Aufgabe 1: XML Retrieval (theoretisch / praktisch)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 1: XML Retrieval (theoretisch / praktisch)"

Transkript

1 In dieser Übung wollen wir XML Retrieval auf einer relationalen Datenbank implementieren (siehe entsprechende Ansätze bei Textretrieval). Hierzu sei das folgende Beispiel XML Dokument gegeben. a) Für ein einfaches Boolesches Retrieval benötigen wir eigentlich nur 2 Tabellen: eine Tabelle mit allen Elementdaten (id, id des Vaterelements, der eindeutige XPath-Ausdruck im XML-Dokument und der 'label path', d.h. der Typ des Elements) und die Termtabelle (gibt an, welche Terme in welchen Elementen auftreten). Wir wollen hier aber bereits die Augmentierung berücksichtigen. Deshalb speichern wir die Augmentierungsgewichte in einer separaten Tabelle (siehe Grafik unten; ohne Query-Tabelle). Beim Einfügen eines Dokumentes werden Terme zuerst beim entsprechenden Element hinzugefügt (tf ist hier die Anzahl der Termvorkommen). Dann wird mit Hilfe der 'parent'-beziehung und der Gewichte die tf-werte der Vorfahrelemente angepasst (bis hinauf zur Wurzel). Mit anderen Worten: jedes Termvorkommen wird mehrfach in die Datenbank geschrieben; dies kann mit einem SAX-Parser sehr einfach realisiert werden (man muss sich zu jeder Zeit die Vorfahrelemente merken). Eine mögliche Implementierung könnte wie auf der nächste Seite aussehen. Beachte: die konkrete SQL Syntax kann von Datenbank zu Datenbank leicht variieren (besonders die Datentypen). Alle Skripte liegen auf dem Web- Server der Vorlesung. create table Augmentation ( parent VARCHAR(1024), child VARCHAR(1024), weight FLOAT create table XMLElement ( parent INTEGER REFERENCES XMLElement(elid), elid INTEGER PRIMARY KEY, xpath VARCHAR(1024), labelpath VARCHAR(1024)

2 create table XMLIndex ( elid INTEGER REFERENCES XMLElement(elid), term VARCHAR(128), tf FLOAT, PRIMARY KEY (elid,term) create table XMLQuery ( term VARCHAR(128) PRIMARY KEY, tf FLOAT insert into Augmentation VALUES('/MANAGER','/MANAGER/NAME', insert into XMLElement VALUES(NULL,10,'/MANAGER[1]','/MANAGER' insert into XMLElement VALUES(10,0,'/MANAGER[1]/NAME[1]','/MANAGER/NAME'... insert into XMLIndex VALUES(0,'janine',1... /* update der parent Elemente */ insert into XMLIndex select e.parent,i.term,sum(i.tf*a.weight) from XMLIndex i,xmlelement e,augmentation a where i.elid=e.elid AND e.labelpath=a.child group by e.parent,i.term; delete from XMLQuery; insert into XMLQuery VALUES('the',1 insert into XMLQuery VALUES('money',1 select e.elid,e.xpath from XMLElement e,xmlindex i,xmlquery q where i.term=q.term AND i.elid=e.elid AND e.labelpath='/manager' group by e.elid,e.xpath having count(i.term)=(select count(*) from XMLQuery

3 b) Analog zum Trick mit der Query-Tabelle soll eine zusätzliche Tabelle (XMLSelection) die Elemente aufzählen, welche die 'harten' Prädikate überhaupt erfüllen. Das Vorgehen ist dann wie folgt: zuerst bestimmt man die Elemente, welche den 'harten' Bedingungen entsprechen (z.b. mit Hilfe eines XQuery Evaluators). Gewisse Prädikate können auch sehr einfach mit Hilfe der 'label path' Angaben innerhalb der Tabelle XMLElement evaluiert werden (siehe auch Anfragebeispiel unten). Dann benutzt man die neue Tabelle XMLSelection, um die Elemente zu eliminieren, welche die 'harten' Prädikate nicht erfüllen (mit Hilfe eines Joins). Eine mögliche Implementierung könnte wie folgt aussehen: create table XMLSelection ( elid INTEGER REFERENCES XMLElement(elid) delete from XMLQuery; insert into XMLQuery VALUES('the',1 insert into XMLQuery VALUES('money',1 delete from XMLSelection; insert into XMLSelection select elid from XMLElement where labelpath='/manager/review' or labelpath='/project'; select e.elid,e.xpath from XMLElement e,xmlindex i,xmlquery q,xmlselection s where i.term=q.term AND i.elid=e.elid AND i.elid=s.elid group by e.elid,e.xpath having count(i.term)=(select count(*) from XMLQuery

4 c) Vektorraumretrieval benötigt Statistiken über die Elemente und Termvorkommen. Diese können entweder global sein (d.h. für alle Anfragen gültig) oder Anfrage abhängig. Für die Aufnahme der Statistiken brauchen wir eine neue Tabelle XMLTerm, welche je nach Ansatz unterschiedlich ausschaut. Die Berechnung mit globalen Statistiken erfolgt dann wie folgt: create table XMLTerm ( term VARCHAR(128) PRIMARY KEY, ief FLOAT insert into XMLTerm select term, log(1.0*(select count(*) from XMLElement)/count(*)) from XMLIndex group by term; select e.elid,e.xpath,sum(q.tf * t.ief * i.tf * t.ief) from XMLElement e,xmlindex i,xmlquery q, XMLTerm t,xmlselection s where q.term=t.term AND i.term=t.term AND i.elid=e.elid AND i.elid=s.elid group by e.elid,e.xpath order by 3 desc; Bei gloablen Statistiken muss das insert-statement nicht für jede Anfrage neu ausgeführt werden. Anders beim Retrieval mit Anfrage abhängigen Statistiken: basierend auf den ausgewählten Elementen (in XMLSelection) müssen die ief-werte neu bestimmt werden. Hierzu brauchen wir keine XMLTerm-Tabelle mehr, sondern erweitern die Tabelle XMLQuery um ein Feld ief. Genau genommen müssen wir nämlich nur die Statistiken der Anfrageterme bestimmen: create table XMLQuery ( term VARCHAR(128) PRIMARY KEY, tf FLOAT, ief FLOAT delete from XMLQuery; insert into XMLQuery VALUES('this',1,0 insert into XMLQuery VALUES('project',1,0 insert into XMLQuery VALUES('costs',1,0 insert into XMLQuery VALUES('money',1,0

5 delete from XMLSelection; insert into XMLSelection select elid from XMLElement where labelpath='/manager/review' OR labelpath='/project'; update XMLQuery set ief=(select log(1.0*(select count(*) from XMLSelection)/count(*)) from XMLIndex i,xmlselection s where i.elid=s.elid AND i.term=xmlquery.term select e.elid,e.xpath,sum(q.tf * q.ief * i.tf * q.ief) from XMLElement e,xmlindex i,xmlquery q,xmlselection s where q.term=i.term AND i.elid=e.elid AND i.elid=s.elid group by e.elid,e.xpath order by 3 desc; Die Berechnung der Statistiken kann dadurch beschleunigt werden, in dem man nur Statistiken auf Pfadebene verwendet. Dabei müssen wir uns die Elementhäufigkeiten der Terme und die Anzahl Elemente für jeden 'label path' merken. Die beiden Tabellen können wie folgt aufgefüllt werden (genauso wie bei den globalen Statistiken müssen diese Tabelle nicht jedes Mal neu berechnet werden): create table XMLTerm ( labelpath VARCHAR(600), term VARCHAR(128), ef FLOAT create table XMLPath ( labelpath VARCHAR(600) PRIMARY KEY, cnt FLOAT insert into XMLTerm select e.labelpath,i.term,count(*) from XMLIndex i,xmlelement e where i.elid=e.elid group by e.labelpath,i.term; insert into XMLPath select labelpath,count(*) from XMLElement group by labelpath;

6 Die Berechnung der ief-werte für die Anfrageterme sieht dann wie folgt aus (die Evaluation einer Anfrage bleibt gleich): update XMLQuery set ief=( select log(1.0*(select sum(cnt) from XMLPath where labelpath='/manager/review' OR labelpath='/project') /sum(ef)) from XMLTerm t where t.term=xmlquery.term AND (t.labelpath='/manager/review' OR t.labelpath='/project')

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben.

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. MySQL-Befehle 1. Einleitung In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. 2. Arbeiten mit Datenbanken 2.1 Datenbank anlegen Eine Datenbank kann man wie folgt

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Lösungen der Übungsaufgaben von Kapitel 10

Lösungen der Übungsaufgaben von Kapitel 10 Lösungen der Übungsaufgaben von Kapitel 10 1. Legen Sie mit einem SQL - Befehl eine neue Tabelle PERSON_KURZ mit den Feldern Kurz_Id, Kurz_Name an. Machen Sie das so, dass Kurz_Id der Primärschlüssel wird

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

Allgemeines. veröffentlicht unter http://www.profv.de/uni/ lizensiert unter. Creative Commons BY-SA 3.0. XQuery in MS SQL Server 2005

Allgemeines. veröffentlicht unter http://www.profv.de/uni/ lizensiert unter. Creative Commons BY-SA 3.0. XQuery in MS SQL Server 2005 Volker Grabsch 14. Januar 2008 Allgemeines veröffentlicht unter http://www.profv.de/uni/ lizensiert unter Creative Commons BY-SA 3.0 Quelle Dieser Vortrag basiert auf dem Paper XQuery Implementation in

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Informatik Datenbanken SQL-Einführung

Informatik Datenbanken SQL-Einführung Informatik Datenbanken SQL-Einführung Gierhardt Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Auswahl-Abfragen mit SELECT 2 2.1 Selektion...................................... 2 2.2 Projektion.....................................

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Datenbanken für Online Untersuchungen

Datenbanken für Online Untersuchungen Datenbanken für Online Untersuchungen Im vorliegenden Text wird die Verwendung einer MySQL Datenbank für Online Untersuchungen beschrieben. Es wird davon ausgegangen, dass die Untersuchung aus mehreren

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

SET SQL_MODE=NO_AUTO_VALUE_ON_ZERO; phpmyadmin SQL Dump version 3.2.4 http://www.phpmyadmin.net Host: localhost Erstellungszeit: 13. April 2011 um 18:44 Server Version: 5.1.41 PHP-Version: 5.3.1 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO"; /*!40101

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Wirtschaftsinformatik 2

Wirtschaftsinformatik 2 Wirtschaftsinformatik 2 Prof. Dr. Dr. L. Schmidt-Thieme MSc. André Busche Übung 4 1. Übungsblatt 4 2. Allgemeines zu XML 25.05.12 2/ Übungsblatt 4 Allgemeiner Hinweis: in den nachfolgenden SQL-Kommandos

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen

Mehr

Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN

Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN Vorstellung der Diplomarbeit Implementierung der XPath-Anfragesprache für XML-Daten in RDBMS unter Ausnutzung des Nummerierungsschemas DLN Oberseminar Datenbanken WS 05/06 Diplomand: Oliver Schmidt Betreuer:

Mehr

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus:

Die SQL-Syntax für den Befehl CREATE TABLE sieht folgendermassen aus: Einführung in MySQL SQL (Structured Query Language) ist eine Computersprache zum Speichern, Bearbeiten und Abfragen von Daten in relationalen Datenbanken. Eine relationale Datenbank kann man sich als eine

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Microsoft Access 2010 SQL nutzen

Microsoft Access 2010 SQL nutzen Microsoft Access 2010 SQL nutzen Welche Bestellungen hat Kunde x aufgegeben? Welche Kunden haben noch nie bestellt? Wer hat welche Bestellungen von welchen Kunden aufgenommen? S(tructured)Q(uery)L(anguage)

Mehr

Datenbank - Teil 3. Ziele: Eine Datenbank anlegen mit SQL. Daten eingeben mit SQL. Abfragen stellen mit SQL und PHP.

Datenbank - Teil 3. Ziele: Eine Datenbank anlegen mit SQL. Daten eingeben mit SQL. Abfragen stellen mit SQL und PHP. Ziele: Eine Datenbank anlegen mit SQL Daten eingeben mit SQL Abfragen stellen mit SQL und PHP 1 Datenbankserver Entwickelt von der schwedischen Aktiengesellschaft MySQL Unter GNU General Public License

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

Oracle: Abstrakte Datentypen:

Oracle: Abstrakte Datentypen: Oracle: Abstrakte Datentypen: Oracle bietet zwei mögliche Arten um abstrakte Datentypen zu implementieren: Varying Array Nested Table Varying Array (kunde) kdnr kdname gekaufteart 1 Mustermann 1 4 5 8

Mehr

Foreign Keys. MySQL 4, 5. Kapitel 16: Fremdschlüssel. Marcel Noe

Foreign Keys. MySQL 4, 5. Kapitel 16: Fremdschlüssel. Marcel Noe MySQL 4, 5 Kapitel 16: Fremdschlüssel Gliederung 1 Gliederung 1 Fremdschlüssel sichern die Referenzielle Integrität voneinander abhängiger Tabellen. Um Fremdschlüssel definieren zu können, müssen Sie die

Mehr

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9);

Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9); Institut für Angewandte Informatik AIFB und Formale Beschreibungsverfahren Universität Karlsruhe (TH) Prof. Dr. W. Stucky U. Schmidle Tel.: 0721 / 608-3812, 3509 Fax.: 0721 / 693717 e-mail: stucky schmidle

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

XML in der Oracle Datenbank "relational and beyond"

XML in der Oracle Datenbank relational and beyond XML in der Oracle Datenbank "relational and beyond" Ulrike Schwinn (Ulrike.Schwinn@oracle.com) Oracle Deutschland GmbH Oracle XML DB Ein Überblick 1-1 Agenda Warum XML in der Datenbank? Unterschiedliche

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. XMLType. Christian Senger/Andreas Schmidt XMLType 1/32

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. XMLType. Christian Senger/Andreas Schmidt XMLType 1/32 XMLType Christian Senger/Andreas Schmidt XMLType 1/32 XMLType von Oracle vordefinierter Typ zur Speicherung von nativen XML-Dokumenten unterstützt verschiedene Speichermodelle für XML structured storage

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press

Marcus Throll, Oliver Bartosch. Einstieg in SQL. Verstehen, einsetzen, nachschlagen. Galileo Press Marcus Throll, Oliver Bartosch Einstieg in SQL Verstehen, einsetzen, nachschlagen Galileo Press Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT

Mehr

XQuery Implementation in a Relational Database System

XQuery Implementation in a Relational Database System Humboldt Universität zu Berlin Institut für Informatik XQuery Implementation in a Relational Database System VL XML, XPath, XQuery: Neue Konzepte für Datenbanken Jörg Pohle, pohle@informatik.hu-berlin.de

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten Fakultät für Informatik & Wirtschaftsinformatik Metadaten Metadaten sind Daten über Daten Data-Dictionary speichert Informationen über die Struktur der Daten, z.b.: Tabellen, Spalten, Datentypen Primär-

Mehr

Beispiel 1: Filmdatenbank

Beispiel 1: Filmdatenbank Beispiel 1: Filmdatenbank Die Filmdatenbank hat drei Tabellen (ACTOR, MOVIE, PLAYED) Aufgabe 1: Erstelle mit Hilfe der SQL-DDL die drei Tabellen und die Datenbank (MOVIEDB) ACTOR (ActorID, Name, Birthday,

Mehr

Abbildung 1: Das ERM. Nun zu den Tabellen: Zunächst wird aus jeder Entity eine Tabelle, d.h. wir erhalten:

Abbildung 1: Das ERM. Nun zu den Tabellen: Zunächst wird aus jeder Entity eine Tabelle, d.h. wir erhalten: Lösung Casino 1 Zunächst das Entity-Relationship-Modell: Kundenverzeichnis wird getätigt von Bestellung führt aus enthält Personal n 1 beherrscht Speisekarte Tätigkeiten Abbildung 1: Das ERM Nun zu den

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

desk.modul : WaWi- Export

desk.modul : WaWi- Export desk.modul : WaWi- Export Die Schnittstelle besteht aus einem Programm, welches die Daten aus der OfficeLine ausliest und in eine XML-Datei exportiert. Die Schnittstelle ist als ein eigenständiges Programm

Mehr

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München Kapitel 4 Dynamisches SQL Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München 2008 Thomas Bernecker, Tobias Emrich unter Verwendung der Folien des Datenbankpraktikums aus dem Wintersemester

Mehr

SQL-Anweisungen. SELECT (SQL Data Query Language)

SQL-Anweisungen. SELECT (SQL Data Query Language) SQL-Anweisungen SELECT (SQL Data Query Language) SELECT * SELECT * FROM "meine Tabelle"; SELECT feldname1, feldname2 SELECT feldname1, feldname2 FROM meinetabelle ORDER BY feldname2, feldname1 DESC; WHERE

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11 Datenbanksysteme WS 05/ 06 Gruppe 12 Martin Tintel Tatjana Triebl Seite 1 von 11 Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Datenbanken... 4 2.1. Oracle... 4 2.2. MySQL... 5 2.3 MS

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. noch einmal. XQuery... Andreas Schmidt Oracle XQuery 1/12

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. noch einmal. XQuery... Andreas Schmidt Oracle XQuery 1/12 noch einmal XQuery... Andreas Schmidt Oracle XQuery 1/12 Oracle XML DB Repository Fakultät für Informatik & Wirtschaftsinformatik Erlaubt Speichern von Dokumenten wie in einem Filesystem (Daten liegen

Mehr

PHP & MySQL. MySQL Einführung. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (Michael.Kluge@tu-dresden.

PHP & MySQL. MySQL Einführung. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (Michael.Kluge@tu-dresden. Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) PHP & MySQL MySQL Einführung Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424 (Michael.Kluge@tu-dresden.de) Inhalt Grundsätzliches

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Datenbankanfragen und -operationen mittels SQL

Datenbankanfragen und -operationen mittels SQL Datenbankanfragen und -operationen mittels SQL Über den verschiedenen Tabellen einer Datenbank werden Operationen ausgeführt, die immer wieder eine Tabelle als Ergebnis zurückgeben. Mathematisch modelliert

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL

Übung Datenbanken in der Praxis. Datenmodifikation mit SQL Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern

Mehr

Multimedia im Netz. Übung zur Vorlesung. Ludwig-Maximilians-Universität Wintersemester 2010/2011

Multimedia im Netz. Übung zur Vorlesung. Ludwig-Maximilians-Universität Wintersemester 2010/2011 Übung zur Vorlesung Multimedia im Netz Ludwig-Maximilians-Universität Wintersemester 2010/2011 Ludwig-Maximilians-Universität München Multimedia im Netz - Übung - 2-1 Übungsblatt - 2 Thema: HTML, PHP und

Mehr

Aufgaben zu XPath und XQuery

Aufgaben zu XPath und XQuery Aufgaben zu XPath und XQuery Dr. Arno Schmidhauser Letzte Revision: März 2005 Email: arno.schmidhauser@sws.bfh.ch Webseite: http://www.sws.bfh.ch/db Inhalt 1 XPath... 2 2 XQuery... 2 3 XPath/SQL Umsetzung...

Mehr

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten

5. SQL: Erstellen von Tabellen. Erzeugen und Löschen von Tabellen. Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 5. SQL: Erstellen von Tabellen Erzeugen und Löschen von Tabellen Umgang mit Bedingungen (Constraints) Einfügen und Löschen von Daten 106 SQL Structured Query Language Historie: Anfänge ca. 1974 als SEQUEL

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

Klausur Interoperabilität

Klausur Interoperabilität Klausur 21. Juni 2012 9.30 11.00 Uhr Workflow Systems and Technology Group Fakultät für Informatik Universität Wien Univ.-Prof. Dr. Stefanie Rinderle-Ma Allgemeine Hinweise: Die Bearbeitungszeit beträgt

Mehr

MySQL, phpmyadmin & SQL. Kurzübersicht

MySQL, phpmyadmin & SQL. Kurzübersicht MySQL, phpmyadmin & SQL Kurzübersicht Referenzen MySQL Documentation: http://dev.mysql.com/doc PHP 5 / MySQL5. Studienausgabe. Praxisbuch und Referenz (Kannengießer & Kannengießer) 2 Datenbank anlegen

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

Multimedia im Netz Wintersemester 2013/14. Übung 03 (Nebenfach)

Multimedia im Netz Wintersemester 2013/14. Übung 03 (Nebenfach) Multimedia im Netz Wintersemester 2013/14 Übung 03 (Nebenfach) Ludwig-Maximilians-Universität München Multimedia im Netz WS 2013/14 - Übung 3-1 Datenbanken und SQL Mit Hilfe von Datenbanken kann man Daten

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Datensatzhistorie mit dem SQL Server 2000 und 2005 Datensatzhistorie mit dem SQL Server 2000 und 2005-2 - Inhalt

Mehr

SQL,Teil 1: CREATE, INSERT, UPDATE, DELETE, DROP

SQL,Teil 1: CREATE, INSERT, UPDATE, DELETE, DROP SQL,Teil 1: CREATE, INSERT, UPDATE, DELETE, DROP W. Spiegel Übersicht DDL & DML Relationen definieren: CREATE Primärschlüssel setzen mit primary key Tabellen löschen: DROP Daten speichern: INSERT Daten

Mehr

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index!

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index! 1/40 PHP-User-Group Stuttgart 14.01.2009 Warum Datenbanken einen Hals bekommen und was sich dagegen tun lässt. Tuning und Performancesteigerung ohne zusätzliche Hardware. Ein. Loblied auf den Tabellen-Index!

Mehr

Herbstsemester 2009. Datenbanken mit Übungen Kapitel 4: SQL. H. Schuldt. Inhalt

Herbstsemester 2009. Datenbanken mit Übungen Kapitel 4: SQL. H. Schuldt. Inhalt Herbstsemester 2009 Datenbanken mit Übungen Kapitel 4: SQL H. Schuldt Inhalt Datenmanipulationssprache SQL: SQL (Structured Query Language) ist die Standardsprache für die Datendefinition und Datenmanipulation

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 29. April 2013 - MySQL 2 Sebastian Cuy sebastian.cuy@uni-koeln.de Aufgaben Anmerkungen Best practice: SQL Befehle

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

Objektrelationale, erweiterbare Datenbanken WS 04/05

Objektrelationale, erweiterbare Datenbanken WS 04/05 Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut für Informationssysteme Dr.C.Türker Objektrelationale, erweiterbare Datenbanken WS 0405 Übung 8 Aufgabe

Mehr

Neugestaltung der Datenbank des Chemnitzer Studentennetzes

Neugestaltung der Datenbank des Chemnitzer Studentennetzes 12.12.2012 Neugestaltung der Datenbank des Chemnitzer Studentennetzes Verteidigung Bachelorarbeit Morris Jobke Prüfer: Dr. Frank Seifert Betreuer: Dipl.-Inf. Johannes Fliege Neugestaltung der Datenbank

Mehr

Seminar XML und Datenbanken Andreas Krug. XML -Unterstützung durch IBM DB2

Seminar XML und Datenbanken Andreas Krug. XML -Unterstützung durch IBM DB2 Seminar XML und Datenbanken Andreas Krug XML -Unterstützung durch IBM DB2 Fahrplan 1. XML-enabled Unterstützung vs. native XML Unterstützung 2. Nachteile der relationalen XML- Unterstützung 3. Native XML-Verarbeitung

Mehr

Übungsblatt 8- Lösungsvorschlag

Übungsblatt 8- Lösungsvorschlag Universität Innsbruck - Institut für Informatik Prof. Günther Specht, R.Binna, N.Krismer, M. Tschuggnall 30. November 2012 Proseminar Datenbanksysteme Übungsblatt 8- Lösungsvorschlag Aufgabe 1 (Trigger)

Mehr

Entwicklungsumgebung für die Laborübung

Entwicklungsumgebung für die Laborübung Entwicklungsumgebung für die Laborübung VU Datenbanksysteme Wolfgang Fischl Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Begleitskript. zum PHP/MySQL. Kurs

Begleitskript. zum PHP/MySQL. Kurs Begleitskript zum PHP/MySQL Kurs http://www.online-platform.net Dieser Text unterliegt der GNU General Public License. Er darf als ganzes oder in Auszügen kopiert werden, vorausgesetzt, dass sich dieser

Mehr

Übung 1: Ein Website News-System mit MySQL

Übung 1: Ein Website News-System mit MySQL Übung 1: Ein Website News-System mit MySQL In der Vorübung haben wir bereits mit Hilfe eines ERMs den Datenbankentwurf erstellt und daraus die folgenden Tabellen abgeleitet: Nun muss diese Datenbank in

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

MySQL: Einfaches Rechnen. www.informatikzentrale.de

MySQL: Einfaches Rechnen. www.informatikzentrale.de MySQL: Einfaches Rechnen Vorweg: Der Merksatz Warum geht Herbert oft laufen? Vorweg: Der Merksatz Warum geht Herbert oft laufen?...... WHERE... GROUP BY... HAVING... ORDER BY... LIMIT Beispieldatenbank

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

IBM Informix SQL. Seminarunterlage. Version 11.04 vom

IBM Informix SQL. Seminarunterlage. Version 11.04 vom Seminarunterlage Version: 11.04 Version 11.04 vom 27. April 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

SQL-INJECTIONS. N E T D E V E L O P E R S G R O U P B E R L I N B R A N D E N B U R G, 0 5. 0 4. 2 0 1 2

SQL-INJECTIONS. N E T D E V E L O P E R S G R O U P B E R L I N B R A N D E N B U R G, 0 5. 0 4. 2 0 1 2 SQL-INJECTIONS. N E T D E V E L O P E R S G R O U P B E R L I N B R A N D E N B U R G, 0 5. 0 4. 2 0 1 2 Wie sind die nur wieder an meine Kreditkartendaten gekommen? http://www.testedich.de/quiz29/picture/pic_1312394875_7.jpg

Mehr

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs

Datenbanken SQL. Insert, Update, Delete, Drop. Krebs Datenbanken SQL Insert, Update, Delete, Drop Krebs Inhalt 1. Datensätze einfügen: INSERT 2. Datensätze verändern: UPDATE 3. Datensätze löschen: DROP vs. DELETE Beispiel Datenbank Schule Klasse P_Klasse

Mehr

Kapitel DB:VI (Fortsetzung)

Kapitel DB:VI (Fortsetzung) Kapitel DB:VI (Fortsetzung) VI. Die relationale Datenbanksprache SQL Einführung SQL als Datenanfragesprache SQL als Datendefinitionssprache SQL als Datenmanipulationssprache Sichten SQL vom Programm aus

Mehr