Approximationsalgorithmen. Approximation im Sinne der Analysis:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Approximationsalgorithmen. Approximation im Sinne der Analysis:"

Transkript

1 Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: ( ) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max f(x) P ε(x) < ε x [a,b] Numerische Mathematik: Numerical Recipes in C++

2 Approximationsalgorithmen Ulrich Pferschy 2 Approximation von diskreten, kombinatorischen Problemen: Betrachtung einzelner Objekte, Identitäten oder abstrakter Elemente mit ganzzahligen Daten Motiviert aus praktischen Problemstellungen Klassische Probleme der diskreten Optimierung: Scheduling Graph-Probleme (Überdeckung, Färbung, Partition) Netzwerkprobleme Routen- und Tourenplanung TSP Packungs- und Zuschnittprobleme...

3 Approximationsalgorithmen Einleitung 3 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele Container/bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins

4 Approximationsalgorithmen Einleitung 4 Rucksackproblem / Knapsack Problem (KP): n Objekte, jedes mit Profit p i und Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Profit und Gewicht c. Subset Sum Problem (SSP): Spezialfall des Rucksackproblems n Objekte, jedes mit Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Gewicht c.

5 Approximationsalgorithmen Einleitung 5 (Symmetrisches) Rundreiseproblem / Traveling Salesperson Problem (TSP): n Städte mit allen (symmetrischen) Entfernungen. Finde die kürzeste Rundreise, die alle n Städte besucht. Variante: Minimaler Hamiltonscher Kreis: Graph (V, E) mit Kantengewichten d ij = d ji für jede Kante (i, j) E. Finde einen Hamiltonschen Kreis mit minimalem Gesamtgewicht.

6 Approximationsalgorithmen Einleitung 6 Set Covering Problem (SC): Grundmenge M, Familie von Teilmengen {S 1,..., S m }, S i M, Bewertung w i für jede Menge S i. Finde eine Auswahl der Teilmengen mit minimalem Gesamtgewicht, sodaß jedes Element aus M in einer der ausgewählten Teilmengen enthalten ist. Vertex Cover (VC): Graph (V, E) Finde eine minimale Knotenmenge C V, sodaß für jede Kante (i, j) entweder i C oder j C.

7 Approximationsalgorithmen Einleitung 7 Knotenfärbung von Graphen/Graph Colouring: Graph (V, E), beliebig viele Farben. Ordne jedem Knoten eine Farbe zu, sodaß Knoten, die durch eine Kante verbunden sind, verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden. Kantenfärbung von Graphen: Graph (V, E), beliebig viele Farben. Ordne jeder Kante eine Farbe zu, sodaß Kanten mit gemeinsamen Endknoten verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden.

8 Approximationsalgorithmen Einleitung 8 Erwünscht: Optimale Lösung N P-Vollständigkeit: = Bei fast allen interessanten Problemen gibt es kein effizientes optimales Lösungsverfahren, d.h. keinen Algorithmus mit polynomialer Laufzeit 1. Optimale Lösung durch intelligente Enumeration Branch & Bound ILP-Formulierung, Branch & Cut Dynamisches Programmieren Verzicht auf Optimalität = Approximation Bestimmt wird eine zulässige Lösung. Qualität der Lösung ist i.a. unbekannt. Unterscheide: Suchverfahren (local search, Metaheuristiken, etc.) konstruktive Verfahren Hybride Verfahren

9 Approximationsalgorithmen Bewertung 9 Bewertung von Approximationsalgorithmen 1. empirische Tests 2. average-case Analyse 3. worst-case Analyse

10 Approximationsalgorithmen Bewertung 10 Güte eines Algorithmus A für ein Optimierungsproblem: Unterscheide: Problem vs. Problem-Instanz I (Näherungs-)Algorithmus A liefert Lösungswert A(I) (unbekannte) Optimallösung wäre Opt(I) Definition: Algorithmus A ist ein Approximationsalgorithmus wenn A für jede Instanz I eine zulässige Lösung liefert. Definition: Ein Approximationsalgorithmus A hat eine absolute Gütegarantie k, (k > 0), wenn für jede Instanz I gilt: Opt(I) A(I) k Bemerkung: Def. gilt für Maximierungs- und Minimierungsprobleme.

11 Approximationsalgorithmen Bewertung 11 Graph Colouring (Knoten): Von besonderem Interesse ist die Färbung von planaren Graphen. Satz: (Four Colour Theorem): Jeder planare Graph ist 4-färbbar. Beweis von Appel, Haken, Koch 1977 mit heftigem Computereinsatz. Satz: Ein planarer Graph ist genau dann 2-färbbar, wenn er bipartit ist. Satz: Das Entscheidungsproblem Ist ein gegebener planarer Graph 3-färbbar ist N P-vollständig. Eine 5-Färbung eines planaren Graphen ist relativ einfach zu bestimmen. Satz: (Robertson, Sanders, Seymour, Thomas 1995) Die 4-Färbung eines planaren Graphen ist in O(n 2 ) möglich. (inkl. vereinfachter Beweis des Four Colour Theorems). = Färbung von planaren Graphen kann mit einer absoluten Gütegarantie von 1 approximiert werden. Beachte: Algorithmus zur 4-Färbung 4-Farben Satz

12 Approximationsalgorithmen Bewertung 12 Graph Colouring (Kanten): Sei (G) der maximale Grad eines Knoten in G. Satz von Vizing: Jeder Graph G ist kantenfärbbar mit (G) oder (G) + 1 Farben. = Kantenfärbung von beliebigen Graphen kann mit einer absoluten Gütegarantie von 1 approximiert werden. = Ist die absolute Gütegarantie das perfekte Konzept?? Negatives Resultat: Satz: Es gibt keinen polynomiellen Algorithmus für das Rucksackproblem (KP) mit einer absoluten Gütegarantie k, für irgendein k > 0 (wenn P N P).

13 Approximationsalgorithmen Bewertung 13 Maximierung: Definition: Ein Approximationsalgorithmus A für ein Maximierungsproblem hat eine relative Gütegarantie k, (0 < k < 1), wenn für jede Instanz I gilt: A(I) k Opt(I) kurz: A ist ein k Approximationsalgorithmus. Betrachte die relative Abweichung: Opt(I) A(I) Opt(I) ε A(I) (1 ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 ε) Approximationsalgorithmus.

14 Approximationsalgorithmen Bewertung 14 Minimierung: Definition: Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine relative Gütegarantie k, (k > 1), wenn für jede Instanz I gilt: A(I) k Opt(I) auch hier: A ist ein k Approximationsalgorithmus. betrachte wiederum die relative Abweichung: A(I) Opt(I) Opt(I) ε A(I) (1 + ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 + ε) Approximationsalgorithmus. Zusatz: Eine relative/absolute Gütegarantie eines Algorithmus A ist scharf, wenn es eine Instanz I gibt, sodaß die entsprechende Ungleichung mit Gleichheit erfüllt ist. Oder wenn es eine Folge von Instanzen gibt, sodaß die Gleichheit im Grenzwert gilt.

15 Approximationsalgorithmen Bewertung 15 Definition: (Minimierung) Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine asymptotische Gütegarantie k, (k > 1), wenn es eine Konstante d gibt, sodaß für jede Instanz I gilt: A(I) k Opt(I) + d oder technischer: k = lim sup Opt(I) I A(I) Opt(I) Wird benötigt, um Instanzen mit sehr kleinem, ganzzahligen Lösungswert auszuschließen. Bsp.: Lösung des N P-vollständigen Partitionsproblem kann als Instanz von Bin-Packing mit Lösungswert 2 formuliert werden.

16 Approximationsalgorithmen Einfache Algorithmen 16 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Algorithmus List-Scheduling (Graham): l j := 0 Arbeitszeit von Maschine j = 1,.., m for i := 1 to n do j min := arg min{l j } ordne job i auf Maschine j min an. l jmin := l jmin + p i end for Gesamtzeit := max{l j } List-Scheduling hat eine scharfe Gütegarantie von 2 1 m. Verbesserung: (LPT) Longest-Processing Time List-Scheduling Sortiere die jobs in absteigender Reihenfolge. (LPT) hat eine scharfe Gütegarantie von m.

17 Approximationsalgorithmen Einfache Algorithmen 17 Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins Naive Methode: Algorithmus Next Fit (NF): öffne das erste bin for i := 1 to n do wenn Objekt i in das offene bin paßt packe es dort hinein sonst schließe das offene bin öffne ein neues bin und packe Objekt i ein end for (NF) läuft in O(n) Zeit. (NF) hat eine scharfe asymptotische Gütegarantie von 2.

18 Approximationsalgorithmen Einfache Algorithmen 18 Algorithmus First Fit (FF) (Johnson et al.): öffne das erste bin for i := 1 to n do betrachte die offenen bins der Reihe nach packe Objekt i in das erste bin, wo es paßt wenn es nirgends paßt öffne ein neues bin und packe Objekt i ein end for (FF) läuft in O(n log n) Zeit. (FF) hat eine scharfe asymptotische Gütegarantie von 1.7. Verbesserung: First Fit Decreasing (FFD) (Johnson) Sortiere die Objekte in absteigender Reihenfolge. (FFD) hat eine scharfe asymptotische Gütegarantie von Varianten: Best Fit, Worst Fit, Any Fit,...

19 Approximationsalgorithmen Einfache Algorithmen 19 Allgemeines Rundreiseproblem (TSP): n Orte mit allen paarweisen Entfernungen. Finde die kürzeste Tour durch alle n Orte. Negatives Resultat: Satz: Es gibt keinen polynomiellen Algorithmus für das allgemeine TSP mit einer Gütegarantie k, für irgendein k > 0 (wenn P N P). Rundreiseproblem mit Dreicksungleichung ( -TSP): Zusatzbedingung: Für alle Tripel von Orten i, j, k gilt: d(i, j) + d(j, k) d(i, k) MST-Heuristik liefert Gütegarantie 2. Christofides-Heuristik liefert Gütegarantie 3/2.

20 Approximationsalgorithmen Einfache Algorithmen 20 -TSP Fortsetzung: Einfüge-Heuristik: (verwendbar auch ohne Dreiecksungleichung.) Algorithmus Insertion: ( ) repeat wähle einen Punkt k nicht auf der Tour suche Kante (i, j) der Tour mit minimalen Einfügekosten: d(i, k) + d(k, j) d(i, j) füge k zwischen i und j ein until alle Punkte eingefügt Auswahl von Punkt k: nearest insertion farthest insertion cheapest insertion random insertion

21 Approximationsalgorithmen Einfache Algorithmen 21 -TSP Approximations-Resultate für Insertion: Für jede Insertion-Regel gilt (Rosenkrantz et al. 77): A(I) (log n + 1) Opt(I) Es gibt Instanzen I und Insertion-Folgen mit A(I) log n log log n Opt(I). Nearest Insertion hat eine scharfe Gütegarantie von 2. Wenn nearest insertion mit der konvexen Hülle beginnt, verschlechtert sich die Gütegarantie auf 3 (Warburton 93). Farthest Insertion: In der Praxis besser, aber Gütegarantie 2.43 (Hurkens, 92), genaue Garantie unbekannt. Random Insertion: (Azar 94) Es gibt Instanzen I mit A(I) log log n log log log n Opt(I).

22 Approximationsalgorithmen Einfache Algorithmen 22 -TSP Fortsetzung: Einfache Greedy-Heuristik baut Tour sukzessive aus Wegstücken auf. (verwendbar auch ohne Dreiecksungleichung.) Algorithmus Multi-Fragment Heuristic: T = repeat nimm die kürzeste Kante (i, j) Wenn T (i, j) Teil einer Tour ist T := T (i, j) entferne (i, j) until T ist Tour durch alle Punkte ( ) ( ) ist für vollständige Graphen einfach zu entscheiden. -TSP Approximations-Resultat (Ong, Moore, 1984): A(I) log n Opt(I)

23 Approximationsalgorithmen Einfache Algorithmen 23 Verbesserungs-Verfahren: Algorithmus 2-Opt: starte mit irgendeiner Tour repeat wähle 2 Kanten der Tour und entferne sie füge die Teilstücke zu neuer Tour zusammen Tour := min{neue Tour, alte Tour} until keine Verbesserung möglich Viele Varianten zur systematischen Durchführung. Jede 2-optimale Tour ist kreuzungsfrei. Für jede 2-optimale Tour T gilt (Chandra et al. 94): T log n Opt Es gibt 2-optimale Touren T mit T log n log log n Opt. Euklidsches Rundreiseproblem: Orte sind Punkte im R 2 : Beliebig gute Approximation in polynomieller Zeit möglich, aber Laufzeit wächst exponentiell mit der Genauigkeit.

Approximations-Algorithmen

Approximations-Algorithmen Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents

Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents Betreut von: ao.univ.-prof. Dr. Günther R. Raidl ao.univ.-prof. Dr. Ulrich Pferschy 25. Jänner 2010

Mehr

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben...

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben... Vorwort v I Approximative Algorithmen 1 1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT).... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben..... 18 2 DieKomplexitätsklassen

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Der Approximationsalgorithmus von Christofides

Der Approximationsalgorithmus von Christofides Der Approximationsalgorithms on Christofides Problem: Traeling Salesman Inpt: Ein Graph G = (V, E) mit einer Distanzfnktion d : E Q 0. Afgabe: Finde eine Tor, die alle Knoten des Graphen G gena einmal

Mehr

Diskrete Optimierung (Einführung zur Vorlesung)

Diskrete Optimierung (Einführung zur Vorlesung) Diskrete Optimierung (Einführung zur Vorlesung) Christoph Helmberg : [,] Inhaltsübersicht Diskrete Optimierung. Das Heiratsproblem (ungerichtete Graphen).2 Ganzzahligkeit von Polyedern ( und gerichtete

Mehr

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Gemischt-ganzzahlige und Kombinatorische Optimierung

Gemischt-ganzzahlige und Kombinatorische Optimierung 5. Präsenzaufgabenblatt, Sommersemester 2015 Übungstunde am 15.06.2015 Aufgabe J Betrachten Sie die LP-Relaxierung max c T x a T x b 0 x i 1 des 0/1-Knapsack-Problems mit n Gegenständen, c 0 und a > 0.

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Das Lastverteilungsproblem

Das Lastverteilungsproblem Das Lastverteilungsproblem Approximationsalgorithmen Referent Franz Brauße Veranstaltung Proseminar Theoretische Informatik Universität Trier, FB IV Dozent Prof. Dr. Henning Fernau 23.02.2012 Übersicht

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Approximations- und Online-Algorithmen

Approximations- und Online-Algorithmen Approximations- und Online-Algorithmen Wie komme ich mit Unfähigkeit und Unwissen zurecht? Rob van Stee 14. April 2010 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007 Informatik III Christian Schindelhauer Wintersemester 26/7 24. Vorlesung 26..27 NP-Vollständigkeit Gegeben ein unbekanntes NP-Problem X, sollte man nicht nur nach einem Algorithmus mit polynomieller Laufzeit

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17)

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17) Vorlesung Kombinatorische Optimierung (Wintersemester 06/7) Kapitel : Flüsse und Zirkulationen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Oktober 06) Definition. Ein Netzwerk

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Anwendung: Das Heiratsproblem Ganzzahligkeit von Polyedern Anwendung: Netzwerkflüsse Mehrgüterflussprobleme Ganzzahlige Optimierung Inhaltsübersicht für heute: Anwendung: Das

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen Seminar im Sommersemester 2008 Sebastian Bauer, Wei Cheng und David Münch Herausgegeben von Martin Nöllenburg, Ignaz Rutter und Alexander Wolff Institut für Theoretische Informatik

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Optimierung. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Vorgehen: Dynamische Programmierung

Optimierung. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Vorgehen: Dynamische Programmierung Optimierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Optimierung I Dynamisches Programmieren Günther Greiner Lehrstuhl für Graphische Datenverarbeitung Sommersemester

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Seminararbeit im Rahmen des Seminars Algorithmentechnik vorgelegt von Leonie Sautter Leiter des Seminars: Juniorprof. Dr. Henning Meyerhenke

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Längen-beschränkte Schnitte und Flüsse

Längen-beschränkte Schnitte und Flüsse Seminarausarbeitung über G. Baiers et al. Abhandlung über: Längen-beschränkte Schnitte und Flüsse (oder: Length-bounded Cuts and Flows) Frank Obermüller 06. Dezember 2009 1 Einleitung Sei G = (V, E) ein

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen 7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Approximations- und Online-Algorithmen

Approximations- und Online-Algorithmen Sanders/van Stee: Approximations- und Online-Algorithmen 1 Approximations- und Online-Algorithmen Peter Sanders und Rob van Stee Wie komme ich mit Unfähigkeit und Unwissen zurecht? Sanders/van Stee: Approximations-

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Programmieren, Algorithmen und Datenstrukturen II 8. Allgemeine Lösungsverfahren

Programmieren, Algorithmen und Datenstrukturen II 8. Allgemeine Lösungsverfahren Programmieren, Algorithmen und Datenstrukturen II 8. Allgemeine Lösungsverfahren 1 Übersicht 1. Ziele des Kapitels 2. Bereits behandelte Lösungsstrategien 3. Backtracking 4. Branch-and-Bound 5. Weiterführende

Mehr

Dynamisches Programmieren - Problemstruktur

Dynamisches Programmieren - Problemstruktur Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Flüsse, Schnitte, Bipartite Graphen II

Flüsse, Schnitte, Bipartite Graphen II Flüsse, Schnitte, Bipartite Graphen II Jonathan Hacker 06.06.2016 Jonathan Hacker Flüsse, Schnitte, Bipartite Graphen II 06.06.2016 1 / 42 Gliederung Einführung Jonathan Hacker Flüsse, Schnitte, Bipartite

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces Overview Testen von Planarität Markus Chimani LS XI Algorithm Engineering, TU Dortmund VO Automatisches Zeichnen von Graphen 15 Planarität Grundbegriffe Wie erkennt man Planarität Boyer-Myrvold Überblick

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Parametrisierte Algorithmen

Parametrisierte Algorithmen Parametrisierte Algorithmen Markus Lohrey Martin-Luther Universität Halle-Wittenberg Sommersemester 2006 Folien basieren auf Vorlagen von Jens Gramm und Rolf Niedermeier, Univ. Tübingen Markus Lohrey (Univ.

Mehr

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau.

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau. Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau. Dekan: Prof.Dr Zappe Vorsitz: Prof. Lausen Beisitz: Prof. Ottmann Betreuer: Prof.

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Schwierige Probleme in der Informatik Informationen für die Lehrperson

Schwierige Probleme in der Informatik Informationen für die Lehrperson Schwierige Probleme in der Informatik Informationen für die Lehrperson Thema, Adressaten,... Das Thema dieses Moduls sind NP-vollständige Probleme, also schwierige Probleme in der Informatik. GraphBench

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Ein Dieb raubt einen Laden aus; um möglichst flexibel zu sein, hat er für die Beute nur einen Rucksack dabei

Ein Dieb raubt einen Laden aus; um möglichst flexibel zu sein, hat er für die Beute nur einen Rucksack dabei 7/7/ Das Rucksack-Problem Englisch: Knapsack Problem Das Problem: "Die Qual der Wahl" Ein Dieb raubt einen Laden aus; um möglichst flexibel zu sein, hat er für die Beute nur einen Rucksack dabei Im Ladens

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Spiele in der Informatik

Spiele in der Informatik Spiele in der Informatik Martin Lange Lehr- und Forschungseinheit Theoretische Informatik Informatik-Schnupperstudium an der LMU, 29.3.2010 Übersicht Teil 1 Schokoladenessen für Spieltheoretiker ein kleines

Mehr

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex Netzwerk-Simplex MinCostFlow als Lineares Programm of 2 Netzwerksimplex MinCostFlow geg: gerichteter Graph G, Kapazitäten u R R 0 { }, Bedarfe b V R, Pfeilkosten c R R ges: zulässiger b-fluss f mit minimalen

Mehr

Optimierungsalgorithmen

Optimierungsalgorithmen Optimierungsalgorithmen Jakob Puchinger Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Übersicht

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr