Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Größe: px
Ab Seite anzeigen:

Download "Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen"

Transkript

1 Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum L. Ist dese Abbldun somorph, so sprcht man von ener treuen oder etreuen Darstellun. De Dmenson der Darstellunen st de Dmenson des Vektorraums L. Zwe Darstellunen snd Äquvalent (D(ϕ,L)<=>D(ϕ,L )), wenn ene Basswechsel-Matrx M exstert, so dass lt G:ϕ () = M -1 ϕ()m Was bedeutet "SO() und SU()? { R } { C } SO() = A GL(, ) A A=1 det(a)=1 SU() = A GL(, ) A A=1 det(a)=1. Also spezelle orthoonale Matrzen bzw. spezelle untäre Matrzen. Warum snd SO() und SU() nteressant? Drehruppe "SO(),SU()" (kompakt, halbenfach) Lorentztransformaton Lorentz-Gruppe (ncht kompakt) ranslatonen Poncare-Gruppe (ncht halbenfach) Durch komplexe Rechnun D x ( y1, y) ( y1 y) e α α = = + = ( x1 + x) = ( x1 cosα x sn α) + ( x1 snα + x cos α) Unter der Drehruppe verstehen wr degruppe der homoenen lnearen ransformatonen ' x = Rx enes eukldschen dredmensonalen Raumes n sch, welche Länen nvarant lassen und Orentrunen ncht ändern. Es bt dre ransformatonen (abstrakte aktve passve)

2 a) Abstrakte ransformaton: x X, läßt nvarant (x,x) = x > 0 x = (Rx). b) Matrxlechun für aktve ransformaton bzl fester ON Bass: x = R x,mt det(r)=1., µ µ ν ν c) Matrxlechun für de passve ransformaton x ' = R x µ µ ν ν be der nur de Bassvektoren verdreht werden Bsp. Parametrserun n Drehwnkel α = α α x α x ε α x α α α α α α α α ν ν µνλ λ ν ' µ µ ν µ ν µ x = x cos + x cos + (1 cos ) + sn Mt Matrx von: µνλ λ µ µ α µ ε α R cos ν ν = δν α + α (1 cos α) + snα α α Bsp: Eulersche Wnkel { µ } { ' } se e ON Rechtsystem von Bassvektoren e verdrehtes System, dann e ' µ µ R(,, )eµ Formal: α β γ e ' 1 cosγ snγ cosα snα 0 e1 e ' = snγ cosγ 0 0 cos β sn β snα cosα 0 e ' e 0 sn β cos β e =R( α, β, γ ) De nverse Matrx zu R( α, β, γ ) st α β γ -1 R (,, ) = R( π γ, β, π α) = Betrachten erst für klene Drehun R=1+ Ω mt RR = 1, Ω + Ω = 0 Ω st ene antsymmetrsche Matrx 0 α α Ω = α 0 α ατ 1 = α α 0 1 τ st en rplet von Matrzen

3 = τ, τ, τ 1 = = Se snd de Generatoren von nfntesmalen Drehunen um de dre Achsen. Dese Generatoren und deren Vertauschunsrelaton (de soenannte Le-Alebra) leen de Gruppe vollständ fest. Es muss auch elten (τ ) =-ε jk jk Den Zusammenhan zwschen nfntesmalen und endlchen Drehun können wr so herstellen:de endlche Drehun R( α) schreben wr als N α α α R( α) = R( )R( ) =... = R( ) ; N α ατ Bem rossen N wrd hnrechend klen, wr können we oben R( α) 1 + setzen, und N N ατ N N erbt R( α) = exp( ατ ) = exp( ) so kann jede Drehun aus N,,nfntesmalen Drehunen" erzeut werden. Dese Generatoren ehören zu ener Le-Gruppe. Ene Le-Gruppe st ene Gruppe, de sch n der Nähe des neutralen Elements durch reelle Parameter beschreben läßt so dass das Gruppenprodukt n desen Parameter dfferenzerbar st. Le-Gruppen snd charaktersert duch de fundamentale Forderun: { k} γ β α { k} Parameter { α },{ β } der beden Faktoren sen: γ der Operaton R( )=R( )R( ). Dann soll γ analytsche Funktonen der γ φ (α ;β ) k k m n D.h., alle Abletunen, { β }{ α } n m j jk k,auch de höheren, exsteren. mt τ,τ = ε τ. De Generatoren snd also durch de Strukturkonstrukton festelet. Solche Darstellun nennt man"adjunerte Darstellun". We seht also de Le-Alebra des SO() aus?

4 Wähllen wr de Generatoren hermtsch d.h.: J = und R( ) = exp( J ) Dann erhalten wr de Le-Alebra SO() J,J =ε J τ α α J jk k (Der Alebra der quantenmechanschen Drehmpulsoperatoren). De Grundaufabe der Darstellunstheore st es de rreduzblen Darstellunen der Gruppe zu fnden. Irreduzble Darstellun der Gruppe? Orthoonale ransformaton des R als spzelle Darstellun R der Le-Gruppe SO() st Irreduzbel. Es bt m Darstellunsraum R kene nvaranten Unterräume.Da kene Rchtun und damt auch kene Ebene durch alle Drehunen n sch ubereführt wrd. Irreduzble Darstellun von SO() Se SO(),: ene Darstellun mvr-v ener enparametren Unterruppe ( τ ) st en enparametre ransformatons-oder Matrxruppe n VR-V zueordnet. Fürτ 1 lt: d + τ t, t= τ ( τ ) ( τ ) v τ = 0 ( τ ) t erzeuende der ( τ ). De Erzeuenden aller endmensonalen Unterruppen blden enen VR. In desem VR kann ene Bass aus dre Erzeuenden t ewählt werden, de ene Drehun um µ erzeuen und t, t µ ν µ = ε µνλ t λ enüen. t µ blden auch Le-Alebra deren struktur somorph zur Le-Alebra st. Betrachten aktve Drehun se eµ - ONB durch de Matrx R( α) e. Und eµ = S e st ene neue Bass, de durch Drehun SR ( ) S -1 µν ν α eeben. Da α n der neue -1 Bass α =S α wrd, muss S(R( α))s = R(S α) elten. D.h. zu beleber Darstellun n VR muss Bsp. = sen h -1 ( α ) h (S hα ) für τ 1 α τα lt: = d ( ) v + τ t, t = ( τα) τ α τ = 0 τ t = α t = αt, t de Erzeuende von Drehun um de Koordnatenachse µ µ µ t blden VR. µ

5 Ersetzen wr h = dv + τ βt, -1 = d h v τ βt, S hα = α + ατ β α erhalten βt, αt = ( β α ) t oder t µ, t ν = εµνλt λ, λ = beleb. q.e.d. Satz: De rreduzblen Darstellunen ener halbenfach Le-Alebra werden durch de Eenewerte der Casmr-Operatoren klassfzert. Defnton: "Casmr-Operator" Casmr-Operatoren snd Funktonen der Generatoren, de mt allen Generatoren vertauschen. Bsp. so() J J1J 1 +J J +J J, = j, J = 0; = 1,, Für de Berechnun der Eenwerte der Casmr-Operatoren verwese ch auf de Vorlesun der "Quantentheore I" Wenn man de Bezechnun J,m für enen normeerten Eenvektor von j und j wählt j J,m = J ( + J + 1) J,m so dass j J,m = m J,m 1 dann kann j 0,,1,,, m { j, j + 1,... j} De Eeenwert j des Casmr- Operators, also den rößten vorkommenden Wert für m, bezechnet man als "höhstes Gewcht". De Darstellun der Le-Alebra snd also de Eenräume des Casmr-Operators (der höhsten Gewchte) aufzählen lassen Ihre Dmenson st j+1. Bsp1. j=0(endmensonal), trveale Darstellun. R( α) = exp( α j) = 1. j = 0, Bsp. j=1(dredmensonal) "ensordarstellun" Der Darstellunsraum wrd aufespannt { } von 1,1, 1,0, 1, j = J = J =

6 J 1 = (J + + J - ) =, 1 J = (J + -J - ) = Dese Darstellun st en mt dem physkalschen Raum verbunden. Durch de Ähnlchketstransformaton τ 1 0 man zu der defnerenden Darstellun von SO() zurück. -1 S J S = mt S= 0 0 elan De anzzahlen rreduzblen Darstellunen heßen allemen "ensordarstellunen". Bsp. j=1(dredmensonal) "ensordarstellun" mt dem Darstellunsraum { } von 1,1, 1,0, 1, 1 Bemerkun: De Zuständen J,m snd de ensordarstellunen Eenzustände des Dfferentaloperators. ħ L = X ( Drehmpuls der Quantenmechank). m In der Ortsdarstellun snd de Zustände de Kuelflächenfunktonen J,m = Y J Bsp. (zwedmensonal) "Spnordarstellun" Der Darstellunsraum wrd aufespannt von ,,, J = J + = J - = J 1 = J = D.h.:J = σ ( Paul sche Spnmatrzen)Generell versteht man unter Darstellunen mt halbzahlem j "Spnordarsellunen".Damt haben wr alle rreduzblen Darstellunen der Le-Alebra so() efunden und kateorsert. Aus der defnerenden Darstellun der SO() (de ene ensordarstellun mt dm= st) lassen sch alle ensordarstellunen ewnnen ncht jedoch "Spnordarstellunen" der Le-Gruppe SO(). Ausehend von der Le-Alebra kann man auf ren alebraschem We de Eenwerte und zuehören Eenräume fnden, de mt den Generatoren n Verbndun stehen und für rreduzblen Darstellunen de Eenräume der Gruppen blden.

7 Darstellun der SU() Betrachten komplexe untäre -Matrzen: a b U= mt a + b 1 * * -b a = mt zwe komplexe Zahlen und ene Bednun free Parameter dese 1 Generatoren snd de halben Paul-Matrzen:U ( α ) = exp( α σ ) also Spnordarstellun. j k σ σ jk σ De Le-Alebra su() der Le-Gruppe SU() st, = ε J jk Ernnerun:so(): J,J = ε j k d.h de Le-Alebra su() und so() snd lech. su() und so() unterscheden sch durch denfaktor 1/ m Exponenten. für Drehun um α = π folt R( π ) = R(0) =1 aber U(4π)=U(0)=1. jedem Element der SO() R( α) snd zwe Elementen der SU() U( α) und U( α + π ) zueordnet. D.h. m Geensatz zur π -Perodztät der SO() bestzt de SU() ene 4π Perodztät. Betrachten wr den Parameterraum der SU() durch Unmodulartätsbednu a + b = 1 4 erbt sch de Glechun ener (Hyper-)Kueloberfläche m R :u +v +x +y =1 mt den Matrxelementen von a = u+v und b = x+y. Deser soenannte "Parameterraum"von SU() st enfach zusmmenhänend: je zwe Wee zwschen zwe Punkten lassen sch enfach zusammenchänend nenander uberführen. Be SO() snd dese Punkte dentesch man kann sch den Parameterraum von SO() als de obere Halbkuel vorstellen, be der dametrale Punkte auf dem Äquator dentsch snd. Man sat: SU() st Überlaerunsruppe von SO(). Satz: jede Le-Alebra st Le-Alebra enau ener enfach zusammenhänenden Le-Gruppe. jede andere Le-Gruppe mt der lechen Le-Alebra, de n-fach zusamenhänt, wrd von der enfach zusammenhänenden Le-Gruppe n-fach überlaert. De Le-Gruppe SO() und SU() snd lokal um de Identtät somorph. Das folt aus der Glechhet hrer Le-Alebren. Global zerfallen allerdns de rreduzblen Darstellunen n ensordarstellunen und Spnordarstellunen. Bede Arten snd Darstellunen der SU(), aber nur de ensordarstellun snd Darstellunen der SO(). Manchmal sprcht man von Spnordarstellun der SO(). Mathematsch korrekt st allerdns, von ener Überlaerunsruppe zusprechen.

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

B.3 Heterogene Phasengleichgewichte

B.3 Heterogene Phasengleichgewichte B.3 Heteroene Phasenechewchte In Kate B.2 haben Se Gechewchte chemscher Reaktonen kennen eernt, be denen Komonenten mt enander unter Bdun neuer Substanzen umesetzt wurden. Dese Reaktonen fanden mestens

Mehr

Chair of Software Engineering

Chair of Software Engineering 1 2 Enführung n de Programmerung Bertrand Meyer Vorlesung 13: Contaner-Datenstrukturen Letzte Bearbetung 1. Dezember 2003 Themen für dese Vorlesung 3 Contaner-Datenstrukturen 4 Contaner und Genercty Enthalten

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Praktischer Schutz vor»flooding- Angriffen«bei Chaumschen Mixen

Praktischer Schutz vor»flooding- Angriffen«bei Chaumschen Mixen Pratscher Schutz vor»floodn- Anrffen«be Chaumschen xen Olver Berthold Hannes Federrath Stefan Köpsell TU Dresden, Faultät Informat 01062 Dresden {ob2, federrath, oepsell}@nf.tu-dresden.de Zusammenfassun

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung 3 Lösungen 3. Mschungen und Lösungen Homogene Phasen, n denen alle Komonenten glechartg behandelt werden, heßen Mschungen. Wenn ene Komonente m Überschuß vorlegt, kann man von Lösungen srechen. Sezfsche

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

6 Einige physikalische Grundlagen der optischen Spektroskopie

6 Einige physikalische Grundlagen der optischen Spektroskopie Kaptel 6, Sete 6 Enge physkalsche Grundlagen der optschen Spektroskope Mt optschen Verfahren lassen sch de Rotatonsspektren klener Moleküle, alle Raman- Rotatonsspektren, de Schwngungsspektren enschleßlch

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Rotation in kartesischen Koordinaten

Rotation in kartesischen Koordinaten Rotaton n kartesschen Koordnaten Generell gbt es dre Frehetsgrade für de Orenterung m Raum und es werden mest zwe Verfahren zur Beschrebung der Orenterung angewandt: Euler-Wnkel (Mechank, ) Roll, Ptch,

Mehr

Bewertung von Derivaten mit finiten Differenzen

Bewertung von Derivaten mit finiten Differenzen Bewertung von Dervaten mt fnten Dfferenzen Lutz Kruschwtz und Rolf Ketzler 22 Jul 2002 Inhaltsverzechns 1 Enführung 2 2 Rekaptulaton des Black Scholes Modells 2 3 Fnte Dfferenzen 3 31 Gtter und Dfferenzenbldung

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

SteigLeitern Systemteile

SteigLeitern Systemteile 140 unten 420 2 0 9 12 1540 1820 Länge 140 StegLetern Leterntele/Leterverbnder Materal Alumnum Stahl verznkt Sprossenabstand 2 mm Leternholme 64 mm x 25 mm 50 x 25 mm Leternbrete außen 500 mm Sprossen

Mehr

Was haben Schüler und Großbanken gemein?

Was haben Schüler und Großbanken gemein? Armn Fügenschuh Aleander Martn Was haben Schüler und Großbanken gemen? Mathematsche Modellerung Analyse und Lösung am Bespel des Rucksackproblems Unter gegebenen Randbedngungen optmale Entschedungen zu

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? rmatonen rund ums Handy INHALT 2 3 4/5 6 7 8 9 10 11 12 Moblfunk: Fakten So werden Funksgnale übertragen So funktonert en Telefonat von Handy zu Handy So wrkt

Mehr

Dr. Leinweber & Partner Rechtsanwälte

Dr. Leinweber & Partner Rechtsanwälte Referent: Rechtsanwalt Johannes Rothmund Dr. Lenweber & Partner Rechtsanwälte Lndenstr. 4 36037 Fulda Telefon 0661 / 250 88-0 Fax 0661 / 250 88-55 j.rothmund@lenweber-partner.de Defnton: egenständge Bezechnung

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements

Leitliniengerechte psychosoziale Versorgung aus der Sicht des Krankenhausmanagements Unser Auftrag st de aktve Umsetzung der frohen Botschaft Jesu m Denst am Menschen. Ene Herausforderung, der wr täglch neu begegnen. Mt modernster Technk und Kompetenz. Und vor allem mt Menschlchket. Letlnengerechte

Mehr

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Selbstlokalisierung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Enführung n de Robotk Selbstlokalserung Mohamed Oubbat Insttut für Neuronformatk Tel.: (+49) 731 / 50 4153 mohamed.oubbat@un-ulm.de 08. 01. 013 Dr. Oubbat, Enführung n de Robotk (Neuronformatk, Un-Ulm)

Mehr

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung Moble cherhet durch effzente ublc-key-verschlüsselung Hagen loog Drk Tmmermann Unverstät Rostock, Insttut für Angewandte Mkroelektronk und Datenverarbetung Rchard-Wagner-tr., 9 Rostock Hagen.loog@un-rostock.de

Mehr

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung IP Kamera 9483 - Konfguratons-Software Gebrauchsanletung VB 612-3 (06.14) Sehr geehrte Kunden......mt dem Kauf deser IP Kamera haben Se sch für en Qualtätsprodukt aus dem Hause RAEMACHER entscheden. Wr

Mehr

Telekom-Prämien-Garant 2010-2015/1 der Volksbank Vorarlberg eingetragene Genossenschaft bis zu Nominale EUR 3.000.000,--

Telekom-Prämien-Garant 2010-2015/1 der Volksbank Vorarlberg eingetragene Genossenschaft bis zu Nominale EUR 3.000.000,-- Telekom-Prämen-Garant 2010-2015/1 der Volksbank Vorarlberg engetragene Genossenschaft bs zu Nomnale EUR 3.000.000,-- mt Aufstockungsmöglchket ISIN AT0000A0GZS6 Zechnungsangebot Zechnungsfrst: Ausgabekurs:

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK

TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK Insttut für Regelungs- und Steuerungstheore D I P L O M A R B E I T Thema: Regelungstechnsche Untersuchung enes nversen Pendels

Mehr

Energie, Masse und Information

Energie, Masse und Information Energe, Masse und Informaton Professor Dr. Klaus Hofer De Beschrebung unserer Welt mt Hlfe der ver Naturelemente Feuer, Wasser, Erde, und Luft geht auf den grechschen Naturphlosophen Empedokles (473 v.ch.)

Mehr

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt

MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt MULTIVAC Kundenportal Ihr Zugang zur MULTIVAC Welt Inhalt MULTIVAC Kundenportal Enletung Errechbarket rund um de Uhr Ihre ndvduellen Informatonen Enfach und ntutv Hlfrech und aktuell Ihre Vortele m Überblck

Mehr

Schneller. Kompakter. Leistungsfähiger. Kleine, universelle Schwenkeinheit SRU-mini

Schneller. Kompakter. Leistungsfähiger. Kleine, universelle Schwenkeinheit SRU-mini SRU-mn Pneumatsch Schwenkenheten Mnaturschwenkenhet Schneller. Kompakter. Lestungsfähger. Klene, unverselle Schwenkenhet SRU-mn Lechte und schnelle Mnaturschwenkenhet mt velfältgen Optonen we Fluddurchführung,

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN

RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN RICHTLINIEN FÜR DIE GESTALTUNG VON EINTRÄGEN Stand Jul 2014 Lebe Vermeter, wr möchten dem Suchenden das bestmöglche Portal beten, damt er be Ihnen bucht und auch weder unser Portal besucht. Um den Ansprüchen

Mehr

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen

1. Systematisierung der Verzinsungsarten. 2 Jährliche Verzinsung. 5 Aufgaben zur Zinsrechnung. 2.1. Jährliche Verzinsung mit einfachen Zinsen 1 Systematserung der Verznsungsarten 2 Jährlche Verznsung 3 Unterjährge Verznsung 4 Stetge Verznsung 5 Aufgaben zur Znsrechnung 1. Systematserung der Verznsungsarten a d g Jährlche Verznsung nfache Znsen

Mehr

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen:

Beispiel: Die Zahl 32768 als Summe der Ziffern, die einen Koeffizient zur Potenz 10 darstellen: - Zahlendarstellung n Rechnern Wr wssen berets aus der Dgtaltechnk we Ganzzahlen bnär dargestellt (codert) werden und können de Grundrechenoperatonen ausführen. I nachfolgenden Kaptel wrd auf deser Matere

Mehr

5. Transmissionsmechanismen der Geldpolitik

5. Transmissionsmechanismen der Geldpolitik Geldtheore und Geldpoltk Grundzüge der Geldtheore und Geldpoltk Sommersemester 2013 5. Transmssonsmechansmen der Geldpoltk Prof. Dr. Jochen Mchaels Geldtheore und Geldpoltk SS 2013 5. Transmssonsmechansmen

Mehr

Thema Einführung in Teilchenbeschleuniger

Thema Einführung in Teilchenbeschleuniger emnar W 1/ RWTH Moderne Methoden/Expermente der Telchen- und Astrotelchenphysk Thema Enführung n Telchenbeschleunger precher Chrstoph Gehlen Enletung Bedeutung hoher Telchenenergen Kräfte zur Beschleungung

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Grundzüge der Geldtheorie und Geldpolitik

Grundzüge der Geldtheorie und Geldpolitik Grundzüge der Geldtheore und Geldpoltk Sommersemester 2012 8. Monetäre Transaktonskanäle Prof. Dr. Jochen Mchaels SoSe 2012 Geldtheore & -poltk 8. De Übertragung monetärer Impulse auf de Gesamtwrtschaft

Mehr

Numerische Methoden der Thermo- und Fluiddynamik

Numerische Methoden der Thermo- und Fluiddynamik Technsche Unverstät Berln HERMANN FÖTTINGER INSTITUT FÜR STRÖMUNGSMECHANIK Numersche Methoden der Thermo- und Fluddynamk von T. Rung, L. Xue, J. Yan, M. Schatz, F. Thele vorläufge Verson 2002 Redakton:

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

Ihr geschützter Bereich Organisation Einfachheit Leistung

Ihr geschützter Bereich Organisation Einfachheit Leistung Rev. 07/2012 Ihr geschützter Berech Organsaton Enfachhet Lestung www.vstos.t Ihr La geschützter tua area rservata Berech 1 MyVstos MyVstos st ene nformatsche Plattform für den Vstos Händler. Se ermöglcht

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Cloud Computing: Willkommen in der neuen Welt der Geschäftsanwendungen

Cloud Computing: Willkommen in der neuen Welt der Geschäftsanwendungen Cloud Computng: Wllkommen n der neuen Welt der Geschäftsanwendungen Marktforscher und Analysten snd sch eng: Cloud Computng st das IT-Thema der Zukunft. Doch was verbrgt sch genau hnter dem Begrff Cloud

Mehr

Donnerstag, 27.11.2014

Donnerstag, 27.11.2014 F ot o: BMW AGMünc hen X Phone nmot on E x ec ut v epr ev ew 2 7.Nov ember2 01 4 BMW Wel tmünc hen Donnerstag, 27.11.2014 14:00 15:00 15:00 16:00 16:00 17:00 17:00 17:45 Apertf Meet & Greet Kaffee & klener

Mehr

Telekom-Bonus-Garant 2009-2014/1 der Volksbank Vorarlberg eingetragene Genossenschaft bis zu Nominale EUR 3.000.000,--

Telekom-Bonus-Garant 2009-2014/1 der Volksbank Vorarlberg eingetragene Genossenschaft bis zu Nominale EUR 3.000.000,-- Telekom-Bonus-Garant 2009-2014/1 der Volksbank Vorarlberg engetragene Genossenschaft bs zu Nomnale EUR 3.000.000,-- mt Aufstockungsmöglchket AT0000A0FP19 Zechnungsangebot Zechnungsfrst: Ausgabekurs: Ab

Mehr

Metrische Untersuchung der Wiederverwendung im Content Management. Statische Kennzahlen in der Technischen Redaktion

Metrische Untersuchung der Wiederverwendung im Content Management. Statische Kennzahlen in der Technischen Redaktion Metrsche Untersuchung der Wederverwendung m Content Management Statsche Kennzahlen n der Technschen Redaton W. Zegler 1 [Stand: 14. September 2008] De Enführung von Content Management (CM) Methoden und

Mehr

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Prvate Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Angeln Se sch Ihr Extra be der Rester-Rente. Rendtestark vorsorgen mt ALfonds Rester, der fondsgebundenen Rester-Rente der ALTE LEIPZIGER. Beste Rendtechancen

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

Das gratis ebook fur deinen erfolgreichen Blogstart

Das gratis ebook fur deinen erfolgreichen Blogstart Das grats ebook fur denen erfolgrechen Blogstart präsentert von www.pascromag.de DAS ONLINE-MAGAZIN für dene täglche Inspraton aus den Berechen Desgn, Fotografe und Resen. Mt velen wertvollen Tpps. 1.

Mehr

Aerodynamik des Flugzeugs Numerische Strömungssimulation

Aerodynamik des Flugzeugs Numerische Strömungssimulation Aerodnamk des Flgzegs Nmersche Srömngssmlaon Enleng Srömngssmlaon n Wndkanälen 3 Nmersche Srömngssmlaon 4 Poenalsrömngen 5 Tragflügel nendlcher Sreckng n nkompressbler Srömng 6 Tragflügel endlcher Sreckng

Mehr

netbank Ratenkredit Große Flexibilität hohe Sicherheit

netbank Ratenkredit Große Flexibilität hohe Sicherheit netbank Ratenkredt Große Flexbltät hohe Scherhet Beten Se Ihren Kunden mt dem netbank Ratenkredt mehr Frehet für ene schere Investton n de Zukunft. In deser Broschüre fnden Se alle wchtgen Informatonen

Mehr

Dampfdruckdiagramme binärer Mischungen

Dampfdruckdiagramme binärer Mischungen Stand: 08/009 I.5. Damfdruckdagramme bnärer Mschungen Ze des Versuches st es, Grundagen der Thermodynamk bnärer Mschhasen am ese enes -v- Gechgewchts zu studeren. Dabe werden aus Messungen des Gesamtdamfdruckes

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

Numerische Klassifikation (Cluster Analyse) anhand nominaler, ordinaler oder gemischter Merkmale

Numerische Klassifikation (Cluster Analyse) anhand nominaler, ordinaler oder gemischter Merkmale 2 Schrften aus der Fakultät Sozal- und Wrtschaftswssenschaften der Otto-Fredrch-Unverstät Bamberg Numersche lassfkaton (Cluster Analyse) anhand nomnaler, ordnaler oder gemschter Merkmale Theore und Praxs

Mehr

Komplex: Bestimmung der elektrischen Leitfähigkeit und des ph-wertes von Elektrolytlösungen und Wässern

Komplex: Bestimmung der elektrischen Leitfähigkeit und des ph-wertes von Elektrolytlösungen und Wässern Hochschule für Technk, Wrtschaft und Kultur Lepzg (FH) Fb Informatk, Mathematk und Naturwssenschaften - Cheme - Chemsches Praktkum: Energetechnk Komplex: Bestmmung der elektrschen Letfähgket und des ph-wertes

Mehr

Einführung in das quantitative Asset Management

Einführung in das quantitative Asset Management Enführung n das quanttatve sset Management 1. Enletung Unter sset Management, zu Deutsch Vermögensverwaltung, versteht man kurz gesagt den strukturerten ufbau und de Verwaltung von Vermögen n der Zet.

Mehr

Lineare Regressionsanalyse mit SPSS

Lineare Regressionsanalyse mit SPSS Unverstät Trer Zentrum für Informatons-, Medenund Kommunkatonstechnologe (ZIMK) Bernhard Baltes-Götz Lneare Regressonsanalyse mt SPSS 850 800 750 Y 0 700 5 5 X 0 0 X 0 5 5 04 (Rev. 40804) Herausgeber:

Mehr

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften Ertragsmanagementmodelle n servceorenterten IT- Landschaften Thomas Setzer, Martn Bchler Lehrstuhl für Internetbaserte Geschäftssysteme (IBIS) Fakultät für Informatk, TU München Boltzmannstr. 3 85748 Garchng

Mehr

Universität Koblenz Landau Fachbereich Informatik

Universität Koblenz Landau Fachbereich Informatik Unverstät Koblenz Landau Fachberech Informatk Computergenererte Federzechnungen (Strchzechnungen, Pen-And-Ink Drawngs) Gudo Stegmann Matrkelnummer 882022 Semnar Computergraphk betreut von Prof. Dr.-Ing.

Mehr

DIE DYNAMISCHE OPTIMIERUNG BEIM GRADIENTENENTWURF

DIE DYNAMISCHE OPTIMIERUNG BEIM GRADIENTENENTWURF DIE DYNMISCHE OPTIMIERUNG BEIM GRDIENTENENTWURF Wlhelm CSPRY Hansbert HEISTER Walter WELSCH In: CSPRY, Wlhelm / WELSCH, Walter (Hrsg.) [98]: Beträge zur großräumgen Neutrasserung Schrftenrehe des Wssenschaftlchen

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

2 Aktivitäten und Haushaltsgeräte i TB: 2 3

2 Aktivitäten und Haushaltsgeräte i TB: 2 3 25 Welt der Technk 1 Geräte n enem modernen Haushalt TB: 1 Ergänze btte de Namen der Geräte und de Artkel. 2. 1. 3. 4. 6. 5. 7. 2 Aktvtäten und Haushaltsgeräte TB: 2 3 Ergänze btte de Tabelle. Aktvtät

Mehr

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN ZUSAZBEIRAG UND SOZIALER AUSGLEICH IN DER GESEZLICHEN KRANKENVERSICHERUNG: ANREIZEFFEKE UND PROJEKION BIS 2030 Martn Gasche 205-2010 Zusatzbetrag und sozaler Ausglech n der Gesetzlchen Krankenverscherung:

Mehr

Online-Services Vorteile für Mandanten im Überblick

Online-Services Vorteile für Mandanten im Überblick Onlne-ervces Vortele für en m Überblck Fgur-enzeln E-Mal Dgtales Belegbuchen Fgur-Gruppe teuerberater austausch mt Kassenbuch der Fnanzverwaltung onlne hreschluss Jahresbschluss De Entfernung zu Ihrem

Mehr

6 Makromoleküle. Π = c i RT [1 + B c i +... ], (6.01) Kapitel 6, Seite 1

6 Makromoleküle. Π = c i RT [1 + B c i +... ], (6.01) Kapitel 6, Seite 1 Kaptel 6, Sete 1 6 Makromoleküle Klene Moleküle bestehen aus zwe oder zumndest wenger als zehn Atomen. Bekannte Vertreter der großen Moleküle snd de Chlorophylle, deren Molmasse noch unter 1000 legt. Makromoleküle

Mehr

Anlage Netznutzungsentgelte Erdgas 2014 der Stadtwerke Eschwege GmbH

Anlage Netznutzungsentgelte Erdgas 2014 der Stadtwerke Eschwege GmbH Entgelte be Erdgas-Ersatzbeleferung für Industre- und Geschäftskunden mt Lestungsmessung und enem Jahresverbrauch von mehr als 1.500.000 kh. Gültg ab 01.01.2014 De Ersatzversorgung endet sobald de Erdgasleferung

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Ein Vorschlag zur Modellierung von Summenexzedenten- Rückversicherungsverträgen in Internen Modellen

Ein Vorschlag zur Modellierung von Summenexzedenten- Rückversicherungsverträgen in Internen Modellen En Vorschlag zur Modellerung von Summenexzedenten- Rückverscherungsverträgen n Internen Modellen Dorothea Ders Preprnt Seres: 27-22 Fakultät für Mathematk und Wrtschaftswssenschaften UNIVERSITÄT ULM En

Mehr

Reale Außenwirtschaft

Reale Außenwirtschaft Vorlesungsskrpt Reale Außenwrtschaft. Auflage (erwetert und verbessert), 007 Mchael Rauscher Glederung. Vorbemerkungen. Gegenstand der realen Außenwrtschaftstheore?. En emprsches Bld der nternatonalen

Mehr

Logik die Grundlagen. g A E H M K. d b f. Logik Grundlagen 1

Logik die Grundlagen. g A E H M K. d b f. Logik Grundlagen 1 Lok Grunlaen 1 Lok e Grunlaen De Lok s ene sehr ale Wssenschaf. Se s e Lehre vom rchen Denken un beschäf sch m en Reeln un echansmen es Schlussfolerns (loos = as Wor). 'rfunen' wure se beres m anken Grechenlan,

Mehr

Statistische Regressionsmodelle

Statistische Regressionsmodelle Statstsche Regressonsmodee Te II: Veragemenerte Lneare Modee Werner Stahe Semnar für Statstk, ETH Zürch März 2005 / Ma 2008 Zweter Te der Unteragen zu enem Kurs über Regressonsmodee, gehaten vom 4.-6.

Mehr

WÄRMEÜBERTRAGUNG - Doppelrohr

WÄRMEÜBERTRAGUNG - Doppelrohr WÄRMEÜBERTRAGUNG - Doppelrohr Dpl.-Ing. Eva Drenko 1. Voraussetzungen Für de Durchführung deses Übungsbespels snd folgende theoretsche Grundlagen erforderlch: a. Gesetzmäßgketen von Transportprozessen;

Mehr

Der Außenbereich im französischen Stil. Seit 15 Jahren führend Erfinder und größter Hersteller der bioklimatischen Pergola in Frankreich

Der Außenbereich im französischen Stil. Seit 15 Jahren führend Erfinder und größter Hersteller der bioklimatischen Pergola in Frankreich Der Außenberech m französschen Stl Set 15 Jahren führend Erfnder und größter Hersteller der boklmatschen Pergola n Frankrech Unsere Werte Engagement: Jeder Mtarbeter muss jeden Tag daran denken, dass allen

Mehr

Kurzgutachten zur Buchpreisbindungsstudie des Office of Fair Trading (OFT)

Kurzgutachten zur Buchpreisbindungsstudie des Office of Fair Trading (OFT) Kurzgutachten zur Buchpresbndungsstude des Offce of Far Tradng (OFT) Dr. Egon Bellgardt 17. November 2008 Inhalt Management Summary...2 0. Gegenstand des Kurzgutachtens...4 1. Stellungnahme zu Enzelaspekten

Mehr

3.1 Grundlagen der Multivariaten Modellierung

3.1 Grundlagen der Multivariaten Modellierung Semnar: Quanttatves Rskomanagement Multvarate Moelle I Prof: Hanspeter.Schml Betreuung: Jula Esenberg Zhou,Yng 3. Multvarate Moelle I Fnanzelle Rskomoelle für en Absatzmarkt oer für Kretrsken sn grunsätzlch

Mehr

Inhaltsverzeichnis. BAND 1 Kapitel 1 Software-Architekturen. Kapitel 2 WDSC. Inhalt. i Seite 1

Inhaltsverzeichnis. BAND 1 Kapitel 1 Software-Architekturen. Kapitel 2 WDSC. Inhalt. i Seite 1 Inhalt Kaptel Inhaltsverzechns BAND 1 Kaptel 1 Software-Archtekturen 1.1 Archtekturmuster 1.1.1 Layers/Schchten 1.1.2 Clent/Server 1.1.3 MVC Model Vew Controller Sete 1 Ergänzung 14/2010 Kaptel 2 WDSC

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) Physkalsh-heshes Praktku für Pharazeuten C. Nahberetungstel (NACH der Versuhsdurhführung lesen!) 4. Physkalshe Grundlagen 4.1 Starke und shwahe Elektrolyte Unter Elektrolyten versteht an solhe heshen Stoffe,

Mehr

Hypothekenversicherung oder Bankhypothek?

Hypothekenversicherung oder Bankhypothek? Unverstät Augsburg Prof Dr Hans Ulrch Buhl Kernkompetenzzentrum Fnanz- & Informatonsmanagement Lehrstuhl für BWL, Wrtschaftsnformatk, Informatons- & Fnanzmanagement Dskussonspaper WI-44 Hypothekenverscherung

Mehr

Wir fokussieren das Wesentliche. OUTLINE Individuelle Lösung von d.vinci OUTLINE. Recruiting-Prozess. Unternehmen. Einflussfaktoren.

Wir fokussieren das Wesentliche. OUTLINE Individuelle Lösung von d.vinci OUTLINE. Recruiting-Prozess. Unternehmen. Einflussfaktoren. Wr fokusseren das Wesentlche. Der demografsche Wandel, ene hohe Wettbewerbsdchte, begrenzte Absolventenzahlen es gbt enge Faktoren, de berets heute und auch n Zukunft für enen Mangel an qualfzerten und

Mehr