Vereinfachte Neuronenmodelle

Größe: px
Ab Seite anzeigen:

Download "Vereinfachte Neuronenmodelle"

Transkript

1 Vereinfachte Neuronenmodelle (Integrate & Fire, künstliche neuronale Netze) Computational Neuroscience Jutta Kretzberg

2 (Vorläufiges) Vorlesungsprogramm !! Motivation !! Neuronale Kodierung sensorischer Reize !!! Auswertung neuronaler Antworten !!! Variabilität neuronaler Antworten !!! Passive Eigenschaften von Neuronen !! Räumliche Struktur von Neuronen !! Aktive Eigenschaften von Neuronen !! ausgefallen !!! Das Hodgkin-Huxley Modell !! Das Integrate-and-Fire Modell und kurze!!!!!! Einführung in Neuronale Netze !!! Lernen in Neuronalen Netzen !! Synaptische Übertragung und Plastizität !! Dendritische Verarbeitung !! Zwei Modelle retinaler Verarbeitung

3 Programm für heute: Vergleich von Neuronenmodellen veschiedener Komplexität Integrate & Fire Neuronenmodell Idee künstlicher neuronaler Netze Grundlegende Verschaltungsmuster in neuronalen Netzen

4 Modellierung neuronaler Aktivität Integration von Eingangssignalen (synaptische oder Rezeptorpotentiale) Auslösen von Aktionspotentialen Zwei Hauptaspekte: 1. Modellierung des Verhaltens einzelner Zellen 2. Modellierung von Netzwerken

5 Modellierungsansätze abnehmende Komplexität Betrachte räumlich getrennte Untereinheiten der Zelle: Compartmental Model Betrachte die Zelle als Ganzes: Hodgkin- Huxley Betrachte die einzelnen Verarbeitungsschritte getrennt von einander: Integrate and Fire Betrachte die Arbeitsweise ganzer Netzwerke, ohne die einzelne Zelle genau zu modelieren: Künstliche neuronale Netze

6 Grundlage für die Modellierung von Einzelzellen: Passive Membran innen; Ui ie ie = ic + ir ic Rm ir U(t) Um(t) ic = Cm du(t)/dt Cm ER ir = U(t)/Rm ie außen; Ue

7 Grundlage für die Modellierung von Einzelzellen: Passive Membran Integration mit passiver Membran: du(t) U(t) Iext(t) = -. + dt C R C Diskrete Zeitschritte:. U(t). Iext(t) U(t+1) = U(t)- t. + t C R C Schwelle: Simulationsparameter: Modellparameter: U(t=0), Δt C, R S(t) = 1 wenn U(t)>O, sonst S(t)=0

8 Matlab-Simulation einer passiven Membran Ausgabe: integriertes Membranpotential Eingabe: injizierter Strom I_ext und u sind Vektoren, z.b. I_ext=[ ] function u=integrate(i_ext) %Festlegung von Parametern: C=1; R=25; dt=0.01; u(1)=0; % Kapazitaet in pf % Eingangswiderstand der Zelle in MOhm % Zeitschritte in msec % Ausgangspunkt des Membranpotentials anzpunkte=length(i_ext); %Laenge der Strominjektion bestimmen %Integration mit der Euler Methode: for t=2:anzpunkte u(t)=u(t-1)-dt*(u(t-1)/(c*r))+dt*(i_ext(t)/c); end

9 Grundlage für die Modellierung von Einzelzellen: Passive Membran Integration mit passiver Membran: du(t) U(t) Iext(t) = -. + dt C R C Im(t) Iext(t) = - + C C Diskrete Zeitschritte:. U(t). Iext(t) U(t+1) = U(t)- t. + t C R C Schwelle: Simulationsparameter: Modellparameter: U(t=0), Δt C, R S(t) = 1 wenn U(t)>O, sonst S(t)=0

10 Erweiterung: Aktive Membran C du(t) innen dt = -Im(t)-INa(t)-IK(t)+Iext(t) i m U i Im(t)=gm(t).(U(t)-Er) = U(t)/R INa(t)=gNa(t).(U(t)-ENa) IK(t)=gK(t).(U(t)-EK) c m g m i K g K i Na g Na Hodgkin-Huxley: Er EK ENa Bestimmung von gna(t) und gk(t) mit außen Ue Hilfe der Zustandsvariablen m, n und h

11 Hodgkin-Huxley Gleichungen 4 gekoppelte Differentialgleichungen mit sehr vielen Parametern

12 Compartmental Models Anatomie der Zelle wird nachgebildet Einzelne Abschnitte werden durch Kabeltheorie beschrieben Sehr exakte In Abschnitten mit Spannungsabhängigen Prozessen werden Hodgkin-Huxley Gleichungen verwendet. Beschreibung des Neurons mit sehr vielen Parametern

13 Von der passiven Membran zu Integrate & Fire Integration mit passiver Membran: innen; Ui ie du(t) U(t) Iext(t) = -. + dt C R C i c Cm Rm i r U(t) E R U m (t) Diskrete Zeitschritte: i e außen; U e. U(t). Iext(t) U(t+1) = U(t)- t. + t C R C Idee: Nur Zeitpunkte der Spikes modellieren Umsetzung: Schwelle S(t) = 1 wenn U(t)>θ, sonst S(t)=0

14 Matlab-Simulation eines Integrate & Fire Neurons function s=integrate_and_fire(i_ext) %Festlegung von Parametern: C=1; % Kapazitaet in pf R=25; % Eingangswiderstand der Zelle in MOhm dt=0.01; % Zeitschritte in msec u(1)=0; % Ausgangspunkt des Membranpotentials theta=10; % Feuerschwelle in mv anzpunkte=length(i_ext); %Laenge der Strominjektion bestimmen %Integration mit der Euler Methode: for t=2:anzpunkte u(t)=u(t-1)-dt*(u(t-1)/(c*r))+dt*(i_ext(t)/c); if u(t)>theta % Wenn die Feuerschwelle ueberschritten ist s(t)=1; % wird ein Spike ausgeloest u(t)=u(1); % und das Membranpotential zurueckgesetyt else % sonst s(t)=0; % wird kein Spike ausgeloest. end end

15 Erweiterungen des Integrate & Fire Modells Die Standardform des Integrate & Fire Modells kann zwar viele Aspekte des neuronalen Feuerverhaltens nachbilden, hat aber auch viele Nachteile. Deshalb gibt es als phänomenologische Erweiterungen z.b.: Absolute Refraktärzeit (if-abfrage, die erneuten Spike in der Refraktärzeit verhindert) Relative Refraktärzeit (z.b. indem die Spike- Wahrscheinlichkeit nach Ende der absoluten Refraktärzeit exponentiell ansteigt) Adaptation (z.b. durch Modellierung von Hyperpolarisation nach Auftreten eines Spikes) Stochastische Antworten (z.b. durch eine auf das Membranpotential addierte Zufallszahl)

16 Netzwerke aus Integrate & Fire Neuronen Integrate & Fire Modelle sind einfach genug, um auch große neuronale Netze zu simulieren Künstliche neuronale Netze sind an synaptisch miteinander verkoppelte Neurone angelehnt Es wird ein gekoppeltes Gleichungssystem aufgestellt, bei dem für jedes Neuron die Feuerrate berechnet wird Als Input werden zusätzlich zum injezierten Strom Iext(t) synaptische Eingangssignale verwendet: du(t) U(t) Iext(t) i = -. i + + dt C R C j wij fj(t) C

17 Netzwerke aus Integrate & Fire Neuronen für jedes Neuron i: diskret: du(t) U(t) Iext(t) i = -. i + + dt C R C U(t+1) = U(t)+Δt - U(t) Iext(t) i. i C R + C + j wij fj(t) C.( wij fj(t) ) i j C präsynaptisch postsynaptisch i wij: synaptisches Gewicht von Neuron j zu Neuron i fj(t)=g(uj(t)): Antwort von Neuron j, ermittelt mit stationärer Nichtlinearität g

18 Idee künstlicher neuronaler Netze präsynaptisch postsynaptisch Weitere Vereinfachung der Aktivität von Neuron i: Membraneigenschaften werden vernachlässigt Zeitpunkte einzelner Aktionspotentiale unwichtig häufig auch keine Strominjektion vorgesehen rein phänomenologische Betrachtung der Spikeraten zeitlich diskrete Berechnung i Formel reduziert sich zu: fi(t+1)=g( wij fj(t)) j Notwendige Wahl: Aktivierungsfunktion 1 Parameter pro Verbindung

19 Bedeutung der Parameter künstlicher neuronaler Netze fi(t+1)=g( wij fj(t)) Die Funktion g setzt die gewichtete, summierte Aktivität der präsynaptischen Neurone in eine Feuerrate um. Normalerweise ist g nichtlinear, z.b. eine Sigmoidfunktion. Das synaptische Gewicht wij fasst alle Aspekte synaptischer Übertragung zusammen, z.b.: Die Anzahl Vesikelbindungsstellen Die Wahrscheinlichkeit der Transmitterfreisetzung Den postsynaptischen Effekt eines Transmitterquantum Excitation: wij>0, Inhibition: wij<0 Ziel der meisten Studien: Finden optimaler wij bei festem g j

20 Grundlegende Verschaltungen: 1:1-Verschaltung Die Aktivität eines präsynaptischen Neurons wird gewichtet an ein postsynaptisches Neuron übertragen präsynaptisch postsynaptisch Dabei kann durch Inhibition eine Vorzeichenumkehr stattfinden Bedeutung: 1. Prä- und postsynaptische Zelle haben gleiche rezeptive Felder 2. Topologie-erhaltende Abbildung des Reizortes

21 Grundlegende Verschaltungen: Konvergenz präsynaptisch postsynaptisch Bedeutung: Räumliche Vergrößerung des rezeptiven Feldes 2. Komplexe Struktur des rezeptiven Feldes 3. Zeitlicher Vergleich der Inputs möglich 4. Erhöhte Zuverlässigkeit bei redundanten Inputs Die Aktivität mehrerer präsynaptischer Neuronen wird durch ein postsynaptisches Neuron integriert Die synaptischen Verbindungen können unterschiedlich stark sein Excitation und Inhibition (auch shunting inhibition) können gemischt auftreten Das postsynaptische Neuron nimmt eine Mittelung der gewichteten präsynaptischen Aktivitäten vor In biologischen neuronalen Netzen ist die Interaktion nichtlinear

22 Konvergenz: Integration vs Koinzidenzdetektion präsynaptisch postsynaptisch z.b. Ermittlung von Reizintensität durch zeitliche Integration im visuellen Cortex z.b. Vergleich zwischen Ohren bei Richtungshören im auditorischen Cortex Zusätzlich zur räumlichen hat Konvergenz auch eine zeitliche Komponente Wichtiger Parameter: Zeitskala der Konvergenz lange Integrationszeiten bedeuten zeitliche Integration => Ratencode kurze Integrationszeiten ermöglichen Koinzidenzdetektion => Zeitcode

23 Grundlegende Verschaltungen: Divergenz präsynaptisch postsynaptisch Bedeutung: Mehrere präsynaptische Neurone mit gleichem rezeptiven Feld 2. Erhöhte Zuverlässigkeit der Populationsantwort bei unzuverlässigen Synapsen Die Aktivität eines präsynaptischen Neurons wird an mehrere postsynaptische Neurone weitergegeben Die synaptischen Verbindungen können unterschiedlich stark sein In künstlichen neuronalen Netzen kann ein Neuron normalerweise sowohl erregende als auch hemmende Synapsen bilden Bei biologischen Neuronen ist nur für manche Transmitter Excitation und Inhibition möglich

24 Grundlegende Verschaltungen: Vorzeichenumkehr + präsynaptisch postsynaptisch - + Bedeutung: 1. Möglichkeit, Excitation und Inhibition zu kombinieren 2. Hemmung eines Gegenspielers bewirkt indirekte Verstärkung Die Aktivität eines präsynaptischen Neurons wird sowohl direkt an postsynaptische Neurone, als auch an postynaptische Interneurone weitergegeben, die bei der weiteren Verschaltung das Vorzeichen umkehren

25 Grundlegende Verschaltungen: komplette Vernetzung präsynaptisch postsynaptisch Bedeutung: 1. Postsynaptische Zellen können komplexe rezeptive Felder haben 2. Vorteile von Konvergenz und Divergenz werden kombiniert Alle präsynaptischen Neuron sind mit allen postsynaptischen verbunden Synaptische Gewichte können unterschiedlich und Excitation und Inhibition gemischt sein (soweit Transmitterausstattung biologischer Neurone das zulässt) Normalfall für künstliche neuronale Netze, die häufig mit zufällig gewählten Gewichten einer kompletten Vernetzung initialisiert werden

26 Grundlegende Verschaltungen: Reziproke Vernetzung (Feedback) Selbsterregung Selbsterregung Selbsthemmung Zwei Neurone sind wechselseitig miteinander verschaltet Information fließt im Kreis, Neurone sind also gleichzeitig präund postsynaptisch zu sich selbst Bedeutung: 1. Aktivität hängt nicht nur von sensorischen Inputs ab 2. Es können sich typische Aktivitätsmuster entwickeln 3. Besonders wichtig bei Taktgeber-Netzwerken z.b. Stomatogastrisches Ganglion:

27 Grundlegende Verschaltungen: Rekurrente Vernetzung (Feedback) Bedeutung: 1. Netzwerk-intrinsische Aktivität überlagert stimulus-getriebene 2. Definition von rezeptiven Feldern wird schwierig (oder unmöglich) Allgemeiner Fall des Feedbacks Mehrere Neurone sind im Kreis miteinander verbunden Es gibt also keine eindeutig geschichtete Struktur Alle Kombinationen aus Erregung und Hemmung sind möglich Neurone können an mehreren Feedback-Schleifen beteiligt sein Normalfall kortikaler Verarbeitung Bei künstlichen neuronalen Netzen sehr mächtig, aber schwer analysierbar

28 Der Normalfall: Kombination vieler Möglichkeiten

29 Zusammenfassung: Vergleich der Modelle künstl. NN Integrate & Fire Hodgkin & Huxley Compartment Models Komplexität Reproduziert 1 Parameter pro Synapse nur Feuerraten 1 DGL 4 Parameter nur Spike- Zeitpunkte 4 DGL > 20 Parameter Verlauf des Membranpotentials im Soma je nach Größe sehr viele DGL und Parameter räumlich aufgelöster Membranpotentialverlauf typische Fragestellung technische Anwendung, grosse Netze Netzwerke, neuronales Rauschen Einfluss von Ionen, Adaptation dendritische Integration Netzwerk Einzelzelle

30 Literaturtipp Fig. 3. A.V.M. Herz, T. Gollisch, C.M. Machens, D. Jaeger: Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction Science 314:80-85, 2006

31 Welches Modell? Das Modell muss der Fragestellung angepasst sein: Werden Intrazellulär- oder Extrazellulär-Daten reproduziert? Ist die Zeitstruktur des unterschwelligen Membranpotentials oder die Spikeform wichtig? Möchte man Aussagen über die Entstehung eines Phänomens machen? Die Simulation muss den technischen Möglichkeiten entsprechen. Goldene Regel: So wenige Parameter wie möglich, aber so viele wie nötig!

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

Visuelle Wahrnehmung I

Visuelle Wahrnehmung I Visuelle Wahrnehmung I Licht: physikalische Grundlagen Licht = elektromagnetische Strahlung Nur ein kleiner Teil des gesamten Spektrums Sichtbares Licht: 400700 nm Licht erst sichtbar, wenn es gebrochen

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen (funktionelle Auswirkungen)

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

3. Neuronenmodelle. 1. Einleitung zur Modellierung. 2. Hodgkin-Huxley-Modell. 3. Grundmodell in kontinuierlicher und diskreter Zeit

3. Neuronenmodelle. 1. Einleitung zur Modellierung. 2. Hodgkin-Huxley-Modell. 3. Grundmodell in kontinuierlicher und diskreter Zeit 3. Neuronenmodelle 1. Einleitung zur Modellierung 2. Hodgkin-Huxley-Modell 3. Grundmodell in kontinuierlicher und diskreter Zeit 4. Transferfunktionen (Kennlinien) für Neuronen 5. Neuronenmodelle in Anwendungen

Mehr

Beide bei Thieme ebook

Beide bei Thieme ebook Beide bei Thieme ebook Neurophysiologie 1) Funktionelle Anatomie 2) Entstehung nervaler Potentiale 3) Erregungsfortleitung 4) Synaptische Übertragung 5) Transmitter und Reflexe 6) Vegetatives Nervensystem

Mehr

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor.

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor. NaCl Künstlerische Konzeption: Xenia Leizinger Repros: Roman Willhelm technische Betreuung und Druck: Frank Robrecht Schrift: Futura condensed, Bernhard Modern Papier: Igepa Design Offset naturweiß 120

Mehr

Die Entwicklung der Gefühle: Aspekte aus der Hirnforschung. Andreas Lüthi, Friedrich Miescher Institut, Basel

Die Entwicklung der Gefühle: Aspekte aus der Hirnforschung. Andreas Lüthi, Friedrich Miescher Institut, Basel Die Entwicklung der Gefühle: Aspekte aus der Hirnforschung Andreas Lüthi, Friedrich Miescher Institut, Basel Wie lernen wir Angst zu haben? Wie kann das Gehirn die Angst wieder loswerden? Angst und Entwicklung

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Evolution des Menschen Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen

Mehr

Messung des Ruhepotentials einer Nervenzelle

Messung des Ruhepotentials einer Nervenzelle Messung des Ruhepotentials einer Nervenzelle 1 Extrazellulär Entstehung des Ruhepotentials K+ 4mM Na+ 120 mm Gegenion: Cl- K + kanal offen Na + -kanal zu Na + -K + Pumpe intrazellulär K+ 120 mm Na+ 5 mm

Mehr

Neuronenmodelle II. Abstraktionsebenen von Einzelzellmodellen Das Leaky-Integrate-And-Fire (LIF) Modell. Martin Nawrot

Neuronenmodelle II. Abstraktionsebenen von Einzelzellmodellen Das Leaky-Integrate-And-Fire (LIF) Modell. Martin Nawrot Bachelor Program Bioinformatics, FU Berlin VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker Neuronenmodelle II Abstraktionsebenen von Einzelzellmodellen Das Leaky-Integrate-And-Fire

Mehr

Das Denken Verstehen: Chancen und Grenzen von Simulationen, Modellen und Theorien in der Hirnforschung

Das Denken Verstehen: Chancen und Grenzen von Simulationen, Modellen und Theorien in der Hirnforschung Das Denken Verstehen: Chancen und Grenzen von Simulationen, Modellen und Theorien in der Hirnforschung Ebenen neuronaler Dynamik und Signalverarbeitung Human Brain Project (HBP) Ebenen neuronaler Dynamik

Mehr

Die neuronale Synapse

Die neuronale Synapse Die neuronale Synapse AB 1-1, S. 1 Arbeitsweise der neuronalen Synapse Wenn am synaptischen Endknöpfchen ein Aktionspotenzial ankommt, öffnen sich spannungsgesteuerte Calciumkanäle. Da im Zellaußenmedium

Mehr

Das synaptische Interaktionsgeflecht

Das synaptische Interaktionsgeflecht Synaptische Integration und Plastizität. Synaptische Mechanismen von Lernen und Gedächtnis Das synaptische Interaktionsgeflecht Praesynapse Praesynapse Postsynapse Astroglia Verrechnung (Integration) an

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1 Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30

Mehr

1 Differentialgleichungen mit Matlab lösen

1 Differentialgleichungen mit Matlab lösen 1 Differentialgleichungen mit Matlab lösen Eine Differentialgleichung (DGL) ist eine Gleichung für eine gesuchte Funktion mit einer oder mehreren Variablen, in der auch Ableitungen dieser Funktion vorkommen.

Mehr

Neurosensorik - Touch Zentrale Verarbeitung

Neurosensorik - Touch Zentrale Verarbeitung Neurosensorik - Touch Zentrale Verarbeitung Jutta Kretzberg 26.1.2006 http://www.uni-oldenburg.de/sinnesphysiologie/ 3 Vorlesungstermine Fühlen Überblick über verschiedene Aspekte des Fühlens Somatosensorik

Mehr

Martin Stetter WS 04/05, 2 SWS. VL: Dienstags 8:30-10 Uhr

Martin Stetter WS 04/05, 2 SWS. VL: Dienstags 8:30-10 Uhr Statistische und neuronale Lernverfahren Martin Stetter WS 04/05, 2 SWS VL: Dienstags 8:30-0 Uhr PD Dr. Martin Stetter, Siemens AG Statistische und neuronale Lernverfahren Behandelte Themen 0. Motivation

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

winter-0506/tierphysiologie/

winter-0506/tierphysiologie/ Die Liste der Teilnehmer der beiden Kurse für Studenten der Bioinformatik finden Sie auf unserer web site: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/tierphysiologie/ Das

Mehr

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung

Mehr

Das Ruhemembranpotential eines Neurons

Das Ruhemembranpotential eines Neurons Das Ruhemembranpotential eines Neurons An diesem Ungleichgewicht sind 4 Arten von Ionen maßgeblich beteiligt: - Natriumionen (Na + ) (außen viel) - Kaliumionen (K + ) (innen viel) - Chloridionen (Cl -

Mehr

Chemisches Potential und Nernstgleichung Carsten Stick

Chemisches Potential und Nernstgleichung Carsten Stick Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression

Mehr

NERVENZELLEN UND NERVENIMPULSE

NERVENZELLEN UND NERVENIMPULSE 6 NERVENZELLEN UND NERVENIMPULSE Neuronendoktrin: RAMON Y CAJAL (Ende 19.Jhd.): Neuronen liegen zwar beieinander, sind aber physisch voneinander getrennt; Verbindung der Nervenzellen untereinander geschieht

Mehr

Allgemeine Psychologie: Neurophysiologie. Sommersemester 2008. Thomas Schmidt

Allgemeine Psychologie: Neurophysiologie. Sommersemester 2008. Thomas Schmidt Allgemeine Psychologie: Neurophysiologie Sommersemester 2008 Thomas Schmidt Folien: http://www.allpsych.uni-giessen.de/thomas Literatur Rosenzweig et al. (2005), Ch. 2 + 3 Anatomie des Nervensystems Zentrales

Mehr

Synapsen und synaptische Integration: Wie rechnet das Gehirn?

Synapsen und synaptische Integration: Wie rechnet das Gehirn? Synapsen und synaptische Integration: Wie rechnet das Gehirn? Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse) Entsprechend der Art ihrer Übertragung unterscheidet

Mehr

Was versteht man unter partiellen (fokalen) epileptischen Anfällen? Welche Unterformen gibt es?

Was versteht man unter partiellen (fokalen) epileptischen Anfällen? Welche Unterformen gibt es? Was versteht man unter partiellen (fokalen) epileptischen Anfällen? Welche Unterformen gibt es? Nennen Sie zwei genetische Faktoren, die zu einer Hirnschädigung führen können. Geben Sie je ein Beispiel

Mehr

Diskrete und Kontinuierliche Modellierung

Diskrete und Kontinuierliche Modellierung Diskrete und Kontinuierliche Modellierung Bei Modellen unterscheidet man unter anderem zwischen diskreten und kontinuierlichen Modellen. In diesem Artikel möchte ich den Unterschied zwischen beiden Arten

Mehr

Nervensysteme und neuronale Koordination

Nervensysteme und neuronale Koordination Nervensysteme und neuronale Koordination Sensorischer Input Sensorische Filterung Funktionelle Hauptteile des Zentralnervensystems Sensorische Zentren Neuronale Verschaltung Genetische Information Erfahrung

Mehr

C07 Membranmodell und Signalausbreitung C07

C07 Membranmodell und Signalausbreitung C07 1. ZIELE In diesem Versuch werden Sie den Transport von elektrischen Signalen in Nervenzellen mit einem Modell simulieren. Die Ausbreitung dieser Signale wird allein durch die elektrischen Eigenschaften

Mehr

Schematische Übersicht über das Nervensystem eines Vertebraten

Schematische Übersicht über das Nervensystem eines Vertebraten Schematische Übersicht über das Nervensystem eines Vertebraten Die Integration des sensorischen Eingangs und motorischen Ausgangs erfolgt weder stereotyp noch linear; sie ist vielmehr durch eine kontinuierliche

Mehr

Eine typische Zelle hat ein Volumen von m 3 und eine Oberfläche von m 2

Eine typische Zelle hat ein Volumen von m 3 und eine Oberfläche von m 2 ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 Wieviele K Ionen sind dies pro m 2?? Eine typische Zelle hat

Mehr

Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen

Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen Inhaltsverzeichnis Gk Qualifikationsphase Inhaltsfeld 4: Neurobiologie... 1 Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen... 1 24 Unterrichtsstunden=8 Wochen Kontext: Vom Reiz

Mehr

Wie steuert unser Gehirn Bewegungen?

Wie steuert unser Gehirn Bewegungen? Wie steuert unser Gehirn Bewegungen? Schema der motorischen Kontrolle Kontrollzentren im Gehirn (motorischer Cortex, Basal- Ganglien, Cerebellum) Zentrale Rhythmusgeneratoren im Rückenmark Absteigende

Mehr

Sensoren: Sensorische Rezeptorzellen: Übertragen spezifische Reize aus der Umwelt in das Nervensystem

Sensoren: Sensorische Rezeptorzellen: Übertragen spezifische Reize aus der Umwelt in das Nervensystem Sensoren: Sensorische Rezeptorzellen: Übertragen spezifische Reize aus der Umwelt in das Nervensystem spezialisierte Neuronen, durch Stimulus aktiviert und Info an Zentralnervensystem weitergeleitet, oder:

Mehr

Gedankenlesen: Wie Nervenzellen Sinnesreize darstellen und auslesen Thought-reading: Decoding spike-based neuronal representations

Gedankenlesen: Wie Nervenzellen Sinnesreize darstellen und auslesen Thought-reading: Decoding spike-based neuronal representations Gedankenlesen: Wie Nervenzellen Sinnesreize darstellen und auslesen Thought-reading: Decoding spike-based neuronal representations Gütig, Robert Max-Planck-Institut für experimentelle Medizin, Göttingen

Mehr

Visualisierung von spikenden neuronalen Netzwerken. Entwicklung einer Webapplikation zum Veröffentlichen von Netzwerkmodellen

Visualisierung von spikenden neuronalen Netzwerken. Entwicklung einer Webapplikation zum Veröffentlichen von Netzwerkmodellen Studienprojekte Wintersemester 2014 Visualisierung von spikenden neuronalen Netzwerken Entwicklung einer Webapplikation zum Veröffentlichen von Netzwerkmodellen, m.pyka@rub.de Mercator Research Group Structure

Mehr

ÜBUNGSBEISPIELE Beispiel 1.

ÜBUNGSBEISPIELE Beispiel 1. ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 a) Wieviele K + Ionen sind dies pro m 2?? Eine typische Zelle

Mehr

Grundlagen neuronaler Aktivität

Grundlagen neuronaler Aktivität Grundlagen neuronaler Aktivität Physikalische Grundlagen der medizinischen Bildgebung Thorsten Rings Universität Bonn 23.6.2014 Thorsten Rings (Universität Bonn) Grundlagen neuronaler Aktivität 23.6.2014

Mehr

Psychophysiologie der Kognition

Psychophysiologie der Kognition Frank Rösler Psychophysiologie der Kognition Eine Einführung in die Kognitive Neurowissenschaft 1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.2 1.3 1.3.1 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6

Mehr

John C. Eccles. Das Gehirn. des Menschen. Das Abenteuer de r modernen Hirnforschung

John C. Eccles. Das Gehirn. des Menschen. Das Abenteuer de r modernen Hirnforschung John C. Eccles Das Gehirn des Menschen Das Abenteuer de r modernen Hirnforschung Kapitel I : Neurone, Nervenfasern und der Nervenimpuls 1 7 A. Einführung 1 7 B. Das Neuron........................... 1

Mehr

Visueller Kortex. Retinale Informationsverarbeitung. Primärer visueller Kortex. Höhere kortikale Areale. Reliabilität Effizienz.

Visueller Kortex. Retinale Informationsverarbeitung. Primärer visueller Kortex. Höhere kortikale Areale. Reliabilität Effizienz. Visueller Kortex Retinale Informationsverarbeitung Reliabilität Effizienz Primärer visueller Kortex Verteilstation Höhere kortikale Areale Spezifische, zielgerichtete Auswertung Retino-kortikale Bahnen

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

Das Auge. Photorezeptoren (Zapfen und Stäbchen) Photorezeptormosaik Sehschärfe Dunkeladaptation Laterale Hemmung und Konvergenz

Das Auge. Photorezeptoren (Zapfen und Stäbchen) Photorezeptormosaik Sehschärfe Dunkeladaptation Laterale Hemmung und Konvergenz Das Auge Photorezeptoren (Zapfen und Stäbchen) Photorezeptormosaik Sehschärfe Dunkeladaptation Laterale Hemmung und Konvergenz Aufbau des Sehsystems Lichtreize Das Sehsystem ist empfindlich für elektromagnetische

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Schmerz, Grundlagen AB 1-1, S. 1

Schmerz, Grundlagen AB 1-1, S. 1 Schmerz, Grundlagen AB 1-1, S. 1 Text 1: Schmerzqualitäten Zunächst einmal unterscheidet man zwischen somatischen und visceralen Schmerzen. Somatischer Schmerz geht von der Haut, von Muskeln, Gelenken,

Mehr

Die Nervenzelle 1. EINLEITUNG 2. NEURONEN (= NERVENZELLEN) Biopsychologie WiSe Die Nervenzelle

Die Nervenzelle 1. EINLEITUNG 2. NEURONEN (= NERVENZELLEN) Biopsychologie WiSe Die Nervenzelle Die Nervenzelle 1. Einleitung 2. Neuronen (Evolution & Funktionelle Anatomie) 3. Neuronentypen 4. Gliazellen 5. Methoden zur Visualisierung von Neuronen Quelle: Thompson Kap. (1), 2, (Pinel Kap. 3) 1.

Mehr

Modellierung von HF Schleifenantennen und ihre Anwendung bei der RFID Systemoptimierung

Modellierung von HF Schleifenantennen und ihre Anwendung bei der RFID Systemoptimierung 1 Modellierung von HF Schleifenantennen und ihre Anwendung bei der g Wei Lin Bernd Geck Christian Lanschützer Hermann Eul Institut für Hochfrequenztechnik und Funksysteme Prof. Dr. Hermann Eul 2 Index

Mehr

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Biologische Grundlagen der Elektrogenese

Biologische Grundlagen der Elektrogenese Proseminar: Elektrophysiologie kognitiver Prozesse WS 2008/2009 Dozentin: Dr. Nicola Ferdinand Referent: Michael Weigl Biologische Grundlagen der Elektrogenese Ein Überblick Zum Einstieg Die Gliederung

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Die Nervenzelle Funktioneller Aufbau

Die Nervenzelle Funktioneller Aufbau Neuronale Plastizität Aspekte der Hirnforschung, die für das ZRM wichtig sind (Entwurf von Annette Diedrichs, ZRM-Ausbildungstrainerin) 1. Nervenzelle: Aufbau und Reizübertragung Eine Nervenzelle hat viele

Mehr

C.3 Funktionen und Prozeduren

C.3 Funktionen und Prozeduren C3 - Funktionen und Prozeduren Funktionsdeklarationen in Pascal auch in Pascal kann man selbstdefinierte Funktionen einführen: Funktionen und Prozeduren THEN sign:= 0 Funktion zur Bestimmung des Vorzeichens

Mehr

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim (künstliche) Neuronale Netze (c) Till Hänisch 2003,2015, DHBW Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Aufbau des Gehirns Säugetiergehirn,

Mehr

Kapitel 05.02: Die Nervenzelle

Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 1 Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 2 Inhalt Kapitel 05.02: Die Nervenzelle...1 Inhalt... 2 Informationsweiterleitung im menschlichen Körper...3

Mehr

Ministerium für Schule und Weiterbildung NRW BI GK HT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Biologie, Grundkurs

Ministerium für Schule und Weiterbildung NRW BI GK HT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Biologie, Grundkurs Seite 1 von 6 Unterlagen für die Lehrkraft Abiturprüfung 2007 Biologie, Grundkurs 1. Aufgabenart I Bearbeitung fachspezifischen Materials mit neuem Informationsgehalt 2. Aufgabenstellung Thema: Pflanzenschutz

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Heute werden nochmals Skripten für den Kurs verkauft (5,- ). Alle brauchen ein Skript!!

Heute werden nochmals Skripten für den Kurs verkauft (5,- ). Alle brauchen ein Skript!! Abbildungen der Vorlesung finden Sie unter: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/23%20113%20tierphysiologie/themenliste23113.html Heute werden nochmals Skripten für

Mehr

2.) Material und Methode

2.) Material und Methode 1.) Einleitung: Wenn man unser Nervensystem und moderne Computer vergleicht fällt erstaunlicherweise auf, dass das Nervensystem ungleich komplexer ist. Dazu ein kurzer Überblick: Das menschliche Nervensystem

Mehr

Das lineare Gleichungssystem

Das lineare Gleichungssystem 26/27 Grundwissen Analytische Geometrie I m1 as lineare Gleichungssystem Man startet zuerst mit der Betrachtung eines linearen Gleichungssystem mit zwei Unbekannten.(Genaueres siehe Skript) Einführung

Mehr

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s)

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s) Mechanismen in der Zellmembran Abb 7.1 Kandel Neurowissenschaften Die Ionenkanäle gestatten den Durchtritt von Ionen in die Zelle. Die Membran (Doppelschicht von Phosholipiden) ist hydrophob und die Ionen

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung -

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Fragen zur Vorlesung: Welche Zellen können im Nervensystem unterschieden werden? Aus welchen Teilstrukturen bestehen Neuronen? Welche

Mehr

$ % $ &' " %& '& "( ) "% *! % + - $#../0# # & (

$ % $ &'  %& '& ( ) % *! % + - $#../0# # & ( ! "# $ % $ &' " "' (')))*'+,-*')'- )-!"#$ %& '& "( ) "% *! % +,%(,# - $#../0# # & ( 1#$/0234 5 6 4%7389/ Kreativität ist gefragt. Die Forderung nach mehr kreativen Ideen und Lösungen ist nicht nur im künstlerischen

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Seminar: Grundlagen der Simulation und Statistik von dynamischen Systemen SoSe 2012 Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing 10. April 2012 Dozentin: Prof. Dr. Christine Müller

Mehr

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7. Das periphere Nervensystem: 7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7.2. Die Hirnnerven: Sie stammen aus verschiedenen Zentren im Gehirn. I - XII (Parasympathikus: 3,7,9,10)

Mehr

Einführung in die Fuzzy Logik

Einführung in die Fuzzy Logik Einführung in die Fuzzy Logik Einleitung und Motivation Unscharfe Mengen fuzzy sets Zugehörigkeitsfunktionen Logische Operatoren IF-THEN-Regel Entscheidungsfindung mit dem Fuzzy Inferenz-System Schlußbemerkungen

Mehr

Nervensystem. www.tu-ilmenau.de/nano

Nervensystem. www.tu-ilmenau.de/nano Nervensystem ist übergeordnete Steuerungs- und Kontrollinstanz des Körpers besteht aus Nervenzellen und Stützzellen (z. B. Glia) hat drei Hauptfunktionen Reizaufnahme Reizintegration, Interpretation, Handlungsplanung

Mehr

Fortleitung des Aktionspotentials

Fortleitung des Aktionspotentials Fortleitung des Aktionspotentials außen innen g K Ströme während des Aktionspotentials Ruhestrom: gleich starker Ein- und Ausstrom von K+ g Na Depolarisation: Na+ Ein- Strom g K Repolarisation: verzögerter

Mehr

Bielefeld Graphics & Geometry Group. Brain Machine Interfaces Reaching and Grasping by Primates

Bielefeld Graphics & Geometry Group. Brain Machine Interfaces Reaching and Grasping by Primates Reaching and Grasping by Primates + 1 Reaching and Grasping by Primates Inhalt Einführung Theoretischer Hintergrund Design Grundlagen Experiment Ausblick Diskussion 2 Reaching and Grasping by Primates

Mehr

Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen

Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen Internationale Energiewirtschaftstagung Wien - 12.02.2015 Maike Hasselmann, Simon Döing Einführung Wärmeversorgungsanlagen

Mehr

Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung

Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung Institut für Energietechnik - Professur für Technische Thermodynamik Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung Tobias Schulze 13.11.2012, DBFZ Leipzig

Mehr

Membranen und Potentiale

Membranen und Potentiale Membranen und Potentiale 1. Einleitung 2. Zellmembran 3. Ionenkanäle 4. Ruhepotential 5. Aktionspotential 6. Methode: Patch-Clamp-Technik Quelle: Thompson Kap. 3, (Pinel Kap. 3) 2. ZELLMEMBRAN Abbildung

Mehr

Methoden der kognitiven Neurowissenschaften Elektrophysiologie

Methoden der kognitiven Neurowissenschaften Elektrophysiologie Methoden der kognitiven Neurowissenschaften Björn Herrmann; Email: bherrmann@cbs.mpg.de; Telefon (bevorzugt): 0341 9940 2606 Einführung Teilgebiet der Physiologie, das sich mit dem Ionenfluss in biologischem

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Approximation einer Kennlinie mit einem Künstlich Neuronalen Netz (KNN) in MATLAB 28.01.2008 5_CI2_Deckblatt_Kennlinie_Matlab_Schn2.doc

Mehr

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27

Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 GRUNDGESETZE LINEARE ZWEIPOLE... 27 Inhaltsverzeichnis EINLEITUNG... 1 GRUNDBEGRIFFE... 5 Elektrische Ladung... 5 Aufbau eines Atom... 6 Ein kurzer Abstecher in die Quantenmechanik... 6 Elektrischer Strom... 7 Elektrische Spannung... 9 Widerstand...

Mehr

(künstliche) Neuronale Netze. (c) Till Hänisch 2003, BA Heidenheim

(künstliche) Neuronale Netze. (c) Till Hänisch 2003, BA Heidenheim (künstliche) Neuronale Netze (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Warum? Manche Probleme (z.b. Klassifikation)

Mehr

Aufmerksamkeit und Bewusstsein

Aufmerksamkeit und Bewusstsein Aufmerksamkeit und Bewusstsein Istvan Tiringer Institut für Verhaltenswissenschaften Top-down Verarbeitung Bewusstsein Es existieren mehrere heterogene Formen von Bewusstsein und Aufmerksamkeit. Voraussetzung

Mehr

Das Neuron (= Die Nervenzelle)

Das Neuron (= Die Nervenzelle) Das Neuron (= Die Nervenzelle) Die Aufgabe des Neurons besteht in der Aufnahme, Weiterleitung und Übertragung von Signalen. Ein Neuron besitzt immer eine Verbindung zu einer anderen Nervenzelle oder einer

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

Universität Ulm WS 2003 / 2004

Universität Ulm WS 2003 / 2004 Fortgeschrittenen-Praktikum Neurobiologie III / IV Universität Ulm WS 2003 / 2004 Versuche: 1. Intrazelluläre Ableitungen im stomatogastrischen Nervensystem des Taschenkrebses 2. Simulation eines neuronalen

Mehr

Modellierung von Ionenkanälen und das Hodgkin-Huxley Modell. SS 2012 Mathematische Aspekte der Neuronenmodellierung und Simulation

Modellierung von Ionenkanälen und das Hodgkin-Huxley Modell. SS 2012 Mathematische Aspekte der Neuronenmodellierung und Simulation Modellierung von Ionenkanälen und das Hodgkin-Huxley Modell SS 2012 Mathematische Aspekte der Neuronenmodellierung und Simulation Inhaltsverzeichnis Das Neuron und die Zellmembran Die Ionen Kanäle Das

Mehr

Simulation pulsverarbeitender neuronaler Netze Eine ereignisgetriebene und verteilte Simulation pulsverarbeitender neuronaler Netze

Simulation pulsverarbeitender neuronaler Netze Eine ereignisgetriebene und verteilte Simulation pulsverarbeitender neuronaler Netze Simulation pulsverarbeitender neuronaler Netze Eine ereignisgetriebene und verteilte Simulation pulsverarbeitender neuronaler Netze Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen

Mehr

Notationen zur Prozessmodellierung

Notationen zur Prozessmodellierung Notationen zur Prozessmodellierung August 2014 Inhalt (erweiterte) ereignisgesteuerte Prozesskette (eepk) 3 Wertschöpfungskettendiagramm (WKD) 5 Business Process Model and Notation (BPMN) 7 Unified Modeling

Mehr

BK07_Vorlesung Physiologie 29. Oktober 2012

BK07_Vorlesung Physiologie 29. Oktober 2012 BK07_Vorlesung Physiologie 29. Oktober 2012 1 Schema des Membrantransports Silverthorn: Physiologie 2 Membranproteine Silverthorn: Physiologie Transportproteine Ionenkanäle Ionenpumpen Membranproteine,

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Das FitzHugh-Nagumo Modell einer Nervenzelle

Das FitzHugh-Nagumo Modell einer Nervenzelle Das FitzHugh-Nagumo Modell einer Nervenzelle Jens Brouer 20.08.2007 Universität Hamburg, Department Mathematik, Bundesstraße 53 teddy-k@tnet.de Inhaltsverzeichnis 1 Biologische Grundlagen 2 2 Das Hodgkin-Huxley

Mehr

Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt

Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt Vorlesung #2 Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung Alexander Gottschalk, JuProf Universität Frankfurt SS 2010 Elektrische Eigenschaften von Neuronen Elektrische Eigenschaften

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Ein Tabellenverfahren zur Lösung linearer Gleichungssysteme

Ein Tabellenverfahren zur Lösung linearer Gleichungssysteme Ein Tabellenverfahren zur Lösung linearer Gleichungssysteme Holger Krug 17. Februar 2007 1 Das Tabellenverfahren Zum Lösen linearer Gleichungssysteme gibt es mehrere Verfahren. Alle Verfahren haben gemeinsam,

Mehr