Übungsaufgaben pk S / pk B / ph

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben pk S / pk B / ph"

Transkript

1 Übungsaufgaben pk S / pk B / ph 1.) Man gibt 20 ml Salzsäure der Konzentration 0,3 mol/l in ein Gefäß mit 50 ml Wasser. Anschließend gibt man 30 ml Salpetersäure der Konzentration 0,2 mol/l hinzu. Berechne die ph-werte der unverdünnten und der verdünnten Salzsäure, sowie den ph-wert der Säuremischung! pk S (HCl) < -1,74; pk S (HNO 3 ) = -1,32 (Lsg: 0,52 / 1,07 / 0,92) 2.) Man gibt zu 10 ml einer Schwefelsäure der Konzentration 0,2 mol/l etwas Ameisensäure (HCOOH) der Konzentration 0,5 mol/l. Man misst einen ph-wert von 3,0. Welches Volumen Ameisensäure wurde zugegeben? pk S (HCOOH) = 3,75 (Lsg: 3,99 l) 3.) Man gibt 15 g Kaliumdihydrogenphosphat in 100 ml Wasser. Anschließend gibt man 20 ml Salzsäure der Konzentration c = 1 mol/l hinzu. Berechne den ph-wert der Lösung vor und nach der Säurezugabe! pk S (H 2 PO 4 - ) = 7,2 (Lsg: 3,58 / 0,777) 4.) Man gibt 20 g Kaliumdihydrogenphosphat in 200 ml Wasser. Anschließend gibt man 10 ml Schwefelsäure der Konzentration c = 2 mol/l hinzu. Berechne den ph-wert der Lösung vor und nach der Säurezugabe! pk S (H 2 PO 4 - ) = 7,2 (Lsg: 3,667 / 0,72) 5.) Man löst 5,3 g Natriumacetat (H 3 CCOONa) in 100 ml Wasser. Anschließend gibt man 10 ml Natronlauge der Konzentration c = 1 mol/l hinzu. Berechne den ph-wert der Lösung vor und nach der Natronlaugezugabe! (Lsg: 9,28 / 12,95) 6.) Man löst bei Normbedingungen 11,2 l Wasserstoffchloridgas in 500 ml Wasser. Anschließend versetzt man die Lösung mit 200 ml Natronlauge der Konzentration c = 1 mol/l. Berechne den ph-wert der Lösung vor und nach der Laugenzugabe. (Lsg: 0 / 0,37) 7.) Man löst 5,5 g Schwefeltrioxid in 500 ml Wasser. Anschließend versetzt man die Lösung mit 200 ml Natronlauge der Konzentration c = 1 mol/l. Berechne den ph-wert der Lösung vor und nach der Laugenzugabe. (Lsg: 0,55 / 12,93) 8.) Es liegen 100 ml einer Essigsäure der Konzentration c = 0,1 mol/l vor. Diese wird mit 50 ml Salpetersäure der Konzentration c = 0,3 mol/l versetzt. Berechne den ph-wert der Lösung vor und nach der Salpetersäurezugabe. pk S (HNO 3 ) = -1,32 (Lsg: 2,875 / 1,0) 9.) Man löst bei Normbedingungen 14,7 l Ammoniakgas in 700 ml Wasser. Anschließend versetzt man die Lösung mit 2 g Kaliumamid (KNH 2 ). Berechne den ph-wert der Lösung vor und nach der Laugenzugabe. pk B (NH 2 - ) < -1,74 (Lsg: 11,61 / 12,7) 10.) Man löst 16,4 g Natriumhydrogencarbonat in 400 ml Wasser. Anschließend gibt man 5,2 g Natriumhydrogencarbonat hinzu. Berechne den ph-wert der Lösung vor und nach der Hydrogencarbonatzugabe. pk S (HCO 3 - ) = 10,4; pk B (HCO 3 - ) = 7,48 (Lsg: 3,9 / 3,83) 11.) Man löst 3,8 g Kaliumhydrogensulfat in 100 ml Wasser. Nachdem man 10 ml Natronlauge zugegeben hat, ermittelt man für die Lösung einen ph-wert von 4,2. Berechne die Konzentration der zugegebenen Natronlauge. pk S (HSO - 4 ) = 1,92 (Lsg: 2,799 mol/l) 12.) Man gibt 2,2 g Lithiumoxid in 150 ml Wasser. Zu dieser Lösung gibt man 20 ml Salzsäure. Man misst nach der Zugabe der Säure einen ph-wert von 2,4. Berechne die Konzentration der zugegebenen Salzsäure. pk S (HCl) < -1,74; pk B (O 2- ) < -1,74 (Lsg: 7,434 mol/l)

2 Lösungen pk S / pk B / ph 1.) Man gibt 20 ml Salzsäure der Konzentration 0,3 mol/l in ein Gefäß mit 50 ml Wasser. Anschließend gibt man 30 ml Salpetersäure der Konzentration 0,2 mol/l hinzu. Berechne die ph-werte der unverdünnten und der verdünnten Salzsäure, sowie den ph-wert der Säuremischung! pk S (HCl) < -1,74; pk S (HNO 3 ) = -1,32 ph1 = -lg c(hcl) = -lg 0,3 = 0,52 n(hcl) = 0,02 l 0,3 mol/l = 0,006 mol c verdünnt (HCl) = 0,006 mol : 0,07 l = 0,086 mol/l ph2 = -lg 0,086 = 1,07 n(h 3 O + ) = n(hcl) + n(hno 3 ) = 0,006 mol + 0,03 l 0,2 mol/l = 0,012 mol c(h 3 O + ) = 0,012 mol : 0,1 l = 0,12 mol/l ph3 = 0,92 2.) Man gibt zu 10 ml einer Schwefelsäure der Konzentration 0,2 mol/l etwas Ameisensäure (HCOOH) der Konzentration 0,5 mol/l. Man misst einen ph-wert von 3,0. Welches Volumen Ameisensäure wurde zugegeben? pk S (HCOOH) = 3,75 c 0 (H 3 O + ) =2 c(h 2 SO 4 ) = 0,4 mol/l n 0 (H 3 O + ) = c V = 0,4 mol/l 0,01 l = 0,004 mol c 1 (H 3 O + ) = 10 -ph = 10-3 mol/l = 0,001 mol/l Nachdem Ameisensäure eine schwache Säure ist, wird ihre Protolyse vernachlässigt. Sie dient als Verdünnungsmittel. V(Lösung) = n 0 (H 3 O + ) : c 1 (H 3 O + ) = 0,004 mol : 0,001 mol/l = 4 l V zugegeben = V(Lösung) V(H 2 SO 4 ) = 3,99 l 3.) Man gibt 15 g Kaliumdihydrogenphosphat in 100 ml Wasser. Anschließend gibt man 20 ml Salzsäure der Konzentration c = 1 mol/l hinzu. Berechne den ph-wert der Lösung vor und nach der Säurezugabe! pk S (H 2 PO 4 - ) = 7,2 n(kh 2 PO 4 ) =m : M = 15g : 136,1 g/mol = 0,11 mol c(kh 2 PO 4 ) = n : V = 0,11 mol : 0,1 l = 1,1 mol/l ph = ½(pK S lg c(kh 2 PO 4 )) = ½(7,2 0,04) = 3,58 Es gilt nur die starke Säure! Aber: V = 120 ml! n(hcl) = c V = 1 mol/l 0,02 l = 0,02 mol c neu (HCl) = 0,02 mol : 120 ml = 0,167 mol/l ph = -lg c neu (HCl) = 0,777

3 4.) Man gibt 20 g Kaliumdihydrogenphosphat in 200 ml Wasser. Anschließend gibt man 10 ml Schwefelsäure der Konzentration c = 2 mol/l hinzu. Berechne den ph-wert der Lösung vor und nach der Säurezugabe! pk S (H 2 PO 4 - ) = 7,2 n(kh 2 PO 4 ) = m : M = 20g : 136,1 g/mol = 0,147 mol c(kh 2 PO 4 ) = n : V = 0,147 mol : 0,2 l = 0,735 mol/l ph = ½(pK S lg c(kh 2 PO 4 )) = ½(7,2 + 0,134) = 3,667 Es gilt nur die starke Säure! Vorsicht: V = 210 ml; H 2 SO 4 zweiprotonig! n(h 2 SO 4 ) = c V = 2 mol/l 0,01 l = 0,02 mol n(h 3 O + ) = 2 n(h 2 SO 4 ) = 0,04 mol c(h 3 O + ) = n : V = 0,04 mol : 0,21 l = 0,19 mol/l ph = -lg c(h 3 O + ) = -lg 0,19 = 0,72 5.) Man löst 5,3 g Natriumacetat (H 3 CCOONa) in 100 ml Wasser. Anschließend gibt man 10 ml Natronlauge der Konzentration c = 1 mol/l hinzu. Berechne den ph-wert der Lösung vor und nach der Natronlaugezugabe! n(naac) = m : M = 5,3 g : 82 g/mol = 0,065 mol c(naac) = n : V = 0,065 mol : 0,1 l = 0,65 mol/l poh = ½(pK B lg c(naac)) = ½(9,25 lg 0,65) = 4,72 ph = 14 poh = 9,28 NaOH = starke Base, d.h. Acetatlösung wirkt verdünnend. V = 110 ml! n(naoh) = c V = 1 mol/l 0,01 l = 0,01 mol c verdünnt (NaOH) = n : V = 0,01 mol : 0,11 l = 0,09 mol/l poh = -lg c verdünnt (NaOH) = 1,05 ph = 14 poh = 12,95 6.) Man löst bei Normbedingungen 11,2 l Wasserstoffchloridgas in 500 ml Wasser. Anschließend versetzt man die Lösung mit 200 ml Natronlauge der Konzentration c = 1 mol/l. Berechne den ph-wert der Lösung vor und nach der Laugenzugabe. n(hcl) = V :V mn = 11,2 l : 22,4 l/mol = 0,5 mol c(hcl) = n : V = 0,5 mol : 0,5 l = 1mol/l ph = -lg c(hcl) = 0 n(naoh) = c V = 1 mol/l 0,2 l = 0,2 mol da gilt: NaOH + HCl NaCl + H 2 O wird pro mol NaOH ein mol HCl verbraucht, d.h. die HCl Konzentration nimmt ab! V Gesamt = 700 ml! n(hcl) neu = n(hcl) n(naoh) = 0,5 mol 0,2 mol = 0,3 mol c(hcl) neu = n(hcl) neu : V Gesamt = 0,3 mol : 0,7 l = 0,43 mol/l ph = -lg c(hcl) neu = 0,37

4 7.) Man löst 5,5 g Schwefeltrioxid in 500 ml Wasser. Anschließend versetzt man die Lösung mit 200 ml Natronlauge der Konzentration c = 1 mol/l. Berechne den ph-wert der Lösung vor und nach der Laugenzugabe. n(so 3 ) = m : M = 5,5 g : 80,1 g/mol = 0,07 mol SO 3 + H 2 O H 2 SO 4 d.h. n(so 3 ) = n(h 2 SO 4 ) n(h 3 O + ) = 2 n(h 2 SO 4 ) = 2 n(so 3 ) = 0,14 mol c(h 3 O + ) = n : V = 0,14 mol : 0,5 l = 0,28 mol/l ph = -lg 0,28 = 0,55 n(naoh) = c V = 1 mol/l 0,2 l = 0,2 mol da gilt: NaOH + H 3 O + Na H 2 O wird pro mol NaOH ein mol H 3 O + verbraucht! Da n(naoh) > n(h 3 O + ) heißt dies, dass alle Oxoniumionen verbraucht wurden. Es liegt nur noch verdünnte Natronlauge vor! V = 700 ml! n(naoh) neu = n(naoh) n(h 3 O + ) = 0,2 mol 0,14 mol = 0,06 mol c(naoh) neu = n(naoh) neu : V Gesamt = 0,06 mol : 0,7 l = 0,086 mol/l poh = -lg c(naoh) neu = 1,07 ph = 12,93 8.) Es liegen 100 ml einer Essigsäure der Konzentration c = 0,1 mol/l vor. Diese wird mit 50 ml Salpetersäure der Konzentration c = 0,3 mol/l versetzt. Berechne den ph-wert der Lösung vor und nach der Salpetersäurezugabe. pk S (HNO 3 ) = -1,32 ph = ½(pK S lg c(hac)) = ½(4,75 lg 0,1) = 2,875 n(hno 3 ) = c V = 0,3 mol/l 0,05 l = 0,015 mol HNO 3 : starke Säure! V = 150 ml! c(hno 3 ) = n : V = 0,015 mol : 0,15 l = 0,1 mol/l ph = -lg 0,1 = 1 9.) Man löst bei Normbedingungen 14,7 l Ammoniakgas in 700 ml Wasser. Anschließend versetzt man die Lösung mit 2 g Kaliumamid (KNH 2 ). Berechne den ph-wert der Lösung vor und nach der Laugenzugabe. pk B (NH 2 - ) < -1,74 n(nh 3 ) = V : V mn = 14,7 l : 22,4 l/mol = 0,66 mol c(nh 3 ) = n : V = 0,66 mol : 0,7 l = 0,94 mol/l poh = ½(pK B lg c(nh 3 )) = ½(4,75 lg 0,94) = 2,39 ph = 14 poh = 11,61 n(knh 2 ) = m : M = 2 g : 55,1 g/mol = 0,036 mol NH 2 - : starke Base! V = 0,7 l c(knh 2 ) = 0,036 mol : 0,7 l = 0,05 mol/l poh = -lg c(knh 2 ) = 1,3 ph = 14 poh = 12,7

5 10.) Man löst 16,4 g Natriumhydrogencarbonat in 400 ml Wasser. Anschließend gibt man 5,2 g Natriumhydrogencarbonat hinzu. Berechne den ph-wert der Lösung vor und nach der Hydrogencarbonatzugabe. pk S (HCO 3 - ) = 10,4; pk B (HCO 3 - ) = 7,48 n(nahco 3 ) = m : M = 16,4 g : 84 g/mol = 0,2 mol c(nahco 3 ) = n : V = 0,2 mol : 0,4 l = 0,5 mol/l NaHCO 3 reagiert eher sauer, da pk S < pk B ph = ½(pK S lg c(nahco 3 )) = ½(7,48 lg 0,5) = 3,9 n(nahco 3 ) zusätzlich = m : M = 5,2 g : 84 g/mol = 0,062 mol n(nahco 3 ) neu = n(nahco 3 ) + n(nahco 3 ) zusätzlich = 0,262 mol c(nahco 3 ) neu = n : V = 0,262 mol : 0,4 l = 0,655 mol/l ph = ½(pK S lg c(nahco 3 ) neu ) = ½(7,48 lg 0,655) = 3,83 11.) Man löst 3,8 g Kaliumhydrogensulfat in 100 ml Wasser. Nachdem man 10 ml Natronlauge zugegeben hat, ermittelt man für die Lösung einen ph-wert von 4,2. Berechne die Konzentration der zugegebenen Natronlauge. pk S (HSO 4 - ) = 1,92 n(khso 4 ) = m : M = 3,8 g : 136,2 g/mol = 0,028 mol = n(h 3 O + ) Start c(h 3 O + ) mit NaOH = 10 -ph = 10-4,2 = 6, mol/l n(h 3 O + ) mit NaOH = c V = 6, mol/l 0,11 l = 6, mol n(h 3 O + ) verbraucht = n(h 3 O + ) Start n(h 3 O + ) mit NaOH = 2, mol n(h 3 O + ) verbraucht = n(naoh) zugegeben c(naoh) zugegeben = n(naoh) zugegeben : V(NaOH) = = 2, mol : 0,01 l = 2,799 mol/l 12.) Man gibt 2,2 g Lithiumoxid in 150 ml Wasser. Zu dieser Lösung gibt man 20 ml Salzsäure. Man misst nach der Zugabe der Säure einen ph-wert von 2,4. Berechne die Konzentration der zugegebenen Salzsäure. pk S (HCl) < -1,74; pk B (O 2- ) < -1,74 n(li 2 O) = m : M = 2,2 g : 29,88 g/mol = 0,074 mol Li 2 O + H 2 O 2 LiOH d.h. n(lioh) = 2 n(li 2 O) = 0,148 mol c(h 3 O + ) übrig = 10 -ph = 10-2,4 = 0,004 mol/l n(h 3 O + ) übrig = c V = 0,004 mol/l 0.17 l = 0,00068 mol n(lioh) wird durch die Säure vollständig verbraucht (LiOH + HCl LiCl + H 2 O). Außerdem bleiben H 3 O + -Ionen der Säure übrig, d.h. n(h 3 O + ) zugegeben = n(h 3 O + ) übrig + n(lioh) = 0,14868 mol c(h 3 O + ) zugegeben = n : V(HCl) = 0,14868 mol : 0,02 l = 7,434 mol/l

AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7

AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7 AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7 1. a) CH3COOH, C0=0.125 mol/l Schwache Säure pks = 4.75 (aus Tabelle) => ph = 0.5*(4.75-Log(0.125))= 2.83 b) H24, C0=0.1 mol/l Erste Protolysestufe starke

Mehr

3.2. Aufgaben zu Säure-Base-Gleichgewichten

3.2. Aufgaben zu Säure-Base-Gleichgewichten .. Aufgaben zu Säure-Base-Gleichgewichten Aufgabe : Herstellung saurer und basischer Lösungen Gib die Reaktionsgleichungen für die Herstellung der folgenden Lösungen durch Reaktion der entsprechenden Oxide

Mehr

Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH)

Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH) Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH) Material 250 mlbecherglas 100 ml Messzylinder 50 mlbürette, Magnetrührer, Magnetfisch, Stativmaterial phmeter Chemikalien Natronlauge

Mehr

VI Säuren und Basen (Mortimer: Kap. 17 u 18 Atkins: Kap. 14, 15)

VI Säuren und Basen (Mortimer: Kap. 17 u 18 Atkins: Kap. 14, 15) VI Säuren und Basen (Mortimer: Kap. 17 u 18 Atkins: Kap. 14, 15) 19. Säure-Base-Theorien Stichwörter: Arrhenius- u. Brönstedt-Theorie von Säuren und Basen, konjugiertes Säure- Base-Paar, Amphoterie, nivellierender

Mehr

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen verzichtet; Reaktionsgleichungen sollten den üblichen

Mehr

Lösungen zu den ph-berechnungen II

Lösungen zu den ph-berechnungen II Lösungen zu den ph-berechnungen II 1.) a.) Ges.: 2500 L HCl; ph 1.4 Geg.: 6000 L KOH; c(koh) = 0.017 mol/l Skizze: V tot = V HCl + V KOH = 8500 L Das Gesamtvolumen wird später während der Lösung benötigt

Mehr

Ein Puffer ist eine Mischung aus einer schwachen Säure/Base und ihrer Korrespondierenden Base/Säure.

Ein Puffer ist eine Mischung aus einer schwachen Säure/Base und ihrer Korrespondierenden Base/Säure. 2.8 Chemische Stoßdämpfer Puffersysteme V: ph- Messung eines Gemisches aus HAc - /AC - nach Säure- bzw Basen Zugabe; n(naac) = n(hac) > Acetat-Puffer. H2O Acetat- Puffer H2O Acetat- Puffer Die ersten beiden

Mehr

Kapiteltest 1.1. Kapiteltest 1.2

Kapiteltest 1.1. Kapiteltest 1.2 Kapiteltest 1.1 a) Perchlorsäure hat die Formel HClO 4. Was geschieht bei der Reaktion von Perchlorsäure mit Wasser? Geben Sie zuerst die Antwort in einem Satz. Dann notieren Sie die Reaktionsgleichung.

Mehr

Dr. Kay-Uwe Jagemann - Oberstufengymnasium Eschwege - Januar 2013. Versuch: Wirkung eines Essigsäure-Acetat-Puffers Aufbau

Dr. Kay-Uwe Jagemann - Oberstufengymnasium Eschwege - Januar 2013. Versuch: Wirkung eines Essigsäure-Acetat-Puffers Aufbau Puffer Versuch: Wirkung eines Essigsäure-Acetat-Puffers Aufbau A1 A B1 B Natronlauge Natronlauge =,5 =,5 Essigsäure (c=,1mol/l) Natriumacetat Essigsäure (c=,1mol/l) Natriumacetat Durchführung Teilversuch

Mehr

DEFINITIONEN REINES WASSER

DEFINITIONEN REINES WASSER SÄUREN UND BASEN 1) DEFINITIONEN REINES WASSER enthält gleich viel H + Ionen und OH Ionen aus der Reaktion H 2 O H + OH Die GGWKonstante dieser Reaktion ist K W = [H ]*[OH ] = 10 14 In die GGWKonstante

Mehr

b) Berechnen Sie den Verbrauch an Maßlösung und den Massenanteil der Essigsäure.

b) Berechnen Sie den Verbrauch an Maßlösung und den Massenanteil der Essigsäure. Prüfungsvorbereitung Säure-Base-Titrationen und ph-werte 1. ph-werte und Puffer 1.1 Eine Natronlauge hat die Dichte ρ = 1,7 g/m und einen Massenanteil von w(naoh) = %. Berechnen Sie den ph-wert der ösung.

Mehr

Säuren und Basen. Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O H 3 O + + OH -

Säuren und Basen. Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O H 3 O + + OH - Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O + (aq)-ionen anzugeben. Aus der Gleichung: H 2 O + H 2 O H 3 O + + OH - c(h 3 O + ) c(oh - ) K

Mehr

Aufgabe 1: Geben Sie die korrespondierenden Basen zu folgenden Verbindungen an: a) H 3 PO 4 b) H 2 PO 4

Aufgabe 1: Geben Sie die korrespondierenden Basen zu folgenden Verbindungen an: a) H 3 PO 4 b) H 2 PO 4 Übungsaufgaben zum Thema Säuren, Basen und Puffer Säure/Base Definition nach Brǿnsted: Säuren sind Stoffe, die Protonen abgeben können (Protonendonatoren). Basen sind Stoffe, die Protonen aufnehmen können

Mehr

C Säure-Base-Reaktionen

C Säure-Base-Reaktionen -V.C1- C Säure-Base-Reaktionen 1 Autoprotolyse des Wassers und ph-wert 1.1 Stoffmengenkonzentration Die Stoffmengenkonzentration eines gelösten Stoffes ist der Quotient aus der Stoffmenge und dem Volumen

Mehr

Säuren und Basen. Säure-Base- Definition n. Arrhenius

Säuren und Basen. Säure-Base- Definition n. Arrhenius Säuren und Basen Säure-Base- Definition n. Arrhenius Säuren sind Verbindungen, die in Wasser in Protonen (H +, positiv geladene Wasserstoffionen) und in negativ geladene Säurerestionen dissoziieren (zerfallen).

Mehr

Zusammenfassung vom

Zusammenfassung vom Zusammenfassung vom 20.10. 09 Löslichkeitsprodukt = quantitative Aussage über die Löslichkeit einer schwerlöslichen Verbindung bei gegebener Temperatur A m B n m A n+ + n B m- K L = (c A n+ ) m (c B m-

Mehr

Sommersemester 2016 Seminar Stöchiometrie

Sommersemester 2016 Seminar Stöchiometrie Sommersemester 2016 Seminar Stöchiometrie Themenüberblick Kurze Wiederholung der wichtigsten Formeln Neue Themen zur Abschlussklausur: 1. Elektrolytische Dissoziation 2. ph-wert Berechnung 3. Puffer Wiederholung

Mehr

Säuren und Basen nach Brönsted

Säuren und Basen nach Brönsted Säuren und Basen nach Brönsted Es gibt versch. Definitionen von Säuren und Basen. Nach Brönsted ist eine Säure (HA) ein Protonendonator und eine Base (B) ein Protonenakzeptor, d.h. eine Säure reagiert

Mehr

3. Säure-Base-Beziehungen

3. Säure-Base-Beziehungen 3.1 Das Ionenprodukt des Wassers In reinen Wasser sind nicht nur Wassermoleküle vorhanden. Ein kleiner Teil liegt als Ionenform H 3 O + und OH - vor. Bei 25 C sind in einem Liter Wasser 10-7 mol H 3 O

Mehr

CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014

CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014 CHEMIE KAPITEL 4 SÄURE-BASE Timm Wilke Georg-August-Universität Göttingen Wintersemester 2013 / 2014 Folie 2 Wiederholung: Brönstedt - Lowry Teilchen, die bei einer Reaktion Protonen abgeben (Protonendonatoren),

Mehr

Crashkurs Säure-Base

Crashkurs Säure-Base Crashkurs Säure-Base Was sind Säuren und Basen? Welche Eigenschaften haben sie?` Wie reagieren sie mit Wasser? Wie reagieren sie miteinander? Wie sind die Unterschiede in der Stärke definiert? Was ist

Mehr

(Atommassen: Ca = 40, O = 16, H = 1;

(Atommassen: Ca = 40, O = 16, H = 1; 1.) Welche Molarität hat eine 14,8%ige Ca(OH) 2 - Lösung? (Atommassen: Ca = 40, O = 16, H = 1; M: mol/l)! 1! 2! 2,5! 3! 4 M 2.) Wieviel (Gewichts)%ig ist eine 2-molare Salpetersäure der Dichte 1,100 g/cm

Mehr

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen)

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen) Säure-Base Titrationen (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen) 1. Gehaltsbestimmung von Salzsäure HCl ist eine starke Säure (fast zu 100% dissoziiert)

Mehr

6 Säure-Base-Reaktionen

6 Säure-Base-Reaktionen 6.1 Exkurs Die Entwicklung des Säure-Base-Begriffs vorläufige Fassung Zur Aufgabe A1 Der Name ist historisch begründet. A. Lavoisier nannte den bei der Verbrennung gebundenen Luftbestandteil gaz oxygène

Mehr

Ergänzende Aufgaben zu Säure-Base-Titrationen und deren ph-titrationskurven

Ergänzende Aufgaben zu Säure-Base-Titrationen und deren ph-titrationskurven Ergänzende Aufgaben zu Säure-Base-Titrationen und deren ph-titrationskurven 1. Einfachere Aufgaben ohne ph-kurvenverläufe einfache Umsatzberechnungen 1.1 Eine Maßlösung hat eine angestrebte Stoffmengenkonzentration

Mehr

Wasserchemie und Wasseranalytik SS 2015

Wasserchemie und Wasseranalytik SS 2015 Wasserchemie und Wasseranalytik SS 015 Übung zum Vorlesungsblock II Wasserchemie Dr.-Ing. Katrin Bauerfeld 5,5 6,5 7,5 8,5 9,5 10,5 11,5 1,5 13,5 Anteile [%] Übungsaufgaben zu Block II Wasserchemie 1.

Mehr

Säure Base Reaktionen

Säure Base Reaktionen Säure Base Reaktionen 1. In einem Praktikum wird eine Lösung von 1,48 g Calciumhydroxid in 200 ml Salzsäure c=0,50 M zubereitet. Berechne den ph-wert dieser Lösung. 2. a. Berechne unter Angabe der Protolysegleichung

Mehr

ph-wert Berechnung für starke Säuren / Basen starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1

ph-wert Berechnung für starke Säuren / Basen starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1 ph-wert Berechnung für starke Säuren / Basen 0.1 mol/l HCl: HCl + H 2 O H 3 O + + Cl starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1 0.1 mol/l NaOH: NaOH + H 2 O Na + aq + OH starke

Mehr

Lösung Sauerstoff: 1s 2 2s 2 2p 4, Bor: 1s 2 2s 2 2p 1, Chlor: 1s 2 2s 2 2p 6 3s 2 3p 5 Neon: 1s 2 2s 2 2p 6

Lösung Sauerstoff: 1s 2 2s 2 2p 4, Bor: 1s 2 2s 2 2p 1, Chlor: 1s 2 2s 2 2p 6 3s 2 3p 5 Neon: 1s 2 2s 2 2p 6 1 of 6 10.05.2005 10:56 Lösung 1 1.1 1 mol Natrium wiegt 23 g => 3 mol Natrium wiegen 69 g. 1 mol Na enthält N A = 6.02 x 10 23 Teilchen => 3 mol enthalten 1.806 x 10 24 Teilchen. 1.2 Ein halbes mol Wasser

Mehr

Wiederholungen. Puffergleichung (Henderson-Hasselbalch) Ionenprodukt des Wassers. ph-wert-berechnungen. Titrationskurvenberechnung

Wiederholungen. Puffergleichung (Henderson-Hasselbalch) Ionenprodukt des Wassers. ph-wert-berechnungen. Titrationskurvenberechnung Vorlesung 22: Wiederholungen Puffergleichung (Henderson-Hasselbalch) Ionenprodukt des Wassers ph-wert-berechnungen Titrationskurvenberechnung Säuren und Basen Hydroxonium + Chlorid Ammonium + Hydroxid

Mehr

Themen heute: Säuren und Basen, Redoxreaktionen

Themen heute: Säuren und Basen, Redoxreaktionen Wiederholung der letzten Vorlesungsstunde: Massenwirkungsgesetz, Prinzip des kleinsten Zwangs, Löslichkeitsprodukt, Themen heute: Säuren und Basen, Redoxreaktionen Vorlesung Allgemeine Chemie, Prof. Dr.

Mehr

Säure/Basen Theorien

Säure/Basen Theorien Säure/Baen Theorien Theorie Arrheniu/Otwald (Dioziationtheorie Säuren Geben H ab Baen Geben OH - ab Bröntedt Geben H ab (Protonendonor Nehmen H auf (Protonenakzeptor Lewi Beitzen Elektronenlücken, die

Mehr

Dissoziation, ph-wert und Puffer

Dissoziation, ph-wert und Puffer Dissoziation, ph-wert und Puffer Die Stoffmengenkonzentration (molare Konzentration) c einer Substanz wird in diesem Text in eckigen Klammern dargestellt, z. B. [CH 3 COOH] anstelle von c CH3COOH oder

Mehr

Vertiefende Überlegungen zum ph-wert A ph-werte von Säuren und Basen

Vertiefende Überlegungen zum ph-wert A ph-werte von Säuren und Basen Vertiefende Überlegungen zum ph-wert A ph-werte von Säuren und Basen Starke Elektrolyte dissoziieren in wässriger Lösung praktisch vollständig. HCl + H O H 3 O + + Cl - ; NaOH (+ H O) Na + + OH - + (H

Mehr

Zusammenfassung: Säure Base Konzept

Zusammenfassung: Säure Base Konzept Zusammenfassung: Säure Base Konzept 1. Grundlegende Eigenschaften von Säuren und Laugen Säure und Laugen ätzen sie werden durch Indikatoren für uns erkenntlich gemacht. Oft verwendet man Universalindikator.

Mehr

Säure-Base-Gleichgewichte

Säure-Base-Gleichgewichte Säure-Base-Gleichgewichte Inhaltsverzeichnis Vorwort iii 1. Entwicklung des Säure-Base-Begriffs 1 2. Ionenprodukt des Wassers 3 3. Protolysegleichgewicht 7 3.1. Säurekonstanten starker Säuren.........................

Mehr

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen Säure/Base - Reaktionen 1) Elektrolytische Dissoziation 2) Definitionen Säuren Basen 3) Autoprotolyse 4) ph- und poh-wert 5) Stärke von Säure/Basen 6) Titration starker und schwacher Säuren/Basen 7) Puffersysteme

Mehr

Elektrolyte. (aus: Goldenberg, SOL)

Elektrolyte. (aus: Goldenberg, SOL) Elektrolyte Elektrolyte leiten in wässriger Lösung Strom. Zu den Elektrolyten zählen Säuren, Basen und Salze, denn diese alle liegen in wässriger Lösung zumindest teilweise in Ionenform vor. Das Ostwaldsche

Mehr

Chemie für Studierende der Biologie I

Chemie für Studierende der Biologie I SäureBaseGleichgewichte Es gibt verschiedene Definitionen für SäureBaseReaktionen, an dieser Stelle ist die Definition nach BrønstedLowry, die Übertragung eines H + Ions ( Proton ), gemeint. Nach BrønstedLowry

Mehr

1 Säuren und Basen. 1.1 Denitionen. 1.2 Protolyse und Autoprotolyse des Wassers

1 Säuren und Basen. 1.1 Denitionen. 1.2 Protolyse und Autoprotolyse des Wassers Praktikum Allgemeine und Analytische Chemie I WS 008/09 Seminar zum Anorganisch-chemischen Teil Säuren und Basen Praktikumsleiter: Professor Dr. U. Simon 1 Säuren und Basen 1.1 Denitionen Arrhenius denierte

Mehr

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf.

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Lösung 7 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Chlorwasserstoff ist eine starke Säure (pk a = 7),

Mehr

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. -I B.1- B C H E M I S C H W ISSENWERTES 1 Säuren, Laugen und Salze 1.1 Definitionen von Arrhénius Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. Eine Säure

Mehr

CHEMIE KAPITEL 4 SÄURE- BASE. Timm Wilke. Georg- August- Universität Göttingen. Wintersemester 2013 / 2014

CHEMIE KAPITEL 4 SÄURE- BASE. Timm Wilke. Georg- August- Universität Göttingen. Wintersemester 2013 / 2014 CHEMIE KAPITEL 4 SÄURE- BASE Timm Wilke Georg- August- Universität Göttingen Wintersemester 2013 / 2014 Folie 2 Historisches Im 17. Jahrhundert wurden von Robert Boyle Gemeinsamkeiten verschiedener Verbindungen

Mehr

3.2. Fragen zu Säure-Base-Gleichgewichten

3.2. Fragen zu Säure-Base-Gleichgewichten 3.2. Fragen zu Säure-Base-Gleichgewichten Säure-Base-Gleichgewicht (5) a) Formuliere die Reaktionsgleichungen und das Massenwirkungsgesetz für die Reaktion von Fluorwasserstoff HF und Kohlensäure H 2 3

Mehr

Chemie für Biologen WS 2005/6 Arne Lützen Institut für Organische Chemie der Universität Duisburg-Essen (Teil 8: Säuren und Basen, Elektrolyte)

Chemie für Biologen WS 2005/6 Arne Lützen Institut für Organische Chemie der Universität Duisburg-Essen (Teil 8: Säuren und Basen, Elektrolyte) Chemie für Biologen WS 2005/6 Arne Lützen Institut für rganische Chemie der Universität Duisburg-Essen (Teil 8: Säuren und Basen, Elektrolyte) Lösungen, Konzentration Viele chemische Reaktionen werden

Mehr

Salpetersäure. Phosphorsäure. Arrhenius: Säuren dissozieren in wässriger Lösung in positive Wasserstoffionen und negative Säurerestionen.

Salpetersäure. Phosphorsäure. Arrhenius: Säuren dissozieren in wässriger Lösung in positive Wasserstoffionen und negative Säurerestionen. Chemie Klausur I Grundwissen: Elementsymbol und seine Bezeichnungen: Gefahrensymbole: Säuren: Formel HCl HNO3 Name Salzsäure Salpetersäure Säurerest - Ion Cl NO3 Name Chlorid-Ion Nitrat-Ion einwertig H2CO3

Mehr

Das chemische Gleichgewicht, Massenwirkungsgesetz, Löslichkeit von Salzen in Flüssigkeiten, Löslichkeitsprodukt, Chemische Gleichgewichte, Säuren und

Das chemische Gleichgewicht, Massenwirkungsgesetz, Löslichkeit von Salzen in Flüssigkeiten, Löslichkeitsprodukt, Chemische Gleichgewichte, Säuren und Wiederholung der letzten Vorlesungsstunde: Das chemische Gleichgewicht, Massenwirkungsgesetz, Löslichkeit von Salzen in Flüssigkeiten, Löslichkeitsprodukt, Thema heute: Chemische Gleichgewichte, Säuren

Mehr

7. Tag: Säuren und Basen

7. Tag: Säuren und Basen 7. Tag: Säuren und Basen 1 7. Tag: Säuren und Basen 1. Definitionen für Säuren und Basen In früheren Zeiten wußte man nicht genau, was eine Säure und was eine Base ist. Damals wurde eine Säure als ein

Mehr

Praktikum Chemie für Mediziner und Zahnmediziner 21

Praktikum Chemie für Mediziner und Zahnmediziner 21 Praktikum Chemie für Mediziner und Zahnmediziner 21 2. Studieneinheit Lernziele Abschätzung von ph-werten mit Indikatorpapier Acidität und Basizität verschiedener Verbindungen Durchführung von Säure-Base-Titrationen

Mehr

Säuren und Basen. Definition nach Brönsted

Säuren und Basen. Definition nach Brönsted Säuren und Basen Folie129 Leitung von Strom in wässrigen Lösungen Elektrolyse Beim Lösen in H 2 Dissoziation von kovalenten oder ionischen Bindungen Beispiele: Chlorwasserstoff H H Cl (g) 2 H + (aq) +

Mehr

2 Säure-Base-Gleichgewichte 2.1 W: Säure-Base-Theorie nach Arrhenius (1884)

2 Säure-Base-Gleichgewichte 2.1 W: Säure-Base-Theorie nach Arrhenius (1884) 2 SäureBaseGleichgewichte 2.1 W: SäureBaseTheorie nach Arrhenius (1884) Säuren = Stoffe, die in wässriger Lösung unter Bildung von Wasserstoffionen H dissoziieren. Bsp: HCl H Cl Basen = Stoffe, die in

Mehr

Säure- Base- Theorien

Säure- Base- Theorien Säure- Base- Theorien Definition nah ARRHENIUS (1883) Säuren: Wasserstoffverbindungen, die bei Dissoziation H + - Ionen bilden. Basen: Hydroxide, die bei Dissoziation OH - - Ionen bilden. Beispiel: HCl

Mehr

Technische Universität Chemnitz Chemisches Grundpraktikum

Technische Universität Chemnitz Chemisches Grundpraktikum Technische Universität Chemnitz Chemisches Grundpraktikum Protokoll «CfP5 - Massanalytische Bestimmungsverfahren (Volumetrie)» Martin Wolf Betreuerin: Frau Sachse Datum:

Mehr

SS 2010. Thomas Schrader. der Universität Duisburg-Essen. (Teil 7: Säuren und Basen, Elektrolyte)

SS 2010. Thomas Schrader. der Universität Duisburg-Essen. (Teil 7: Säuren und Basen, Elektrolyte) Chemie für Biologen SS 2010 Thomas Schrader Institut t für Organische Chemie der Universität Duisburg-Essen (Teil 7: Säuren und Basen, Elektrolyte) Definition Säure/Base Konjugierte Säure/Base-Paare Konjugierte

Mehr

ph-werte von Säuren, Basen, Salzen und Pufferlösungen

ph-werte von Säuren, Basen, Salzen und Pufferlösungen phwerte von Säuren, Basen, Salzen und Pufferlösunen Fachschule für Technik Sofern nicht anderweiti aneeben elten die pk SWerte aus dem Tabellenblatt. phwerte als Enderebnisse sind auf 1 oder Stellen zu

Mehr

L81 Berechnung des ph-wertes wässriger Lösungen schwacher Säuren Arbeitsblatt

L81 Berechnung des ph-wertes wässriger Lösungen schwacher Säuren Arbeitsblatt L81 Berechnung des ph-wertes wässriger Lösungen schwacher Säuren Arbeitsblatt 1. Formulieren Sie das Gleichgewicht für die Protolysereaktion einer Säure HB in Wasser. (L46) 2. Formulieren Sie das Massenwirkungsgesetz

Mehr

Lösungen (ohne Aufgabenstellungen)

Lösungen (ohne Aufgabenstellungen) Lösungen (ohne Aufgabenstellungen) Aufgaben A 1 Bei der Verbrennung bestimmter Nichtmetalle wie z. B. Schwefel bilden sich Verbindungen, deren wässrige Lösungen sauer sind. Der französische Chemiker LAVOISIER,

Mehr

Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung).

Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung). Zusammenfassung: Titration, Maßanalyse, Volumetrie: Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung). Bei der Titration lässt man so lange

Mehr

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted Der SäureS ure-base Begriff Chem. Grundlagen Das Protonen-Donator-Akzeptor-Konzept Wasserstoff, Proton und Säure-Basen Basen-Definition nach Brønsted Wasserstoff (H 2 ) Proton H + Anion (-) H + = Säure

Mehr

Säure-Base-Titrationen

Säure-Base-Titrationen Säure-Base-Titrationen Dieses Skript gehört: Säure Base - Titrationen Seite 2 Hinweis: Mit den Säuren und Basen ist vorsichtig umzugehen, um Verätzungen zu vermeiden! Versuch 1: Herstellen einer Natronlauge

Mehr

Chemie. Schwerpunktfach. Bitte lesen Sie die folgenden Hinweise sorgfältig durch bevor Sie mit dem Lösen der Aufgaben beginnen.

Chemie. Schwerpunktfach. Bitte lesen Sie die folgenden Hinweise sorgfältig durch bevor Sie mit dem Lösen der Aufgaben beginnen. Maturitätsprüfung 2006 Klasse 4B + 4AB Gymnasium Muttenz Chemie Schwerpunktfach Name: Vorname: Klasse: Bitte lesen Sie die folgenden Hinweise sorgfältig durch bevor Sie mit dem Lösen der Aufgaben beginnen.

Mehr

Das Chemische Gleichgewicht

Das Chemische Gleichgewicht 9 Quantitative Behandlung der äure ure-base- Gleichgewichte Bei der Prtlyse-Reaktin äure H O H O Base gilt (Gleichgewicht: Wenn die äure stark ist, dann ist ihre knjugierte Base schwach. Die tärke vn äure

Mehr

Erkläre die Bedeutung der negativen Blindprobe. Erkläre die Bedeutung der positiven Blindprobe. Erkläre das Prinzip der Flammenfärbung.

Erkläre die Bedeutung der negativen Blindprobe. Erkläre die Bedeutung der positiven Blindprobe. Erkläre das Prinzip der Flammenfärbung. Erkläre die Bedeutung der negativen Blindprobe. Durchführung einer Nachweisreaktion ohne Beteiligung der zu analysierenden Substanz. Ziel: Überprüfen der Reinheit der verwendeten Nachweisreagenzien. Erkläre

Mehr

Bestimmung der Konzentration von Schwefelsäure

Bestimmung der Konzentration von Schwefelsäure 1/22 2/22 Schritt 1: n(naoh) 3/22 Schritt 1: n(naoh) n = V * c 4/22 Schritt 1: n(naoh) n = V * c Konkrete Anwendung: 5/22 Schritt 1: n(naoh) n = V * c Konkrete Anwendung: n(naoh) = V(NaOH) * c(naoh) 6/22

Mehr

Kurstag 2 Maßanalyse 2. Teil

Kurstag 2 Maßanalyse 2. Teil Kurstag 2 Maßanalyse 2. Teil Titration von starken und schwachen Säuren Stichworte zur Vorbereitung: Massenwirkungsgesetz, Prinzip von Le Chatelier, Broenstedt, korrespondierendes Säure-Base-Paar, ph-wert-berechnung

Mehr

5.3 Säure-Base-Reaktionen. Charakter der Oxide der Elemente der 2. und 3. Periode. Hauptgruppe I II III IV V VI VII VIII

5.3 Säure-Base-Reaktionen. Charakter der Oxide der Elemente der 2. und 3. Periode. Hauptgruppe I II III IV V VI VII VIII 5.3 SäureBaseReaktionen Charakter der Oxide der Elemente der 2. und 3. Periode Hauptgruppe I II III IV V VI VII VIII ns 1 ns 2 ns 2 np 1 ns 2 np 2 ns 2 np 3 ns 2 np 4 ns 2 np 5 ns 2 np 6 Valenzelektronen

Mehr

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2010/11 vom

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2010/11 vom Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2010/11 vom 21.09.2010 A1 A2 A3 A4 A5 Σ Note 13 13 7 9 8 NAME:... VORNAME:... STICHPUNKTE ZU DEN LÖSUNGEN Schreiben Sie bitte gut leserlich: Name und

Mehr

Themengebiet: 1 HA + H 2 O A - + H 3 O + H 3 O + : Oxonium- oder Hydroxoniumion. Themengebiet: 2 B + H 2 O BH + + OH - OH - : Hydroxidion

Themengebiet: 1 HA + H 2 O A - + H 3 O + H 3 O + : Oxonium- oder Hydroxoniumion. Themengebiet: 2 B + H 2 O BH + + OH - OH - : Hydroxidion 1 1 Säuren sind Protonendonatoren, d.h. Stoffe, die an einen Reaktionspartner ein oder mehrere Protonen abgeben können; Säuredefinition nach Brönsted Im Falle von Wasser: HA + H 2 O A - + H 3 O + H 3 O

Mehr

Chemie Protokoll. Versuch 2 6 (SBG) Säure Base Gleichgewichte. Stuttgart, Sommersemester 2012

Chemie Protokoll. Versuch 2 6 (SBG) Säure Base Gleichgewichte. Stuttgart, Sommersemester 2012 Chemie Protokoll Versuch 2 6 (SBG) Säure Base Gleichgewichte Stuttgart, Sommersemester 2012 Gruppe 10 Jan Schnabel Maximilian Möckel Henri Menke Assistent: Pauzar 6. Juni 2012 Inhaltsverzeichnis 1 Theorie

Mehr

4 Stöchiometrie. Teil II: Chemische Reaktionsgleichungen. 4.1 Chemische Reaktionsgleichungen

4 Stöchiometrie. Teil II: Chemische Reaktionsgleichungen. 4.1 Chemische Reaktionsgleichungen 35 4 Stöchiometrie Teil II: Chemische Reaktionsgleichungen Zusammenfassung Chemische Reaktionsgleichungen geben durch die Formeln der beteiligten Substanzen an, welche Reaktanden sich zu welchen Produkten

Mehr

Übungsaufgaben zum Kapitel Protolysegleichgewichte mit Hilfe des Lernprogramms Titrierer 1/9

Übungsaufgaben zum Kapitel Protolysegleichgewichte mit Hilfe des Lernprogramms Titrierer 1/9 Lernprogramms Titrierer 1/9 Vorher sollten die Übungsaufgaben zu den drei Lernprogrammen Protonierer, Acidbaser und Wert vollständig bearbeitet und möglichst auch verstanden worden sein! 1 Neutralisation

Mehr

Praktikum Analytische Chemie SS 2008

Praktikum Analytische Chemie SS 2008 Praktikum Analytische Chemie SS 2008 Antworten zu den Zusatzaufgaben Frage 2 5,3 ml einer Schwefelsäure, konz.,w=96%, Dichte δ=1,84kg/l, werden auf 1l verdünnt. Von dieser Lösung werden 25ml auf 200ml

Mehr

Chemisches Rechnen Stöchiometrie

Chemisches Rechnen Stöchiometrie Chemisches Rechnen Stöchiometrie ALPEN-ADRIA-GYMNASIUM VÖLKERMARKT 9100 VÖLKERMARKT Prof. Dipl.-Ing. MANFRED SUSSITZ 1 Mol - (Molekulargewicht) - chemische Formel Molvolumen für Gase: 1 mol = 22,4 Liter

Mehr

Säuren und Basen (Laugen)

Säuren und Basen (Laugen) Säuren und Basen (Laugen) Material Was sind Säuren? Säuren sind auch in vielen Stoffen des Alltags vorhanden. Der Saft vieler Früchte, z. B. von Zitronen und Apfelsinen, schmeckt sauer. Auch mit Essig

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Was bislang geschah Kinetik Reaktionsgeschwindigkeit Konzentrationsabhängigkeit

Mehr

1.3 Chemische Reaktionen des Wassers - Bildung von Säuren und Basen

1.3 Chemische Reaktionen des Wassers - Bildung von Säuren und Basen 1.3 Chemische Reaktionen des Wassers Bildung von Säuren und Basen Säure und Basebegriff nach Arrhenius (1887) Wasser reagiert mit Nichtmetalloxiden (Säureanhydriden) zu Säuren. Die gebildete Säure löst

Mehr

Grundwissen Chemie Mittelstufe (9 MNG)

Grundwissen Chemie Mittelstufe (9 MNG) Grundwissen Chemie Mittelstufe (9 MNG) Marie-Therese-Gymnasium Erlangen Einzeldateien: GW8 Grundwissen für die 8. Jahrgangsstufe GW9 Grundwissen für die 9. Jahrgangsstufe (MNG) GW9a Grundwissen für die

Mehr

Beschreibe den Halogenid-Nachweis. Nenne die Einheit der Stoffmenge n und gib die Anzahl der Teilchen an!

Beschreibe den Halogenid-Nachweis. Nenne die Einheit der Stoffmenge n und gib die Anzahl der Teilchen an! Beschreibe den HalogenidNachweis. Nach Zugabe von SilbernitratLösung (AgNO 3 ) bildet sich bei Anwesenheit von Halogenid Ionen ein Niederschlag. zur Info.: ChloridIon weißer Niederschlag BromidIon weißgelblicher

Mehr

Säuren und Basen. Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17.

Säuren und Basen. Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17. Säuren und Basen Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17 torsten.beweries@catalysis.de http://www.catalysis.de/forschung/koordinationschemische-katalyse/koordinationschemische-wasserspaltung/

Mehr

Titrationen. Experimentiermappe zum Thema. Lernwerkstatt Schülerlabor Chemie

Titrationen. Experimentiermappe zum Thema. Lernwerkstatt Schülerlabor Chemie Lernwerkstatt Schülerlabor Chemie Experimentiermappe zum Thema Titrationen Friedrich-Schiller-Universität Jena Arbeitsgruppe Chemiedidaktik August-Bebel-Straße 6-8 07743 Jena Fonds der Chemischen Industrie

Mehr

Protokoll 2. Labor für Physikalische Chemie. Modul IV. Versuch 6

Protokoll 2. Labor für Physikalische Chemie. Modul IV. Versuch 6 Protokoll 2 Labor für Physikalische Chemie Modul IV Versuch 6 Herstellung einer Titerbestimmung von 500mL einer Salzsäure Maßlösung mit der Äquivalentkonzentration c(hcl) = 0,1 mol/l Fachbereich MT 1 Wintersemester

Mehr

0.1 Protolyse-Gleichgewichte

0.1 Protolyse-Gleichgewichte 1 0.1 Protoyse-Geichgewichte 0.1.1 Protoysereaktionen Protonen-Donatoren Teichen, die bei einer Reaktion Protonen abgeben Protonen-Akzeptoren Teichen, die bei einer Reaktion Protonen aufnehmen Protoyse-Übergang

Mehr

3. Säure-Base-Titration

3. Säure-Base-Titration äure-base 15 3. äure-base-titration Einleitung chon früh wurde im Rahmen des Umweltschutzes die Problematik des auren Regens und die damit verbundene Übersäuerung der Böden und Gewässer erkannt. eitdem

Mehr

Duygu, Hammer, Wehle E34, E32, E33 Januar Säuren und Basen. Praktikumsbericht Kapitel 8

Duygu, Hammer, Wehle E34, E32, E33 Januar Säuren und Basen. Praktikumsbericht Kapitel 8 Säuren und Basen Praktikumsbericht Kapitel 8 Übung 8.1: phwert von HCl, HClO 4 und HNO 3 Es soll gezeigt werden, dass der phwert von HCl, HClO 4 und HNO 3 bei gleicher Konzentration in wässriger Lösung

Mehr

Verrechnungspunkte: Gesamtpunkte: Note:

Verrechnungspunkte: Gesamtpunkte: Note: Säure-Base-Reaktionen: E. 5. 2 Die Base Ammoniak Bearbeitungszeit: zweimal 45 Minuten Hilfsmittel: Taschenrechner Verrechnungspunkte: Gesamtpunkte: Note: Aufgaben 1 Ammoniak wird heute großtechnisch nach

Mehr

8. Säuren und Basen II

8. Säuren und Basen II 8. Säuren und Basen II ein SOL Leitprogramm Arbeitsanleitung An diesem Leitprogramm arbeiten Sie weitgehend selbständig. Fragen, Unklarheiten und spezielle Aufträge werden zu viert in einer Lerngruppe

Mehr

Analytische Chemie. B. Sc. Chemieingenieurwesen. 03. Februar 2010. Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Analytische Chemie. B. Sc. Chemieingenieurwesen. 03. Februar 2010. Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum: Analytische Chemie B. Sc. Chemieingenieurwesen 03. Februar 2010 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen

Mehr

Chemisches Grundpraktikum für Ingenieure. 2. Praktikumstag. Andreas Rammo

Chemisches Grundpraktikum für Ingenieure. 2. Praktikumstag. Andreas Rammo Chemisches Grundpraktikum für Ingenieure. Praktikumstag Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de Das chemische Gleichgewicht Säure-Base-Reaktionen

Mehr

Formelsammlung Chemie

Formelsammlung Chemie 1 Formelsammlung Chemie Joachim Jakob, Kronberg-Gymnasium Aschaffenburg chemie-lernprogramme.de/daten/programme/js/formelsammlung/ Inhaltsverzeichnis 1 Avogadro Konstante N A 2 2 Molare Masse M 2 3 Molares

Mehr

[Co(NH 3 ) 2 (H 2 O) 2 ] 3+

[Co(NH 3 ) 2 (H 2 O) 2 ] 3+ Kap. 7.3 Das Massenwirkungsgesetz Frage 121 Kap. 7.3 Das Massenwirkungsgesetz Antwort 121 Schreiben Sie das Massenwirkungsgesetz (MWG) für die folgende Reaktion auf: Fe 3+ (aq) + 3 SCN - (aq) Fe(SCN) 3

Mehr

Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge 2-Kanalmessung (normale Bürette)

Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge 2-Kanalmessung (normale Bürette) Prinzip Da sich bei der Neutralisation die Leitfähigkeit und der ph-wert ändern, kann man die Titration sowohl konduktometrisch wie auch potenziometrisch verfolgen Mit (Mobile / Pocket) CASSY / kann man

Mehr

merken!!! 29,22 g NaCl abwiegen, in einem Becher mit etwa 800 ml Wasser lösen, dann im Messzylinder auf 1000 ml auffüllen.

merken!!! 29,22 g NaCl abwiegen, in einem Becher mit etwa 800 ml Wasser lösen, dann im Messzylinder auf 1000 ml auffüllen. Das ABC der Stöchiometrie Lösungen aus Feststoffen Molare Lösungen herstellen (m = M c V) Beispiel 1: 1 L einer 500 mm NaCl-Lösung herstellen. Masse: Volumen: Stoffmenge: Dichte: m (kg) V (L) n (mol) (kg/l)

Mehr

Protokoll 2. Labor für Physikalische Chemie. Modul IV. Versuch 8

Protokoll 2. Labor für Physikalische Chemie. Modul IV. Versuch 8 Protokoll 2 Labor für Physikalische Chemie Modul IV Versuch 8 Bestimmung des Schwefelsäuregehaltes einer Schwefelsäurelösung mit unbekannter Massekonzentration und Herstellung einer Lösung mit c(h2 S04)

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 14.01.2011

Übungen zur VL Chemie für Biologen und Humanbiologen 14.01.2011 Übungen zur VL Chemie für Biologen und Humanbiologen 14.01.011 Redoxchemie 1. a) Was beobachten Sie, wenn Sie in getrennten Experimenten einen Eisen-, Kupfer-, Zink- und Goldstab in eine Salzsäurelösung

Mehr

2. Klausur zum Chemischen Grundpraktikum im WS 2009/10 vom (Wiederholungsklausur)

2. Klausur zum Chemischen Grundpraktikum im WS 2009/10 vom (Wiederholungsklausur) 2. Klausur zum Chemischen Grundpraktikum im WS 2009/10 vom 01.03.2010 (Wiederholungsklausur) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Σ Note 10 7 15 8 10 10 10 10 10 10 NAME:... STICHPUNKTE ZUR LÖSUNG VORNAME:...

Mehr

Skript zum Seminar: Grundlagen der Anorganischen Chemie I (AC I) SS 2006

Skript zum Seminar: Grundlagen der Anorganischen Chemie I (AC I) SS 2006 Skript zum Seminar: Grundlagen der Anorganischen Chemie I (AC I) SS 006 gehalten von Dr. W. Benzmann Mitschrieb von Nils Middendorf 9. Dezember 006 Kapitel 1 Stöchiometrische Berechnungen 1.1 Einführung

Mehr

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Achtung: Taschenrechner ist nicht zugelassen. Aufgaben sind so, dass sie ohne Rechner lösbar sind. Weitere Hilfsmittel: Periodensystem der Elemente

Mehr

Analytische Chemie. B. Sc. Chemieingenieurwesen. 02. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Analytische Chemie. B. Sc. Chemieingenieurwesen. 02. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum: Analytische Chemie B. Sc. Chemieingenieurwesen 02. Februar 2011 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen

Mehr

Laborbericht Säure-/ Basen Reaktionen

Laborbericht Säure-/ Basen Reaktionen Laborbericht Säure-/ Basen Reaktionen Sonia Töller Anna Senn 06.01.2005 24.02.2005 Inhaltsverzeichnis 1. Allgemeine Definitionen und Begriffe... 1 1. Der ph-wert... 1 2. Definition Säuren und Basen:...

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Teilnahmebescheinigungen Mail an christoph.woelper@uni-due.de

Mehr