Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff"

Transkript

1 Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion im Blu zu verschiedenen Zeipunken gemessen. Die Fläche uner dieser Kurve verhäl sich proporional zu der Wirksoffmenge, die in den Organismus gelang is. Nach Verabreichung eines besimmen Medikamens an eine Tesperson is die halbsündlich gemessene Wirksoffkonzenraion im Blu in folgender Tabelle noier worden: Zei [Sunden] 0 0,5,5 2 Wirksoffkonzenraion W() [µg/ml] 0 2,,3 0,55 0,23 a) Der zeiliche Verlauf der Wirksoffkonzenraion soll zunächs mi einer ganzraionalen Funkion k für 0 modellier werden. Dabei wird als Maßzahl der Zei zur Einhei Sunde, k() als Maßzahl der Wirksoffkonzenraion zur Einhei µg/ml aufgefass. Zum Zeipunk = 0 is das Medikamen verabreich worden. () Besimmen Sie eine Gleichung einer ganzraionalen Funkion k vieren Grades, deren Graph durch die in der Tabelle angegebenen fünf Messpunke verläuf. Dabei sind die Were der Koeffizienen auf die 4. Nachkommaselle gerunde anzugeben. a) () Es gil folgender Ansaz: k( ) = a + b + c + d + e mi 0 und a, b, c, d IR. Wegen k (0) = 0 folg e = 0. Daraus ergib sich das folgende LGS: 0,0625 0,25 5,0625 3, ,25 0,5 2,25, ,,3 0,55 0,23 Mi Hilfe des GTR ergeben sich:,733; 9,0733; 6,47; 0,357. Die gesuche Funkionsgleichung laue somi: =,733 +9,0733 6,47 +0,357. (5 Punke) Alernaive Lösung: Es gil: k(0, 5) = 2,; k() =, 3; k(, 5) = 0, 55; k(2) = 0, 23. Mihilfe des GTR liefer die Regression vieren Grades:,733; 9,0733; 6,47; 0,357. Die gesuche Funkionsgleichung laue somi: =,733 +9,0733 6,47 +0,357.

2 a) (2) Wenn man auf die 3. Nachkommaselle runde, is =,73 +9,073 6,42 +0,352, IR eine Gleichung der Funkion k aus a)(). Besimmen Sie den zur Modellierung sinnvollen Definiionsbereich und begründen Sie, warum die Funkion nur innerhalb dieses Inervalls den zeilichen Verlauf der Wirksoffkonzenraion beschreiben kann. (4 Punke) a) (2) Zeichne man mihilfe des GTR den Graphen von k, so besimm man näherungsweise folgende Nullsellen von k: = 0 oder 2,34. Die Wirksoffkonzenraion im Blu muss größer oder gleich Null sein. Die Funkion k, die die Wirksoffkonzenraion W() (gemessen in µ g / ml ) beschreib, darf deshalb nur posiive Were oder den Wer Null annehmen. Dami ergib sich als Definiionsbereich im Sachzusammenhang 0 2,34. Nur im angegebenen Inervall ha der Graph von k seine Nullsellen und verläuf oberhalb der -Achse. Außerhalb dieses Inervalls werden die Funkionswere negaiv. Deshalb is dies der gesuche Zeibereich. Eine alernaive Modellierung des zeilichen Verlaufs der Wirksoffkonzenraion kann näherungsweise beschrieben werden durch die Funkion f mi der Gleichung =5! " #! " # =5! " #! #, 0. 2 Der Graph der Funkion f is in der Abbildung dargesell: 2,5 f 2,5 0,5-0,5-0,25 0 0,25 0,5 0,75,25,5,75 2 2,25-0,5 Abbildung MaheGrafix.de b) () Berechnen Sie die prozenuale Abweichung des Funkionswers f (0,5) vom zugehörigen Tabellenwer W(0,5). (2 Punke)

3 b) () Es gil: f (0, 5) 2,7 =, 034. Der Funkionswer ( 0,5) W (0, 5) 2, zugehörige Tabellenwer W ( 0,5). f is ca. 3,4 % größer als der b) (2) Begründen Sie, dass es bei der hier verwendeen Modellierung durch die Funkion f nie zu einem vollsändigen Abbau des Wirksoffs im Blu der Tesperson käme. 3 b) (2) Es gil: f ( ) 5 e ( e ) =. Für alle > 0 gil 3 e > 0 und e > (3 Punke). Folglich gil auch f ( ) > 0. Dami kann es nie zu einem vollsändigen Abbau des Wirksoffes im Blu kommen. Alernaive Lösung: Wie an dem Graphen von f zu erkennen is, verläuf der Graph von f für > 0 im ersen Quadranen und sreb für große Were von gegen die -Achse. Mi Hilfe des GTR läss sich zusäzlich besimmen, dass f keine weieren Nullsellen ha. Also komm es auch auf lange Sich zu keinem vollsändigen Abbau des Wirksoffes im Blu. c) () Besimmen Sie rechnerisch den Zeipunk im Inervall [0;2], zu dem die durch f beschriebene Wirksoffkonzenraion im Blu der Tesperson am größen is, und berechnen Sie den zugehörigen Maximalwer c) () Es ergib sich: f ( ) 5 ( 2e ( 3e )) 5 e ( 3 2e ) = =. Die nowendige Bedingung liefer wegen 3 5 e 0 > die Gleichung ( e ) (8 Punke) 3 2 = 0 und dami mi Hilfe des GTR 0,405 als einzige Selle des Graphen mi waagerecher Tangene. Durch Einsezen erkenn man, dass f an der Selle 0,405 das Vorzeichen von + nach wechsel. Also lieg an dieser Selle ein lokales Maximum mi f 0, 405 = 2, 222 vor. ( ) Dieses is wegen ( 0) 0 f = und ( ) f 2 0, 238 auch das globale Maximum der Funkion f im Inervall [0; 2]. Die Wirksoffkonzenraion erreich zum Zeipunk 0,405 h ihren Maximalwer von ca. 2,222 &' ().

4 c) (2) Besimmen Sie die Zeipunke im Inervall [0;2], zu denen die durch f beschriebene Wirksoffkonzenraion am särksen anseig bzw. am särksen abfäll, und berechnen Sie jeweils die momenane Änderungsrae der Wirksoffkonzenraion zu diesen Zeipunken. [Zur Konrolle: = 5! " # 3 2! # ] (7 Punke) c) (2) Die maximale oder minimale Änderungsrae der Wirksoffkonzenraion kann nur an den Wendesellen oder den Rändern des Inervalls angenommen werden. Mi Hilfe des GTR kann die Wendeselle als lokale Minimumselle von f auf zwei Nachkommsellen bei 0,8 am Graphen von f abgelesen werden. Weier gil: 0 = 5; 0,8,98 +, 2 0,44. Die Wirksoffkonzenraion nimm am särksen bei = 0 h mi 5 &' am särksen bei 0,8 h mi ca.,98 &' (). ab. (). zu und nimm d) () Man berache die Funkion F: F(), 0, die die Maßzahl der Fläche zwischen dem Graphen von f und der -Achse im Inervall [0;] angib. Zeichnen Sie den Graphen von F in der Abbildung und begründen Sie sein Seigungsverhalen. d) () Zeichnung des Graphen von F: (4 Punke) f 2,5 F 2,5 0,5-0,5-0,25 0 0,25 0,5 0,75,25,5,75 2 2,25-0,5 MaheGrafix.de Zum Zeipunk = 0 exisier kein Flächeninhal, deshalb muss F(0) = 0 gelen.

5 Da der Graph von f für > 0 oberhalb der -Achse verläuf und die Fläche zwischen dem Graphen von f und der -Achse bis zum Hochpunk sark anwächs, muss der Graph von F sark anseigen. Danach seig der Graph von F weier, wird aber flacher. Für größere Were von nimm die Fläche zwischen dem Graphen von f und der - Achse weierhin zu. Wegen des immer geringer werdenden Zuwachses wird der Graph von F immer flacher seigen. Insgesam seig der Graph von F im Inervall [0; ] also sreng monoon. d) (2) Vergleichen Sie die Maßzahl A der Fläche zwischen dem Graphen von f und der - Achse im Zeiinervall [0;2] mi der Maßzahl B der Fläche zwischen dem Graphen der ganzraionalen Funkion k (aus Aufgabeneil a)) und der -Achse im Zeiinervall [0;2]. Begründen Sie, dass mi beiden Modellen die Bioverfügbarkei in diesem Inervall modellier werden kann. (7 Punke) d) (2) Nach dem Bisherigen is bekann, dass die Graphen beider Funkionen f und k im beracheen Inervall oberhalb der -Achse verlaufen. Der gesuche Flächeninhal kann demnach mi 0 als unerer und 2 als oberer Grenze miels Inegraion mi Hilfe des GTR berechne werden. Für die gesuchen Maßzahlen gelen: / = 0 2,375 und 2 = 0 2,267. Wegen 3 =,56,048 is die Maßzahl der Fläche A mi ca. 4,8 % nur geringfügig 4,75 größer als die Maßzahl der Fläche B. Die beiden Funkionen geben nach dem Bisherigen die Wirksoffkonzenraion im Blu zu jedem Zeipunk mi 0 an. Im Eingangsex wird beschrieben, dass sich die Fläche uner der Kurve proporional zu der Wirksoffmenge, die in den Organismus gelang is, verhäl. Also kann die berechnee Fläche als Indikaor für die Bioverfügbarkei genuz werden. Da die im bisherigen ermielen Abweichungen aus b) () und d) (2) uner 5 % liegen, scheinen beide Funkionen geeigne zu sein, die Bioverfügbarkei des Wirksoffes zu ermieln.

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Analysis 3.

Analysis 3. Analysis 3 www.schulmahe.npage.de Aufgaben. Ermieln Sie die erse Ableiung. Vereinfachen Sie. a) fx) = e x x 3) b) fx) = ln x x + 4. Ermieln Sie die folgenden unbesimmen Inegrale. e x 5 a) e x dx b) dx

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik

Abschlussprüfung an Fachoberschulen in Bayern Mathematik mit CAS 2015 Analysis A2 Ausbildungsrichtung Technik MK.7.05 B5_T_A MK_Loes.xmc Abschlussprüfung an Fachoberschulen in Bayern Mahemaik mi 05 Analysis A Ausbilungsrichung Technik.0 Gegeben sin ie reellen Funkionen f a : x --> x x x Definiionsmenge D fa R

Mehr

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2.

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2. Miniserium für Schule und Berufsbildung 05 Bei der Bearbeiung der Aufgabe dürfen alle Funkionen des Taschenrechners genuz werden. Aufgabe : Analysis Gegeben is eine Funkionenschar durch f () = e mi R;

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Fit für die Q-Phase? Mathematiktraining für die Schüler und Schülerinnen des Beruflichen Gymnasiums Gelnhausen

Fit für die Q-Phase? Mathematiktraining für die Schüler und Schülerinnen des Beruflichen Gymnasiums Gelnhausen Fi für die Q-Phase? Mahemaikraining für die Schüler und Schülerinnen des. Gleichungen (mi und ohne Parameer) Löse folgende Gleichungen:. 4 7.6 e ( e )..7 4 4 k k. 6.8 6 0.4 4 4 4 49.9 cos..0 4.6. e e.7

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michael Buhlmann Mahemaikaugaben > Analysis > Funkionenscharen Augabe: Unersuche die ganz raionale Funkionenschar + 8 mi Parameer > 0 au: Nullsellen, Hoch- und Tiepunke, Monoonie, Wendepunke, Krümmung,

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x) Abschlussprüfung Berufliche Oberschule 9 Mahemaik Technik - A I - Lösung Teilaufgabe. Gegeben is die reelle Funkion f( x) in der Definiionsmenge ID f = IR. Teilaufgabe. (4 BE) Unersuchen Sie das Verhalen

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Aufgaben zu den verschiedenen Wachstumsmodellen

Aufgaben zu den verschiedenen Wachstumsmodellen Aufgaben zu den verschiedenen Wachsumsmodellen 1. Beispiel: Spezialdünger Durch den Einsaz von Spezialdünger kann der Errag von Feldfrüchen verbesser werden. Erräge können aber nich grenzenlos geseiger

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Abiurprüfung Mahemaik 007 Baden-Würemberg (ohne CAS) Pflicheil - Aufgaben Aufgabe : ( VP) Bilden Sie die erse Ableiung der Funkion f mi f () + = ( sin ). Aufgabe : ( VP) ln Berechnen Sie das Inegral e

Mehr

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam Schrifliche Mauriäsprüfung 017 Fach Grundlagenfach Mahemaik Prüfende Lehrpersonen Aliiloh Essodinam essodinam.aliiloh@edulu.ch Mikova Teodora eodora.mikova@edulu.ch Zuidema Roel roel.zuidema@edulu.ch Klassen

Mehr

Aufgaben zu Geradenscharen

Aufgaben zu Geradenscharen Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) = (k )x, x R, k R b) f

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2015 Mathematik 13 Technik - A I - Lösung mit CAS Teilaufgabe 1 mit f a ( x)

mathphys-online Abiturprüfung Berufliche Oberschule 2015 Mathematik 13 Technik - A I - Lösung mit CAS Teilaufgabe 1 mit f a ( x) mhphys-online Abiurprüfung Berufliche Oberschule 05 Mhemik 3 Technik - A I - Lösung mi CAS Teilufgbe Gegeben is die Funkion f mi f ( ) Definiionsmenge D f IR. e e mi IR\ {0} und der mimlen Teilufgbe. (7

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizschule Hannover - Seminararbei - Medikameneneinnahme -Modellierung- M D Schuljahr: 20 Fach: Mahemaik Inhalsverzeichnis 1 Einleiung 2 2 Einfache Verabreichung 3 21 Die inravenöse Variane 3 22 Die

Mehr

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg) Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

5.5. Konkrete Abituraufgaben zu rationalen Funktionen

5.5. Konkrete Abituraufgaben zu rationalen Funktionen 5.5. Konkree Abiuraufgaben zu raionalen Funkionen Aufgabe 1: Kurvenunersuchung, Modellbildung, Inegraion (18) Auf kleine, gleich große Versuchsflächen wird jeweils eine besimme Menge Aussaa ausgebrach.

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Abiturprüfung nach dem neuen Kernlehrplan Beispielaufgabe

Abiturprüfung nach dem neuen Kernlehrplan Beispielaufgabe Ministerium für Schule und Weiterbildung NRW Qualitäts- und UnterstützungsAgentur Landesinstitut für Schule Seite 1 von 3 Abiturprüfung nach dem neuen Kernlehrplan Beispielaufgabe Mathematik, Grundkurs

Mehr

BESCHREIBUNG VON ZERFALLSPROZESSEN

BESCHREIBUNG VON ZERFALLSPROZESSEN BESCHREIBUNG VON ZERFALLSPROZESSEN ab Ende der 1. Schulsufe Kreuze zu jedem angeführen Beispiel das richige mahemaische Modell an, begründe deine Enscheidung und beschreibe die Bedeuung der in den Modellen

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum

Analysis: Exp. und beschränktes Wachstum Analysis Übungsaufgaben zum exponentiellen und beschränkten Wachstum www.mahe-aufgaben.com Analysis: Exp. und beschränkes Wachsum Analysis Übungsaufgaben zum exponeniellen und beschränken Wachsum Gymnasium Klasse 10 Alexander Schwarz www.mahe-aufgaben.com Februar 2014 1

Mehr

(10 Punkte) Gegeben ist die in Fig. 1 abgebildete in T periodische Zeitfunktion f(t). f(t)

(10 Punkte) Gegeben ist die in Fig. 1 abgebildete in T periodische Zeitfunktion f(t). f(t) H 93 Aufgabe 6: Gegeben is die in abgebildee in T periodische Zeifunkion f(). f() -T Die komplexen Fourierkoeffizienen dieser Zeifunkion lauen: c 0 = π 2 /4 T n 0: c n = n 2 für n ungerade 0 für n gerade

Mehr

1. Schularbeit (6R) 24. Okt. 1997

1. Schularbeit (6R) 24. Okt. 1997 . Schularbei (6R). Ok. 997. Vereinfache und selle das Ergebnis mi posiiven Hochzahlen dar. Es sind dabei alle Rechenschrie anzugeben: 7 x x y 8 : x x y. Löse die folgende Wurzelgleichung ohne Verwendung

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Die Exponentialfunktion

Die Exponentialfunktion Die Eponenilunkion Deiniion Es sei eine posiive reelle Zhl,,. Eine Funkion R + R R : heiß Eponenilunkion. Die posiive reelle Zhl heiß Bsis und die reele Zhl R Eponen der Funkion. Mnchml heiß uch Wchsumskor.

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung --- Meung der Ladung Wie kann man Ladungen meen? -/Kapiel.. Formeln auf S.: Elekriche Ladung Zur Ladungmeung können wir einen au der Mielufe bekannen Zuammenhang zwichen der Ladung Q und der Sromärke I

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N - Sächsisches Saasminiserium für Kulus Schuljahr 2003/04 Gelungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungseilnehmer Schrifliche Abiurprüfung Leisungskursfach

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.24 Funkionsscharen Das Buch: Dieses Kapiel is Teil eines Buches. Das vollsändige Buch können Sie uner www.mahe-laden.de besellen (falls Sie das möchen). Sie werden in diesem Buch ein paar Sachen finden,

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Aufgabe (5 Punke) Aufgabe : Koninuierliche und diskree Signale. a) Zeichnen Sie jeweils den geraden Aneil v g ( ) und den ungeraden Aneil v u ( ) des in Abb.. dargesellen Signals v (). b) Es gelen folgende

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2011

Prüfung Finanzmathematik und Investmentmanagement 2011 Prüfung Finanzmahemaik und Invesmenmanagemen 0 Aufgabe : (0 Minuen) a) Auf der Grundlage einer Lagrange-Opimierung ergib sich die folgende funkionale Form für die (, ) -Koordinaen der (rein riskanen) Randporfolios

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen 5.5. Absrake Abiuraufgaben zu Eponenialfunkionen Aufgabe : Kurvenunersuchung, Inegraion, Opimierungsaufgabe Gegeben is die Funkion f() ( ) e,5. a) Unersuchen Sie das Schaubild von f auf Achsenschnipunke,

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg)

Lösung Abiturprüfung 2000 Grundkurs (Baden-Württemberg) Lösung Abiurprüfung 2 Grundkurs (Baden-Würemberg) Analysis, Aufgabe I.1. a) ( x) = 1 [( x)3 9 ( x)]= 1 ( x3 + 9x)= 1 ( x3 9x) = ( x) Somi is (x ) punksymmerisch zum Ursprung. ( x) = 1 (x3 9x)= x(x 2 9)=

Mehr

ABITURPRÜFUNG 2002 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeiszei: Hilfsmiel: 70 Minuen Taschenrechner (nich programmierbar, nich grafikfähig) Tafelwerk Der Prüfungseilnehmer wähl von den Aufgaben A1 und

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

22 Stetigkeit von Funktionen

22 Stetigkeit von Funktionen Abschni 22 Seigkei von Funkionen R Plao 47 22 Seigkei von Funkionen 221 Einührung Deiniion 221 Sei W D!Reine Funkion mi Deiniionsbereich D R a) an nenn die Funkion im Punk o 2 D seig, alls lim / D o /!

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse Kapiel Modellierung Durch Modellierung beschreib man Vorgänge aus der Naur sowie indusrielle Prozesse mi mahemaischen Werkzeugen, zum Beispiel Gleichungen oder Ungleichungen. Modellierung geschieh durch

Mehr

Ganzrationale Funktionen (Polynomfunktionen) - Berechnung von Nullstellen, Gleichungen höheren Grades -

Ganzrationale Funktionen (Polynomfunktionen) - Berechnung von Nullstellen, Gleichungen höheren Grades - GS - 3.0.05 - gara_0_berechnenns.mcd Ganzraionale Funkionen (Polynomfunkionen) - Berechnung von, Gleichungen höheren Grades -. Gleichungen höheren Grades Gegeben is der Funkionserm f( ) a n n + a n n +...

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 1 - Grundlagen Einführung in die Verfahren der Zeireihenanalyse (1) Typischerweise beginn man mi einer Beschreibung der jeweils zu unersuchenden Zeireihe (graphisch) Trendverhalen,

Mehr

Merkmale flexibler Fertigung

Merkmale flexibler Fertigung FFS.41 PROF.DR.-ING. K.RALL TUHH 2-295 - 1 FFS.42 Die Aufgabe des Bedieners wurde anspruchsvoller (wenige psychische und physische Belasung, dafür mehr Warung, Überwachung, Sörungsbeseiigung). Die Ferigung

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Leseprobe. Ines Rennert, Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie. ISBN (Buch):

Leseprobe. Ines Rennert, Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie. ISBN (Buch): Leseprobe Ines Renner, Bernhard Bundschuh Signale und Syseme Einführung in die Sysemheorie ISBN (Buch): 978-3-446-43327-4 ISBN (E-Book): 978-3-446-43328- Weiere Informaionen oder Besellungen uner hp://www.hanser-fachbuch.de/978-3-446-43327-4

Mehr