1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

Größe: px
Ab Seite anzeigen:

Download "1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0."

Transkript

1 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt: P( ) = Es seien A, B E zwei Ereignisse mit A B. Dann gilt: (a) B \ A E; (b) P(B \ A) = P(B) P(A) (Subtraktivität); (c) P(A) P(B) (Monotonie der Wahrscheinlichkeit). 26 W.Kössler, Humboldt-Universität zu Berlin

2 4. P(A B) = P(A) + P(B) P(A B), P(A B) P(A) + P(B). Sind A und B unvereinbar, so gilt die Gleichheit. 5. Es sei {A n : n N} eine Folge von Ereignissen mit der Eigenschaft A n A n+1, n N. Dann gilt: ( ) P lim A n = lim P(A n ). Wir sprechen von der Stetigkeit von unten bzw. der Stetigkeit von P für eine wachsende Folge von Ereignissen. 6. Es sei {A n : n N} eine Folge von Ereignissen mit der Eigenschaft A n A n+1, n N. Dann gilt: ( ) P lim A n = lim P(A n ). Wir sprechen hier von der Stetigkeit von oben bzw. von der Stetigkeit von P für eine fallende Folge von Ereignissen. Beweis: 27 W.Kössler, Humboldt-Universität zu Berlin

3 1. Es gilt: Ω = A (Ω \ A) = A A, für alle A E. Wegen A A = folgt: 1 = P(Ω) = P(A A) = P(A) + P(A) Wir stellen um und erhalten: P(A) = 1 P(A). 2. Wegen = Ω \ Ω = Ω folgt aus Aussage 1: P( ) = 1 P(Ω) = Es seien A, B E zwei Ereignisse mit A B. Wir zeigen die drei Aussagen: (a) Es gilt: B \ A = B A. Wegen B E und A E folgt nach Def. 1.4.(2.), daß auch die Menge B \A Element der Menge E ist. (b) Aus B = A (B \A) und A (B \A) = folgt: P(B) = P(A (B \ A)) = P(A) + P(B \ A) 28 W.Kössler, Humboldt-Universität zu Berlin

4 Wir stellen um und erhalten: P(B) P(A) = P(B \ A). 4. trivial (c) Wenn wir die Subtraktivitätsgleichung etwas umstellen, erhalten wir: P(B) = P(A) + P(B \ A). Wegen Definition 1.6.(1.) folgt daraus sofort: P(A) P(B). 5. Es sei nun {A n : n N} eine Folge von Ereignissen mit der Eigenschaft A n A n+1, n N. Nach Definition der Ereignisfolge (A n ) gilt: lim A n = A k. Wir definieren: B 1 := A 1 B 2 := A 2 \ A 1. B n := A n \ A n 1 usw. 29 W.Kössler, Humboldt-Universität zu Berlin

5 Offenbar gilt für alle i,j N mit i j: Weiterhin gilt: B i B j =. A k = B k. Daraus ergibt sich die folgende Gleichungskette: ( ( ) ) ( P lim A ) n = P A k = P B k = P(B k ) (Definition 1.6.(3.)) = P(A 1 ) + P(A k \ A k 1 ) k=2 = P(A 1 ) + lim ( = lim Das ist die Aussage. P(A 1 ) + = lim P(A n ) n P(A k \ A k 1 ) k=2 ) n (P(A k ) P(A k 1 )) k=2 30 W.Kössler, Humboldt-Universität zu Berlin

6 6. Es sei nun {A n : n N} eine Folge von Ereignissen mit der Eigenschaft A n A n+1, n N. Dann gilt: lim A n = A k. Unter Anwendung der DE MORGAN schen Regeln erhalten wir: lim A n = A k. Außerdem gilt: A k A k+1. Dann können wir die folgende Gleichungskette ableiten: ( ( ) ) P lim A n = P A k ( ) = 1 P A k (Aussage 1) ( ) = 1 P lim A n = 1 lim P(A n ) (Aussage 4) = 1 lim (1 P(A n )) = lim P(A n ) 31 W.Kössler, Humboldt-Universität zu Berlin

7 32 W.Kössler, Humboldt-Universität zu Berlin

8 Folg. 3 (Subadditivität von P) Seien A 1, A 2,... Ereignisse. Dann gilt: P( A i ) Beweis: B 1 := A 1 B 2 := A 2 \ A 1 P(A i ) B 3 := A 3 \ (A 1 A 2 )... B i := A i \ ( j<i A j ) usw. Ereignisse B i sind paarweise disjunkt. B i A i. i 1 B i = i 1 A i P( A i ) = P( B i ) = P(B i ) P(A i ) (3. Axiom) (Monotonie der Wkt.) 33 W.Kössler, Humboldt-Universität zu Berlin

9 Folg. 4 (Siebformel) Seien A 1,...,A n Ereignisse. Dann gilt: n P( A i ) = = A i ) I {1,...,n},I ( 1) I 1 P( i I n P(A i ) i<j ( 1) n+1 i 1 <i 2 < <i n P( P(A i A j ) +... n A iν ) ν=1 Siebformel, Prinzip von Inklusion und Exklusion Formel von Poincare-Sylvester (Montmort: Briefwechsel mit Bernoulli) Beweis: (Induktion nach n) 34 W.Kössler, Humboldt-Universität zu Berlin

10 1. IA n = 1 trivial, (n = 2 : Subtraktivität) P(A 1 A 2 ) = P(A 1 ) + P(A 2 ) P(A 1 A 2 ) 2 = P(A i ) P(A i A j ) = I={1,2} I {1,...,n},I ( 1) I 1 P( i I A i ) 2. IS: Aussage der Folgerung gelte für n. Dann n+1 n n P( A i ) = P( A i ) + P(A n+1 ) P( (A i A n+1 )) wegen Subtraktivität. Auf den ersten und dritten Summanden wird jeweils die IV angewendet. Der dritte Summand ist gleich n P( (A i A n+1 )) = = J {1,...,n},J ( 1) J 1 P( i J (A i A n+1 )) {n+1} J {1,...,n+1},J {n+1}( 1) J 1 P( i J A i ). 35 W.Kössler, Humboldt-Universität zu Berlin

11 1. Summe: alle nichtleeren Teilmengen von {1,...,n} 3. Summe: alle nichtleeren Teilmengen von {1,...,n + 1}, die das Element n + 1 enthalten 2. Summe: das Element n W.Kössler, Humboldt-Universität zu Berlin

12 Bsp. 1.5 (Rencontre-Problem) n Studenten sollen schriftlich von einer Änderung des Vorlesungstermins benachrichtigt werden. Im irrtümlichen Glauben, daß jeder der n Briefe den gleichen Inhalt aufweist, verteilt eine Sekretärin die Briefe willkürlich in die verschiedenen Umschläge. Wie groß ist die Wahrscheinlichkeit, daß mindestens ein Brief in den richtigen Umschlag gelangt? Welchen Wert erhält man für n? Hinweis: Sei A das Ereignis: mindestens ein Brief im richtigen Umschlag und A i das Ereignis: Brief i kommt in den richtigen Umschlag. Wenden Sie auf P(A) = P( n A i) das Prinzip von Inklusion und Exklusion (Siebformel) an. 37 W.Kössler, Humboldt-Universität zu Berlin

13 Sortierprobleme geg.: Feld der Länge n Daten zufällig angeordnet, gleichverteilt mit Wkt. 1 n!. Wie groß ist die Wahrscheinlichkeit, daß mindestens ein Feldelement schon an der richtigen Stelle liegt.? Welchen Wert erhält man für n? das ist dasselbe wie beim Rencontre-Problem. Wie groß ist die Wkt., daß genau k Elemente bereits am richtigen Platz stehen? Übung 38 W.Kössler, Humboldt-Universität zu Berlin

14 Bem. 1 (Bonferroni-Ungleichungen) Die Ungleichung P(A B) P(A) + P(B) heißt Bonferroni-Ungleichung. Weitere (Bonferroni)- Ungleichungen erhält man durch Abbruch der Siebformel nach Gliedern mit positivem ( ) bzw. negativem ( ) Vorzeichen. Bsp. 1.6 P(A B C) P(A) + P(B) + P(C) (n = 1) P(A B C) P(A) + P(B) + P(C) (n = 2) P(A B) P(A C) P(B C) P(A B C) P(A) + P(B) + P(C) P(A B) P(A C) P(B C) +P(A B C) (n=3, es gilt hier sogar Gleichheit) 39 W.Kössler, Humboldt-Universität zu Berlin

15 1.6 Die klassische Definition der Wahrscheinlichkeit Wir betrachten für ein zufälliges Experiment die Menge der Elementarereignisse Ω = {ω 1,...,ω N }. Sei E = P(Ω) und jedes Elementarereignis habe die gleiche Wahrscheinlichkeit (d.h. P({ω i }) = 1, i = 1,...,N). N Dann gilt für die Wahrscheinlichkeit eines Ereignisses A: P(A) = = #{ω: ω A} N = n(a) N # der für das Eintreten von A günstigen Ereignisse # der möglichen Ereignisse 40 W.Kössler, Humboldt-Universität zu Berlin

16 Paradoxon von DE MÉRÉ Es wird ein Experiment mit drei Würfeln durchgeführt, wobei die Würfel gleichzeitig geworfen werden. Folgende Ereignisse werden betrachtet: A = Es fallen 11 Augen. B = Es fallen 12 Augen. Frage: P(A), P(B)? Die Menge der Elementarereignisse ist Ω = {(i,j, k): 1 i,j, k 6}. Anzahl der Elementarereignisse N := 6 3 = 216. P((i,j,k)) = Sehen wir uns nun die beiden Ereignisse A und B an. Dabei geben wir in der ersten Spalte an, welche Ziffernkombinationen auftreten können. In der zweiten Spalte steht jeweils die Anzahl der 41 W.Kössler, Humboldt-Universität zu Berlin

17 Möglichkeiten für die Anordnung der jeweiligen Zifferntrios. A B Ereignisse # Ereignisse # Also: n(a)=27 n(b)=25 P(A) = > = P(B). Folglich ist das Werfen von 11 Augen wahrscheinlicher als das Werfen von 12 Augen! 42 W.Kössler, Humboldt-Universität zu Berlin

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript

WAHRSCHEINLICHKEITSTHEORIE I und II. Vorlesungsskript WAHRSCHEINLICHKEITSTHEORIE I und II Wolfgang König TU Berlin und WIAS Berlin Vorlesungsskript SS 2005 und WS 2005/06 überarbeitet im WS 2008/09 kleine Korrekturen im März und Juli 2012 und im März 2013

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript!

Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript! Diskrete Stochastik für Informatiker WS003/04 Diskrete Stochastik für die Informatik Bei dieser Vorlesungsmitschrift handelt es sich um kein offizielles Skript! Bei Fragen, Anmerkungen oder Fehlern bitte

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

Modellierungskonzepte 2

Modellierungskonzepte 2 Modellierungskonzepte 2 Elke Warmuth Humboldt-Universität Berlin WS 2008/09 1 / 50 1 Pfadregeln 2 Begriff Umbewertung von Chancen Bayessche Formel 3 Verwechslungsgefahr Implizite Lotterien 2 / 50 mehrstufige

Mehr

Statistik II - Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Christine Müller Technische Universität Dortmund

Statistik II - Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Christine Müller Technische Universität Dortmund Statistik II - Elementare Wahrscheinlichkeitsrechnung Prof Dr Christine Müller Technische Universität Dortmund Sommersemester 2014 1 Literatur Henze, N (1997 Stochastik für Einsteiger Vieweg, Braunschweig

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Optimale Strategien beim Spiel Rot und Schwarz

Optimale Strategien beim Spiel Rot und Schwarz Fachbereich 6-Mathematik Seminar Spieltheorie und Glücksspiele Sommersemester 09 Optimale Strategien beim Spiel Rot und Schwarz Verfasser Tatiana Wandraj 29. August 2009 Betreuer Prof. Dr. Alfred Müller

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozialwissenschaftliche Methoden und Statistik I Universität Duisburg Essen Standort Duisburg Integrierter Diplomstudiengang Sozialwissenschaften Skript zum SMS I Tutorium Von Mark Lutter Stand: April

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Notizen zu "Mathematische Grundlagen der Finanzwirtschaft"

Notizen zu Mathematische Grundlagen der Finanzwirtschaft Notizen zu "Mathematische Grundlagen der Finanzwirtschaft" PD Dr. habil. Thomas Kalmes Sommersemester 5 Version vom 5. Juli 5 Einleitung 2 Einleitung Ich kam zu der Überzeugung, dass mathematische Analysis

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Kursreihe stochastische Simulationen Kurs 3

Kursreihe stochastische Simulationen Kurs 3 Schüler-SimuLab Kursreihe stochastische Simulationen Kurs 3 Erste stochastische Simulationen Stefan Hartmann Forschungszentrum caesar 18. Januar 2008 Ein paar einleitende Worte Im ersten Kurs haben wir

Mehr

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als:

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als: 9-9 Die befasst sich mit der Untersuchung, wie wahrscheinlich das Eintreten eines Falles aufgrund bestimmter Voraussetzungen stattfindet. Bis anhin haben wir immer logisch gefolgert: 'Wenn diese Voraussetzung

Mehr

Das St. Petersburg Paradox

Das St. Petersburg Paradox Das St. Petersburg Paradox Johannes Dewender 28. Juni 2006 Inhaltsverzeichnis 1 Das Spiel 2 2 Das Paradox 3 3 Lösungsvorschläge 4 3.1 Erwartungsnutzen............................... 4 3.2 Risikoaversion..................................

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK III. In einer Region haben 60 % der Haushalte einen Internetanschluss. Das Diagramm veranschaulicht die Anteile der Zugangsgeschwindigkeiten unter den Haushalten

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik

Einführung in die Wahrscheinlichkeitsrechnung und Statistik Materialien zu Stochastik 1 Einführung in die Wahrscheinlichkeitsrechnung und Statistik Dr. Christian Kredler WS 2003/04 Inhaltsverzeichnis Teil 1: Wahrscheinlichkeitsrechnung 1 1 Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

Stochastik Wahrscheinlichkeit

Stochastik Wahrscheinlichkeit Stochastik Wahrscheinlichkeit Dies ist ein Detail, das auf dem letzten 1 DM Schein abgebildet war. Es stellt die wichtigste Wahrscheinlichkeitsverteilung überhaut dar die Normalverteilung. Diese Verteilung

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

Das Deckungskapital von Lebensversicherungen bei unscharf gegebener Lebensdauerverteilung

Das Deckungskapital von Lebensversicherungen bei unscharf gegebener Lebensdauerverteilung Universität Leipzig Fakultät für Mathematik und Informatik Mathematisches Institut Das Deckungskapital von Lebensversicherungen bei unscharf gegebener Lebensdauerverteilung Diplomarbeit vorgelegt von Dennis

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

. Allgemeiner berechnen wir Wahrscheinlichkeiten nach der Formel p =

. Allgemeiner berechnen wir Wahrscheinlichkeiten nach der Formel p = 2 Stochastik Mit p(a bezeichnen wir die Wahrscheinlichkeit eines Ereignisses A. p = 1 bedeutet, dass das Ereignis sicher eintritt, p = 0, dass es niemals eintritt. Es gilt demnach immer 0 p 1. Werfen wir

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the wate Norbert Henze. Stochastik für Einsteiger

A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the wate Norbert Henze. Stochastik für Einsteiger A-PDF Merger DEMO : Purchase from wwwa-pdfcom to remove the wate Norbert Henze Stochastik für Einsteiger Aus dem Programm Mathematik für Einsteiger Algebra für Einsteiger von Jörg Bewersdorff Algorithmik

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

5.3 Sampling-Algorithmen

5.3 Sampling-Algorithmen 5.3 Sampling-Algorithmen Vorgehensweise in der Statistik: Gesamtheit von Werten durch kleine, möglichst repräsentative Stichprobe darstellen. (Vgl. z. B. Hochrechnungen für Wahlergebnisse.) Genauer: Gegeben

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Hygienische Reiniger Wissenschaftliche Studie: 10 000 Reinigungsversuche, 6 Fälle mit mehr als 1 Bakterien Stimmt s jetzt oder was? Binomialtest:

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Grundlagen der Wahrscheinlichkeitsrechnung KAPITEL 3 Kapitel 3 Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann (Auszug aus einem Schreiben Riemann s an Herrn Weierstrass) [Journal für

Mehr

Codierungstheorie I: Information, Entropie, Kanäle

Codierungstheorie I: Information, Entropie, Kanäle 1 Codierungstheorie I: Information, Entropie, Kanäle Frieder Knüppel Hauptthema der Vorlesung sind fehlerkorrigierende Codes. Zunächst wollen wir aber in Teil I einige allgemeine Überlegungen zur Datenübertragung

Mehr

Stochastik - Kapitel 1

Stochastik - Kapitel 1 Stochastik - Kapitel 1 Aufgaben ab Seite 9 I. Ereignisräume 1. Ergebnis und Ergebnisraum; Baumdiagramm Experimente werden nach der Vorhersehbarkeit ihres Versuchsausganges unterschieden: - Experimente,

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Grundlagen verteilter Systeme

Grundlagen verteilter Systeme Universität Augsburg Institut für Informatik Prof. Dr. Bernhard Bauer Stephan Roser Viviane Schöbel Wintersemester 07/08 Übungsblatt 5 08.01.08 Grundlagen verteilter Systeme Lösungsvorschlag Aufgabe 1:

Mehr

XXXXX XX XXXXX XXXx XXX XXXXXx XXXXXXXx XXXXXXXXxx XXXXXXXXXXXxx XXXXXXXXXXXX

XXXXX XX XXXXX XXXx XXX XXXXXx XXXXXXXx XXXXXXXXxx XXXXXXXXXXXxx XXXXXXXXXXXX XXXXX XX XXXXX XXXx XXX XXXXXx XXXXXXXx XXXXXXXXxx XXXXXXXXXXXxx XXXXXXXXXXXX Copyright 1995-2014 Dieses Werk unterliegt dem Urheberrecht. Alle Rechte, insbesondere das Recht der Vervielfältigung, der

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik Seite 1 Vorstellung Organisation: Deutsche Aktuarvereinigung e.v. (DAV) berufsständische Vertretung der

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar getext von René Wörzberger rene@woerzberger.de Bilder Thorsten Uthke Review Diego Biurrun diego@pool.informatik.rwth-aachen.de

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Bachelorarbeit: Ein diskretes Modell für Finanzmärkte

Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Die Finanzmathematik ist momentan eine der wichtigsten Anwendungender. Hier soll ein grundlegendes Modell erörtert werden, das auf der Entwicklung

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Lösungshinweise zu Kapitel 13

Lösungshinweise zu Kapitel 13 L-112 Lösungshinweise zu Kapitel 13 zu Selbsttestaufgabe 13.2 (Eigenschaften der bedingten Unabhängigkeit) Sei P eine Wahrscheinlichkeitsverteilung über V. Wir setzen im Folgenden stillschweigend voraus,

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Statistische Analyse von Ereigniszeiten

Statistische Analyse von Ereigniszeiten Statistische Analyse von Survival Analysis VO Biostatistik im WS 2006/2007 1 2 3 : Leukemiedaten (unzensiert) 33 Patienten mit Leukemie; Zielvariable Überlebenszeit. Alle Patienten verstorben und Überlebenszeit

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr