implementierung für AWK versucht ehest nahe an die Aufgabenstellung heranzukommen, indem wenn auch aufwendig für die Partitionierungsmengen tatsächlich Files benutzt werden. Dabei wird der Pseudocode für eine Implementierung mit durchschnittlicher Laufzeit O (n) von n bzw. einer maximalen Laufzeit O (n). Hierbei kommt es vor allem auf die Auswahl des Pivot-Elements an. Wird dieses nicht zufällig bestimmt, sondern ist dieses der Median einer Teilmenge der ursprünglichen Eingabedatenmenge, so ist der Algorithmus sehr effizient. Theoretische Arbeiten über die Wahl des Pivot-Elements wurden von Floyd, Rivest, Cunto, Munro im Journal of the ACM 1989 verfasst.

5 3.2 Pseudocode Input: Output: A = {a1,, an Menge der Eingabezahlen k k-te Element, Median ist k/2 bzw. roundup (k/2) + 1 k-te Element FindKth (M, K) { m = zufällige Auswahl eines Elements aus M; // Durchschnittliche Laufzeit O (n) /********** m = FindKth (M, K ) Maximale Laufzeit O (n): M Teilmenge von M, K Position Median in M Auswahl der Parameter M, K entsprechend Problemstellung **********/ Partitionierung von M in S und B (S: alle Elemente < m, B: alle Elemente > m); if ( S = K 1) { return m; // Median gefunden if ( S < K 1) { FindKth (B, K - S - 1); // Median irgendwo in B else { FindKth (S, K); 3.3 AWK # awk -f effn.awk -v ITEMS=n -v K=k datfile # n items in file, k k-th element, datfile file with numbers BEGIN { system ("rm -f smlr bigr"); if (ARGC!= 2) { print "need one data file"; exit; if (ITEMS == "") { # awk -f effn.awk -v ITEMS=n -v K=k datfile print "set variable ITEMS"; exit; if (K == "") { print "set variable K"; exit; # arguments file = ARGV [1]; items = ITEMS; k = K; # init randomizer srand (); # randomly pick one element pivotnum = 1 + int (rand () * items); // random index for (i = 1; getline pivotel < file > 0 && i <= pivotnum - 1; i ++); # pivot element in pivotel { END { if ($1 < pivotel) { print $1 >> "smlr"; // file output smlr ++; else if ($1 > pivotel) { print $1 >> "bigr"; // file output bigr ++; if (smlr == k - 1) { print "k-th element = ", pivotel; else if (smlr < k - 1) { system ("mv bigr dat"); system ("rm -f smlr"); cmd = "awk -f effn.awk -v ITEMS=" bigr " -v K=" k - smlr - 1 " dat"; system (cmd); else { system ("mv smlr dat"); system ("rm -f bigr"); cmd = "awk -f effn.awk -v ITEMS=" smlr " -v K=" k " dat"; system (cmd);

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2007/08 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Funktionen Prof. Dr. Nikolaus Wulff Rekursive Funktionen Jede C Funktion besitzt ihren eigenen lokalen Satz an Variablen. Dies bietet ganze neue Möglichkeiten Funktionen zu

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

6.6 Vorlesung: Von OLAP zu Mining

6.6 Vorlesung: Von OLAP zu Mining 6.6 Vorlesung: Von OLAP zu Mining Definition des Begriffs Data Mining. Wichtige Data Mining-Problemstellungen, Zusammenhang zu Data Warehousing,. OHO - 1 Definition Data Mining Menge von Techniken zum

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013. Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,

Mehr

Sortierverfahren. Sortierverfahren für eindimensionale Arrays

Sortierverfahren. Sortierverfahren für eindimensionale Arrays Sortierverfahren Sortierverfahren Sortieren durch Einfügen Sortieren durch Auswählen Sortieren durch Vertauschen (Bubblesort) Quicksort Sortierverfahren für eindimensionale Arrays 1 Gegeben ist eine beliebige

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet

22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet 22. Algorithmus der Woche Partnerschaftsvermittlung Drum prüfe, wer sich ewig bindet Autor Volker Claus, Universität Stuttgart Volker Diekert, Universität Stuttgart Holger Petersen, Universität Stuttgart

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Klausur C-Programmierung / 15.02.2014 / Klingebiel / 60 Minuten / 60 Punkte

Klausur C-Programmierung / 15.02.2014 / Klingebiel / 60 Minuten / 60 Punkte Klausur C-Programmierung / 15.02.2014 / Klingebiel / 60 Minuten / 60 Punkte Musterlösung 1. Aufgabe (5 Punkte) Im folgenden Programmcode sind einige Fehler enthalten. Finden und markieren Sie mindestens

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen... Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.

Mehr

Test-Driven Design: Ein einfaches Beispiel

Test-Driven Design: Ein einfaches Beispiel Test-Driven Design: Ein einfaches Beispiel Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer SS 06 2 Ziele Veranschaulichung der Technik des Test-Driven Design am Beispiel eines Programms

Mehr

Stata I: Analyseorganisation und erste Schritte

Stata I: Analyseorganisation und erste Schritte Stata I: Analyseorganisation und erste Schritte 03. November 2003 Ziel dieser Veranstaltung ist zu lernen: 1. Benutzung der Hilfe-Funktion (help, search) 2. Ein Analyse-File zu erstellen 3. die Arbeit

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich fr Algorithmen und Datenstrukturen Institut fr Computergraphik und Algorithmen Technische Universität Wien One of the few resources increasing faster

Mehr

Übungspaket 31 Entwicklung eines einfachen Kellerspeiches (Stacks)

Übungspaket 31 Entwicklung eines einfachen Kellerspeiches (Stacks) Übungspaket 31 Entwicklung eines einfachen Kellerspeiches (Stacks) Übungsziele: Skript: 1. Definieren einer dynamischen Datenstruktur 2. Dynamische Speicher Speicherallokation 3. Implementierung eines

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Niedersächsisches Kultusministerium Juli 2015

Niedersächsisches Kultusministerium Juli 2015 18. Informatik A. Fachbezogene Hinweise Die Rahmenrichtlinien Informatik sind so offen formuliert, dass sie Raum für die Gestaltung eines zeitgemäßen Informatikunterrichts lassen. Neue Inhalte der Informatik

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen 7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

Informatik II Musterlösung

Informatik II Musterlösung Ludwig-Maximilians-Universität München SS 2006 Institut für Informatik Übungsblatt 4 Prof. Dr. M. Wirsing, M. Hammer, A. Rauschmayer Informatik II Musterlösung Zu jeder Aufgabe ist eine Datei abzugeben,

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 23.5.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Nachbesprechung Serie 7 Aufgabe 2 (Triangulierung) Scanline Prinzip (revisited)

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Zum Einsatz von Operatoren im Informatikunterricht

Zum Einsatz von Operatoren im Informatikunterricht Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Professur für Didaktik der Informatik/Mathematik Claudia Strödter E-Mail: claudia.stroedter@uni-jena.de Zum Einsatz von Operatoren

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Gandke & Schubert GS-SHOP : Anpassung bestehender Templates

Gandke & Schubert GS-SHOP : Anpassung bestehender Templates Seite 1 Einleitung Bei dem vorliegenden Dokument handelt es sich lediglich um eine Kurzreferenz, in der sämtliche die HTML- Templates betreffende Änderungen von GS-SHOP 2.00 kurz aufgeführt und erläutert

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Linux Prinzipien und Programmierung

Linux Prinzipien und Programmierung Linux Prinzipien und Programmierung Dr. Klaus Höppner Hochschule Darmstadt Sommersemester 2014 1 / 25 2 / 25 Pipes Die Bash kennt drei Standard-Dateideskriptoren: Standard In (stdin) Standard-Eingabe,

Mehr

Benutzer- und Datensicherheit. Ralf Abramowitsch Vector Informatik GmbH abramowitsch@lehre.dhbw-stuttgart.de

Benutzer- und Datensicherheit. Ralf Abramowitsch Vector Informatik GmbH abramowitsch@lehre.dhbw-stuttgart.de Benutzer- und Datensicherheit Ralf Abramowitsch Vector Informatik GmbH abramowitsch@lehre.dhbw-stuttgart.de Authentifizierung vs. Autorisierung IIdentity vs. IPrincipal Verschlüsseln und Entschlüsseln

Mehr

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen.

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen. Ziele sind das Arbeiten mit Funktionen und dem Aufzählungstyp (enum), sowie - einfache Verzweigung (if else) - Alternativen switch case - einfache Schleifen (while oder do while) Aufgabe 3: Diese Aufgabe

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

188.154 Einführung in die Programmierung Vorlesungsprüfung

188.154 Einführung in die Programmierung Vorlesungsprüfung Matrikelnummer Studienkennzahl Name Vorname 188.154 Einführung in die Programmierung Vorlesungsprüfung Donnerstag, 27.1.2005, 18:15 Uhr EI 7 Arbeitszeit: 60 min - max. 50 Punkte erreichbar - Unterlagen

Mehr

Übungspaket 19 Programmieren eigener Funktionen

Übungspaket 19 Programmieren eigener Funktionen Übungspaket 19 Programmieren eigener Funktionen Übungsziele: Skript: 1. Implementierung und Kodierung eigener Funktionen 2. Rekapitulation des Stack-Frames 3. Parameterübergabe mittels Stack und Stack-Frame

Mehr

Visual Basic / EXCEL / Makroprogrammierung Unterrichtsreihe von Herrn Selbach

Visual Basic / EXCEL / Makroprogrammierung Unterrichtsreihe von Herrn Selbach Visual Basic / EXCEL / Makroprogrammierung Unterrichtsreihe von Herrn Selbach Übungsaufgaben zum Kapitel 1 1. Aufgabe In einer EXCEL Tabelle stehen folgende Zahlen: Definiere einen CommandButton, der diese

Mehr

Programmierung in Python

Programmierung in Python Programmierung in Python imperativ, objekt-orientiert dynamische Typisierung rapid prototyping Script-Sprache Funktionales und rekursives Programmieren P raktische Informatik 1, W S 2004/05, F olien P

Mehr

Eine Einführung in C-Funktionen

Eine Einführung in C-Funktionen Eine Einführung in C-Funktionen CGK-Proseminar 2014 Philip Gawehn 04.07.2014, Hamburg Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen 2 2.1 Der Aufbau einer Funktion....................... 2 2.2 Schlüsselwörter.............................

Mehr

3. Ziel der Vorlesung

3. Ziel der Vorlesung 3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Lösungsvorschläge. zu den Aufgaben im Kapitel 4

Lösungsvorschläge. zu den Aufgaben im Kapitel 4 Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere

Mehr

Seminar Komplexe Objekte in Datenbanken

Seminar Komplexe Objekte in Datenbanken Seminar Komplexe Objekte in Datenbanken OPTICS: Ordering Points To Identify the Clustering Structure Lehrstuhl für Informatik IX - Univ.-Prof. Dr. Thomas Seidl, RWTH-Aachen http://www-i9.informatik.rwth-aachen.de

Mehr

Informatik I 4. Kapitel Suchen in sequentiellen Listen

Informatik I 4. Kapitel Suchen in sequentiellen Listen Informatik I 4. Kapitel Rainer Schrader Zentrum für Angewandte Informatik Köln 21. Mai 2008 1 / 55 2 / 55 Szenario Suchen in Daten gehört zu den wichtigsten Operationen etwa Suchen nach: Stichworten in

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Wirtschaftsinformatik I

Wirtschaftsinformatik I Wirtschaftsinformatik I - Tutorium 6/ 7 (April 2010) Zusatzinformationen - Lösungsvorschläge Wirtschaftsinformatik I Tutorium Jochen Daum (4.Semester BWL) Universität Mannheim Rechtshinweis: Diese Präsentation

Mehr

Projekt Systementwicklung

Projekt Systementwicklung Projekt Systementwicklung Effiziente Codierung: Laufzeitoptimierung Prof. Dr. Nikolaus Wulff Effiziente Codierung Der Wunsch effizienten Code zu schreiben entstammt mehreren Quellen: Zielplattformen mit

Mehr

Klausur zu High Performance Computing 09. Juli 2011, SS 2011

Klausur zu High Performance Computing 09. Juli 2011, SS 2011 Alexander Vondrous, Britta Nestler, Fakultät IWI, Hochschule Karlsruhe Klausur zu High Performance Computing 09. Juli 2011, SS 2011 Es sind keine Hilfsmittel zugelassen. Bearbeitungszeit: 90 Minuten Aufgabe

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Programmiersprachen Einführung in C. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm

Programmiersprachen Einführung in C. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm Programmiersprachen Einführung in C Teil 2: Prof. Dr. int main (int argc, char *argv[]) int sum = 0; for (i = 0; i

Mehr

Inf 12 Aufgaben 14.02.2008

Inf 12 Aufgaben 14.02.2008 Inf 12 Aufgaben 14.02.2008 Übung 1 (6 Punkte) Ermitteln Sie eine mathematische Formel, die die Abhängigkeit der Suchzeit von der Anzahl der Zahlen N angibt und berechnen Sie mit Ihrer Formel die durchschnittliche

Mehr

Funktionen Häufig müssen bestimmte Operationen in einem Programm mehrmals ausgeführt werden. Schlechte Lösung: Gute Lösung:

Funktionen Häufig müssen bestimmte Operationen in einem Programm mehrmals ausgeführt werden. Schlechte Lösung: Gute Lösung: Funktionen Häufig müssen bestimmte Operationen in einem Programm mehrmals ausgeführt werden. Schlechte Lösung: Der Sourcecode wird an den entsprechenden Stellen im Programm wiederholt Programm wird lang

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15 Übersicht Schleifen Schleifeninvarianten Referenztypen, Wrapperklassen und API CoMa I WS 08/09 1/15 CoMa I Programmierziele Linux bedienen Code umschreiben strukturierte Datentypen Anweisungen und Kontrollstrukturen

Mehr

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

Programmentwicklung mit C++ (unter Unix/Linux)

Programmentwicklung mit C++ (unter Unix/Linux) Programmentwicklung mit C++ (unter Unix/Linux) Erste Schritte Der gcc - Compiler & Linker Organisation des Source-Codes & Libraries Automatische Programmgenerierung: Make Birgit Möller & Denis Williams

Mehr

Theorie zu Übung 8 Implementierung in Java

Theorie zu Übung 8 Implementierung in Java Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich Theorie zu Übung 8 Implementierung in Java Klasse in Java Die Klasse wird durch das class-konzept

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Freelance 2000. DeltaPLC-Tool. Version 4 / Version 5

Freelance 2000. DeltaPLC-Tool. Version 4 / Version 5 Freelance 2000 DeltaPLC-Tool Version 4 / Version 5 Inhaltsverzeichnis 1 Allgemeine Beschreibung... 5 2 Aufruf des DeltaPLC-Tool... 5 3 Vergleich der PLC-Dateien... 6 4 Konfigurationsänderungen... 7 5

Mehr

Einfache Rechenstrukturen und Kontrollfluss II

Einfache Rechenstrukturen und Kontrollfluss II Einfache Rechenstrukturen und Kontrollfluss II Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.informatik.uni-muenchen.de/lehre/ss06/infoii/ SS 06 Ziele Lernen imperative

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm Hintergrundinformationen zur Vorlesung GRUNDLAGEN DER INFORMATIK I Studiengang Elektrotechnik WS 02/03 AG Betriebssysteme FB3 Kirsten Berkenkötter 1 Vom Problem zum Programm Aufgabenstellung analysieren

Mehr

Informatik I. Informatik I. 6.1 Programme. 6.2 Programme schreiben. 6.3 Programme starten. 6.4 Programme entwickeln. 6.1 Programme.

Informatik I. Informatik I. 6.1 Programme. 6.2 Programme schreiben. 6.3 Programme starten. 6.4 Programme entwickeln. 6.1 Programme. Informatik I 05. November 2013 6. Python-, kommentieren, starten und entwickeln Informatik I 6. Python-, kommentieren, starten und entwickeln Bernhard Nebel Albert-Ludwigs-Universität Freiburg 05. November

Mehr

Wave-Datei-Analyse via FFT

Wave-Datei-Analyse via FFT Wave-Datei-Analyse via FFT Wave-Dateien enthalten gesampelte Daten, die in bestimmten Zeitabständen gespeichert wurden. Eine Fourier-Transformation über diesen Daten verrät das Frequenz-Spektrum der zugrunde

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

4 Algorithmen und Datenstrukturen

4 Algorithmen und Datenstrukturen 4 Algorithmen und Datenstrukturen Algorithmen sind Verfahren zur schrittweisen Lösung von Problemen. Sie können abstrakt, d.h. unabhängig von konkreten Rechnern oder Programmiersprachen, beschrieben werden.

Mehr

Algorithmen und Datenstrukturen Suchen

Algorithmen und Datenstrukturen Suchen Algorithmen und Datenstrukturen Suchen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren, Suchen, Optimieren

Mehr

Auslesen von SAS Systeminformationen über die aktuelle Log- Ausgabe

Auslesen von SAS Systeminformationen über die aktuelle Log- Ausgabe News Artikel Foren Projekte Links Über Redscope Join List Random Previous Next Startseite Foren Allgemeine Fragen zu SAS Auslesen von SAS Systeminformationen über die aktuelle Log- Ausgabe 4 September,

Mehr

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2014/2015 Wirtschaftsingenieur Bachelor 4. Aufgabe Datenstruktur, Dateieingabe und -ausgabe

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2014/2015 Wirtschaftsingenieur Bachelor 4. Aufgabe Datenstruktur, Dateieingabe und -ausgabe Aufgabenstellung Für ein Baumkataster sollen für maximal 500 Bäume Informationen gespeichert werden, die alle nach der gleichen Weise wie folgt strukturiert sind: Nummer Bauminfo Baumart Hoehe Baum Umfang

Mehr

DataTables LDAP Service usage Guide

DataTables LDAP Service usage Guide DataTables LDAP Service usage Guide DTLDAP Usage Guide thomasktn@me.com / www.ktn.ch Benutzung des DTLDAP Service DataTables Der Service stellt einen JSON Feed für DataTables (http://www.datatables.net)

Mehr

Kapitel 12: Übersetzung objektorienter Konzepte

Kapitel 12: Übersetzung objektorienter Konzepte Kapitel 12: Übersetzung objektorienter Konzepte Themen Klassendarstellung und Methodenaufruf Typüberprüfung Klassenhierarchieanalyse Escape Analyse 12.1 Klassendarstellung bei Einfachvererbung class Punkt

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr