Seminar Mathematische Modelle in den Natur- und Ingenieurwissenschaften

Größe: px
Ab Seite anzeigen:

Download "Seminar Mathematische Modelle in den Natur- und Ingenieurwissenschaften"

Transkript

1 Seminar Mathematische Modelle in den Natur- und Ingenieurwissenschaften Prof. Dr. Willy Dörfler JProf. Dr. Tobias Jahnke Institut für Angewandte und 14. Februar 2008

2 Formales Ort und Zeit: Dienstags um 14:00 Uhr, S11 Zielgruppe: Studierende im Hauptstudium Studierende des Lehramts Einzelarbeit

3 Das sollen Sie lernen Einige mathematische Modelle Umgang mit wissenschaftlichen Texten Halten eines (wissenschaftlichen) Vortrags Mathematik erklären

4 Das sollten Sie mitbringen Interesse an mathematischer Modellierung Kenntnisse aus Analysis III Interesse an Physik oder Chemie Kein Angst vor komplizierten Formeln

5 Was wir von Ihnen erwarten Einarbeitung (min 4 Wochen) Vortrag (60 Minuten) Tafel Beamer Diskussion der Vorträge Ausarbeitung (5 Seiten)

6 Das können Sie mitnehmen Vortragserfahrung Information über aktuelle Forschungsgebiete Kontakt zu Mitarbeitern unseres Instituts (Examensarbeit, Diplomarbeit) Seminarschein

7 Themengebiet 1: Optische Eigenschaften photonischer Kristalle Betreuer: Markus Richter

8 Die Maxwell-Gleichungen Und Gott sprach und es wurde Licht. H = D + J, t E = B t, B = 0, D = ϱ

9 Vortrag 1.1 Die Maxwell-Gleichungen Wie interpretiert man die einzelnen Größen? Was beschreiben die einzelnen Gleichungen? Was sind die zugrunde liegenden physikalischen Phänomene? Was sind die zugrunde liegenden mathematischen Sätze? Welche Wechselwirkungen bestehen zwischen Licht und Materie?

10 Vortrag 1.2 Weiterer Vortrag über die Maxwell-Gleichungen Inhalte werden noch bekannt gegeben...

11 Vortrag 1.3 Vereinfachungen und Anwendungen Was sind zeitharmonische Wellen? Wie gelangt man zu Eigenwertproblemen? Was sind Moden? Kann Licht durch eine Rohrleitung fließen?

12 Vortrag 1.4 Die schwache Formulierung Was sind schwache Formulierungen? Warum benötigt man eine schwache Formulierung bei photonischen Kristallen? Was ist der Raum H(curl)? Welches Eigenwertproblem beschreibt einen photonischen Kristall?

13 Themengebiet 2: Faser- und Partikelsedimentation Betreuer: Markus Feist Florian Keller

14

15 Navier Stokes Gleichungen Newtonsches und inkompressibles Fluid: ρ f ( u t (x, t)+u(x, t) u(x, t) ) u(x, t)= 0 für alle (x, t) R 3 \B(t) R + = p(x) + µ f u(x, t) + ρ f g g = (g x1, g x2, g x3 ) T Erdbeschleunigung x = (x 1, x 2, x 3 ) Ortsvektor t Zeitvariable

16 Vortrag 2.1 Herleitung der Navier Stokes Gleichungen Welche Vereinfachungen werden gemacht? Welche Auswirkungen haben diese Vereinfachungen? Beispiele Erklärungen? Koordinatentransformation mit den Navier-Stokes Gleichungen?

17 Vortrag 2.2 Weiterer Vortrag über die Navier Stokes Gleichungen Inhalte werden noch bekannt gegeben...

18 Vortrag 2.3 Weitere Strömungsformen Entdimensionierung der Navier Stokes Gleichungen? Langsame Umströmung einer Kugel? Umströmung eines schlanken Körpers? Turbulente Strömungen?

19 Sedimentation eines geladenen Partikels in einem Elektrolyt Navier-Stokes Kraft/Moment Nernst-Planck Maxwell/Poisson

20 Sedimentation eines geladenen Partikels in einem Elektrolyt Gesamtmodell Gesuchte Groessen: v F, p F, v i, n i, ψ, ż α. ρ F v F t n i t + v F v F + p F µ F v F ρ F g ρ e ψ = 0, v F = 0; ψ ρ e ɛ 0 ɛ r = 0, + D i n i + v F n i D i e k B T (z in i ψ) = 0, v i v F + z ie λ i ψ + k BT λ i ln(n i ) = 0.

21 Vortrag 2.4 Sedimentation eines geladenen Partikels in einem Elektrolyt Herleitung der Poissongleichung und der Nernst-Planck-Gleichung Sternschicht-Theorie Randbedingungen Entdimensionierung des Gesamtsystems Vereinfachung der Gleichungen Existenz und Eindeutigkeit der Lösung Analytische Lösungen für Spezialfälle Lösung von Oshima

22 DLVO-Theorie Untersuchung der Stabilitaet von Suspensionen U T Bornsche Abstoßung Elektrostatische Abstoßung h Gesamtwechselwirkung v. d. Waals Anziehung

23 Vortrag 2.5 DLVO-Theorie Druck zwischen zwei Flächen in einem Elektrolyt van der Waals-Kräfte Bornsche Abstoßung Hamaker-Theorie Abhängigkeit der Stabiltität von der Ionenkonzentration Erweiterung der DLVO-Theorie Stabilisierung von Suspensionen

24 Themengebiet 3: Nonlinear Dispersive Waves in the Nonlinear Schroedinger Approximation Betreuer: Tomas Dohnal

25 Nonlinear Schroedinger Equation iu t + u + γ u 2 u = 0, u = u(x, t) C, x R d, t 0 Applications: optical pulses (e.g. from a laser) in cubically nonlinear media (e.g. silica) photonic fibers ( 1D NLS) slab waveguides ( 2D NLS) bulk media ( 3D NLS) wavepackets of surface waves on deep water (1D or 2D NLS) plasma waves in general: wavepackets in weakly nonlinear, dispersive and conservative systems

26 Nonlinear Schroedinger Equation Derivation for pulses in optical fibers with a cubic nonlinearity: Maxwell s equations reduce to E n2 0 c 2 2 t E 1 c 2 2 t ( χ (3) E 2 E ) = 0, n 0 = n 0 (x 2 + y 2 ) Assuming a slowly varying envelope ansatz E = (U(x, y, ω 0 ), 0, 0) T A(Z, T 1, T 2 )e i(k 0z ω 0 t) + c.c., Z = ε z, T 1 = ε t, T 2 = ε 2 t Using multiple scales expansion obtain the 1D NLS i T2 A + α 2 ξ A + β A 2 A = 0.

27 Nonlinear Schroedinger Equation Derivation for pulses in optical fibers with a cubic nonlinearity: Maxwell s equations reduce to E n2 0 c 2 2 t E 1 c 2 2 t ( χ (3) E 2 E ) = 0, n 0 = n 0 (x 2 + y 2 ) Assuming a slowly varying envelope ansatz E = (U(x, y, ω 0 ), 0, 0) T A(Z, T 1, T 2 )e i(k 0z ω 0 t) + c.c., Z = ε z, T 1 = ε t, T 2 = ε 2 t Using multiple scales expansion obtain the 1D NLS i T2 A + α 2 ξ A + β A 2 A = 0.

28 Nonlinear Schroedinger Equation Properties of the NLS: dispersive Hamiltonian (infinite dimensional) completely integrable via the inverse scattering transform explicit pulse-like solutions known in 1D: solitons

29 Vortrag 3.1 Nonlinear Schroedinger Equation Project Tasks: overview of the applications of NLS derivation of the NLS for pulses in optical fibers with instantaneous cubic nonlinearity from the nonlin. Maxwell equation under the divergence free condition E = 0 abstract derivation for envelopes of wavepackets in weakly nonlinear dispersive systems soliton solutions

30 Gross-Pitaevsky Equation/Periodic NLS iu t +u + xx V (x)u+γ u 2 u = 0, V (x+d) = V (x), t 0, x R, γ Applications: Gross-Pitaevsky: density distribution of an elongated Bose-Einstein Condensate (supercooled Rb, He,...) loaded on an optical lattice Periodic NLS: optical beam in a periodic slab waveguide Derivation in the optics setting: - cubically nonlinear dielectric medium - refractive index n 0 = n 0 (y)v (x), V (x + d) = V (x) - slowly modulated beam in the z direction U(y, ω 0 ) E = 0 A(Z, x)e i(k 0z ω 0 t) + c.c., Z = ε z 0

31 Gross-Pitaevsky Equation/Periodic NLS Properties of the periodic NLS: dispersive Hamiltonian (infinite dimensional) NOT completely integrable via the inverse scattering transform spectrum of the linear oprator xx k 2 V (x) is continuous with gaps in the spectral gaps exist stationary solitary waves: Gap Solitons

32 Vortrag 3.2 Gross-Pitaevsky Equation/Periodic NLS Project Tasks: detailed derivation of the periodic NLS either for optics or BECs and a brief derivation for the other case computation of σ( xx k 2 V (x)) using Floquet theory overview of known results on existence and linear stability fo gap solitons

33 Themengebiet 4: Stochastische Reaktionskinetik Betreuer: Tobias Jahnke

34 Traditionelle Reaktionskinetik Reaktionen zwischen verschiedenen Stoffen S 1, S 2,... c Beispiel: S 1 + S 1 2 S3 S 3 + S 4 c 2 2S Annahmen: konstante Temperatur konstantes Volumen homogene Verteilung im Raum Traditionelle Beschreibung: System von ODEs ( Konzentrationen)

35 Traditionelle Reaktionskinetik Reaktionen zwischen verschiedenen Stoffen S 1, S 2,... c Beispiel: S 1 + S 1 2 S3 S 3 + S 4 c 2 2S Annahmen: konstante Temperatur konstantes Volumen homogene Verteilung im Raum Traditionelle Beschreibung: System von ODEs ( Konzentrationen) Schlechtes Modell für Reaktionen in Zellen! Kleine Teilchenzahlen, kritische Fluktuationen

36 Vortrag 4.1 Der stochastische Simulationsalgorithmus Betrachte diskrete Teilchenzahlen statt Konzentrationen Zufallsvariable X(t) = X 1 (t). X d (t) N d Markov-Sprungprozess im Zustandsraum N d.

37 Vortrag 4.1 Der stochastische Simulationsalgorithmus Betrachte diskrete Teilchenzahlen statt Konzentrationen Zufallsvariable X(t) = X 1 (t). X d (t) N d Markov-Sprungprozess im Zustandsraum N d. Stochastic simulation algorithm (Gillespie 1976): Erzeuge Realisierungen von X(t).

38 Vortrag 4.2: Die chemische Mastergleichung Wahrscheinlichkeitsverteilung der Teilchenzahlen ( ) x 1 p(t, x) = P x k Exemplare von S k zur Zeit t, x =. N d x d Chemische Mastergleichung (CME) m t p(t, x) = ( ) α j (x ν j )p(t, x ν j ) α j (x)p(t, x) j=1 Propensity functions α j (x) Stoichiometrischer Vektor ν j Z d

39 Vortrag 4.2: Die chemische Mastergleichung Wahrscheinlichkeitsverteilung der Teilchenzahlen ( ) x 1 p(t, x) = P x k Exemplare von S k zur Zeit t, x =. N d x d Chemische Mastergleichung (CME) m t p(t, x) = ( ) α j (x ν j )p(t, x ν j ) α j (x)p(t, x) j=1 Propensity functions α j (x) Stoichiometrischer Vektor ν j Z d Chemische Mastergleichung = System von ODEs

40 Vortrag 4.2: Die chemische Mastergleichung Wahrscheinlichkeitsverteilung der Teilchenzahlen ( ) x 1 p(t, x) = P x k Exemplare von S k zur Zeit t, x =. N d x d Chemische Mastergleichung (CME) m t p(t, x) = ( ) α j (x ν j )p(t, x ν j ) α j (x)p(t, x) j=1 Propensity functions α j (x) Stoichiometrischer Vektor ν j Z d Chemische Mastergleichung = System von ODEs Problem: Eine ODE pro Zustand! Zu viele ODEs für traditionelle Verfahren!

41 Vortrag 4.2: Die chemische Mastergleichung Wahrscheinlichkeitsverteilung der Teilchenzahlen ( ) x 1 p(t, x) = P x k Exemplare von S k zur Zeit t, x =. N d x d Chemische Mastergleichung (CME) m t p(t, x) = ( ) α j (x ν j )p(t, x ν j ) α j (x)p(t, x) j=1 Propensity functions α j (x) Stoichiometrischer Vektor ν j Z d Chemische Mastergleichung = System von ODEs Beispiel: Drei Stoffe mit je bis zu 100 Kopien CME = ODEs!

42 Vortrag 4.2: Die chemische Mastergleichung Wahrscheinlichkeitsverteilung der Teilchenzahlen ( ) x 1 p(t, x) = P x k Exemplare von S k zur Zeit t, x =. N d x d Chemische Mastergleichung (CME) m t p(t, x) = ( ) α j (x ν j )p(t, x ν j ) α j (x)p(t, x) j=1 Propensity functions α j (x) Stoichiometrischer Vektor ν j Z d Chemische Mastergleichung = diskrete PDE

43 Vortrag 4.2: Die chemische Mastergleichung Wahrscheinlichkeitsverteilung der Teilchenzahlen ( ) x 1 p(t, x) = P x k Exemplare von S k zur Zeit t, x =. N d x d Chemische Mastergleichung (CME) m t p(t, x) = ( ) α j (x ν j )p(t, x ν j ) α j (x)p(t, x) j=1

44 Vortrag 4.3 Weiterer Vortrag über die chemische Mastergleichung Inhalte werden noch bekannt gegeben...

45 Das wars... Institut für Angewandte und

Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung

Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung Kolloquium zur Diplomarbeit an eines porösen Mediums und freien Flüssigkeit mit Hilfe von Sören Dobberschütz 4092009 Motivation Worum geht es im Folgenden? Gliederung 1 2 Transformationsregeln Transformierte

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr

Wechselkurse und Finanzmarkt-Indizes

Wechselkurse und Finanzmarkt-Indizes 8. Mai 2008 Inhaltsverzeichnis 1 Wechselkurse Einführung Wechselkurs US Dollar - Deutsche Mark Statistischer Prozess 2 Reinjektion Eigenschaften der Fluktuationen von x(τ) 3 Diffusion auf Finanzmärkten

Mehr

Bifurcations and Exceptional Points in Bose-Einstein Condensates

Bifurcations and Exceptional Points in Bose-Einstein Condensates Hauptseminar SS 12: Nichtlineare und nicht-hermitesche Quantendynamik Bifurcations and Exceptional Points in Bose-Einstein Condensates Fabian Ripka 4. Juli 2012 Universität Stuttgart 1. Institut für Theoretische

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

Adaptive Equalization With Time Lenses

Adaptive Equalization With Time Lenses Adaptive Equalization With Time Lenses Wolfgang Freude Institute of High-Frequency and Quantum Electronics (IHQ), University of Karlsruhe, Germany Universität Karlsruhe (TH) Institut für Hochfrequenztechnik

Mehr

Polarisation und Zwei-Niveau-Systeme

Polarisation und Zwei-Niveau-Systeme Polarisation und Zwei-Niveau-Systeme Merlin Becker Seminarvortrag Theoretische Quantenoptik WS12/13 Quelle: http://www.radartutorial.eu/06.antennas/pic/zirkulanim.gif 08.02.2013 Fachbereich Physik Institut

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Stationäre Newtonsche Strömung

Stationäre Newtonsche Strömung Stationäre Newtonsche Strömung Bettina Suhr Inhaltsverzeichnis 1 Einleitung 2 2 Die Navier-Stokes-Gleichungen 2 3 Die schwache Formulierung 2 4 Die Ortsdiskretisierung 5 4.1 Taylor-Hood Elemente........................

Mehr

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3 Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 21. April / 05. Mai 2017 1/18

Mehr

The Navier-Stokes equations on polygonal domains with mixed boundary conditions theory and approximation

The Navier-Stokes equations on polygonal domains with mixed boundary conditions theory and approximation Research Collection Doctoral Thesis The Navier-Stokes equations on polygonal domains with mixed boundary conditions theory and approximation Author(s): Brun, Markus Publication Date: 2002 Permanent Link:

Mehr

Institut für Angewandte und Numerische Mathematik

Institut für Angewandte und Numerische Mathematik Institut für Angewandte und Numerische Mathematik Wer sind wir? Was tun wir? PD Dr. Tilo Arens 0 PD Dr. Tilo Arens - Institut für Angewandte und Numerische Mathematik PD Dr. Tilo Arens KIT Die Forschungsuniversität

Mehr

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

Optimierung der Geometrie eines Kühlkörpers

Optimierung der Geometrie eines Kühlkörpers Johann Jakob Preuß Jan Michael Schulte Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms-Universität Münster Abschlusspräsentation, 2. Februar 2009 Inhaltsverzeichnis 1 Modellierung

Mehr

Prüfungsfragen und Prüfungsaufgaben

Prüfungsfragen und Prüfungsaufgaben Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle

Mehr

The Sine-Gordon-Equation

The Sine-Gordon-Equation The Sine-Gordon-Eqation Nonlinear ODE Origin of the SGE Transformation Scope of applications Chain of pendlms Gassian crvatre Solving the SGE Case Analysis of the soltions Solitons Soliton Collision Modern

Mehr

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen Kinetische Theorie Übersicht: Verteilungsfunktionen Grundgleichungen: Boltzmann Vlasov Fokker-Planck Kollissionen neutral trifft neutral neutral trifft geladen geladen trifft geladen Voraussetzungen: keine

Mehr

Übungen zur Einführung in die Geophysik II (SS 2017)

Übungen zur Einführung in die Geophysik II (SS 2017) Übungen zur Einführung in die Geophysik II (SS 207) Vorlesung: Dr. Ellen Gottschämmer (ellen.gottschaemmer@kit.edu) Übung: Martin Pontius (martin.pontius@kit.edu) Übungstermin und -ort: Do, 8.05.207, 08:00-09:30,

Mehr

I. Einführung in die PDGL

I. Einführung in die PDGL I. Einführung in die PDGL I.1 Modellierungsbeispiele I.2 Wohlgestelltheit I.3 Klassifizierung I.4 Lösungskonzepte Kapitel I (0) 1 Grundlegende Definitionen Partielle Differentialgleichung: (PDGL, engl.

Mehr

Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten

Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten Floquet-Theorie Differentialgleichungen mit periodischen Koeffizienten [1] Januar 2011 Institut für Angewandte Physik Nichtlineare Optik/Quantenoptik Friederike Fassnacht 1 Motivation Grundgleichung der

Mehr

Simulation reaktiver und nichtreaktiver Strömungen

Simulation reaktiver und nichtreaktiver Strömungen Statustreffen IWRMM, Karlsruhe, 15.4.2005 Simulation reaktiver und nichtreaktiver Strömungen Jochen Fröhlich Universität Karlsruhe Arbeitsbereiche des TCP Zusammenschluss 1.1.2004 Institut für Chemische

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Daniel Janocha Aus der Reihe: e-fellows.net stipendiaten-wissen e-fellows.net (Hrsg.) Band 1064 Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Weak solution of the Stokes equations

Mehr

Tunneleekt und Tunnelhamiltonian. Lukas Ogrodowski. Institut für Physik Albert-Ludwigs-Universität Freiburg. Quantendynamik in mesoskopischen Systemen

Tunneleekt und Tunnelhamiltonian. Lukas Ogrodowski. Institut für Physik Albert-Ludwigs-Universität Freiburg. Quantendynamik in mesoskopischen Systemen Tunneleekt und Tunnelhamiltonian Lukas Ogrodowski Institut für Physik Albert-Ludwigs-Universität Freiburg Quantendynamik in mesoskopischen Systemen Gliederung 1 Motivation 2 Tunneleekt 3 Tunnelhamiltonian

Mehr

Wigner-Funktion und kohärente Zustände

Wigner-Funktion und kohärente Zustände Wigner-Funktion und kohärente Zustände Daniel Kavajin Seminar zur Theorie der Atome, Kerne und kondensierten Materie 21.11.2012 Einleitung Ein klassischer Zustand wird durch einen Punkt im Phasenraum repräsentiert.

Mehr

Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum

Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum Statistische Physik / Chaos Theorie Institut für Physik und Astronomie Universität Potsdam Schwingungen: wichtig in Wissenschaft

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Die Modellierung von Logistikprozessen durch Warteschlangen

Die Modellierung von Logistikprozessen durch Warteschlangen Die Modellierung von Logistikprozessen durch Warteschlangen Ernst Stadlober, TU Graz Florian Sobieczky, Univ. of Colorado, Boulder Gerhard Rappitsch, Sensordynamics, Lebring Open SIMNET 23. November 2011

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1 Blatt 1 03042006 H-Ch Grunau Aufgabe 1 Betrachten Sie die Differentialgleichung x= f(x) mit f = U und U C 2 ((α, β), R) und schreiben Sie diese in der Form x= p, p= U (x) (a) Skizzieren Sie die Phasenportraits

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität Lineare Elastizität Dominik Woznica Universität des Saarlandes 05.02.2016 Gliederung 1 Modellierung elastischer Materialien 2 Variationsformulierung 3 Galerkin-Approximation 4 FreeFem++ 5 Ausblick: Lineare

Mehr

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose Seminar stochastische Geometrie 25. Januar 2010 Contents 1 2 3 4 5 Definitionen Faser: glatte Kurve endlicher Länge in der Ebene Faser γ ist das Bild der Kurve γ(t) = (γ 1 (t), γ 2 (t)) mit (i) γ : [0,

Mehr

Finite Elemente I Wintersemester 2010/11

Finite Elemente I Wintersemester 2010/11 Institut für Numerische Mathematik und Optimierung Finite Elemente I Wintersemester 2010/11 Erste von zwei Vorlesungen im Modul Finite-Element Methoden für Mathematiker Hörerkreis: 5. Mm, 7. Mm, 9. Mm,

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Fokker-Planck Gleichung

Fokker-Planck Gleichung Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Quantendynamik mit nicht-hermiteschen PT -symmetrischen Operatoren: Optische Wellenleiter, experimentell und theoretisch

Quantendynamik mit nicht-hermiteschen PT -symmetrischen Operatoren: Optische Wellenleiter, experimentell und theoretisch Hauptseminar SS 12: Nichtlineare und nicht-hermitesche Quantendynamik Quantendynamik mit nicht-hermiteschen PT -symmetrischen Operatoren: Optische Wellenleiter, experimentell und theoretisch Thomas Schmid

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

Physik IV Übung 4

Physik IV Übung 4 Physik IV 0 - Übung 4 8. März 0. Fermi-Bose-Boltzmann Verteilung Ein ideales Gas befinde sich in einer Box mit Volumen V = L 3. Das Gas besteht entweder aus Teilchen, die die Bose-Einstein oder Fermi-Dirac

Mehr

Bayessche Tomographie

Bayessche Tomographie Seminar: Bayessche Ansätze in der Bildanalyse Fakultät für Mathematik und Wirtschaftswissenschaften Universität Ulm 19.Juni 2006 Inhaltsverzeichnis 1 2 3 4 5 Literaturangaben Definition Tomographie Unter

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

Mathematische Modellierung in der Hämodynamik...

Mathematische Modellierung in der Hämodynamik... Mathematische Modellierung in der Hämodynamik... Ergänzunsgvorlesung SoSe 2014 Dienstag 10.00-12.00 Dr. Anna Hundertmark Institut für Mathematik, AG Numerik Themen Wir werden erarbeiten: Themen Wir werden

Mehr

Diffusionsprozesse und lineare stochastische DGL

Diffusionsprozesse und lineare stochastische DGL Diffusionsprozesse und lineare stochastische DGL Michele Bieber TU Dortmund - Fakultät Statistik 15. Mai 2012 Inhaltsverzeichnis 1 Einleitung 2 Diffusionsprozesse Stochastische DGL eines Diffusionsprozesses

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Einführungsvorlesung: Optische Wellenleiter

Einführungsvorlesung: Optische Wellenleiter Einführungsvorlesung: Optische Wellenleiter Priv.-Doz. Dr. Axel Pelster 1. Strahlenoptik. Wellenoptik.1. Dielektrischer Wellenleiter.. Stufenfaser Optische Wellenleiter Axel Pelster 1 Lichtwellenleiter

Mehr

The Intelligent-Driver Model with Stochasticity:

The Intelligent-Driver Model with Stochasticity: The Intelligent-Driver Model with Stochasticity: New Insights into Traffic Flow Oscillations TU Dresden ISTTT 22, Chicago. July 2017 1 1 Overview Ø Traffic Flow Oscillations: Empirical Facts - Stationary

Mehr

Die Renormierungsgruppe

Die Renormierungsgruppe Antrittsvorlesung 15. November 2006 Mathematisches Institut der Westfälischen Wilhelms-Universität Einleitung typische physikalische Systeme haben sehr viele Freiheitsgrade ( 10 23 pro cm 3 Material) theoretische

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Höhere Mathematik 4. Teil 2: Partielle Differentialgleichungen

Höhere Mathematik 4. Teil 2: Partielle Differentialgleichungen Höhere Mathematik 4 Teil 2: Partielle Differentialgleichungen Das Handout ist aus Teilen der Vortragsfolien zur Höheren Mathematik zusammengestellt; siehe die Hinweise auf der Internetseite www.imng.uni-stuttgart.de/lstnumgeomod/vhm/

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation

Mehr

Photonische Kristalle für die integrierte optische Quantentechnologie. Tim Kroh am Seminar Optik/Photonik

Photonische Kristalle für die integrierte optische Quantentechnologie. Tim Kroh am Seminar Optik/Photonik Photonische Kristalle für die integrierte optische Quantentechnologie Tim Kroh am 04.07.2011 Seminar Optik/Photonik Motivation Quanteninformationstechnologie universeller Quantencomputer benötigt universellen

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Aufgabe ( Punkte) Ein Medikament wirkt in drei Organen O, O, O 3. Seine Menge zur Zeit t im Organ O k wird mit x k (t) bezeichnet, und die Wechselwirkung wird durch folgendes System von Differentialgleichungen

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

W-Rechnung und Statistik für Ingenieure Übung 8

W-Rechnung und Statistik für Ingenieure Übung 8 W-Rechnung und Statistik für Ingenieure Übung 8 Aufgabe 1 : Motivation Anhand von Daten soll eine Aussage über die voraussichtliche Verteilung zukünftiger Daten gemacht werden, z.b. die Wahrscheinlichkeit

Mehr

Anwendungen partieller Differentialgleichungen

Anwendungen partieller Differentialgleichungen Anwendungen partieller Differentialgleichungen Dr. Dominic Breit 27.01.2012 Outline Partielle Differentialgleichungen 1 Partielle Differentialgleichungen 2 3 4 5 Gleichungen Partielle Differentialgleichungen

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen.

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen. Toda- Institut für Theoretische Physik 11. April 2012 Überblick Toda- 1 2 3 Toda- Toda- Betrachte eindimensionale Kette N identischer Teilchen. Wechselwirkung nur zwischen Nachbarn = Bewegungsgleichung:

Mehr

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 13 Allgemeine Theorie zu Markov-Prozessen (stetige Zeit, diskreter Zustandsraum) Literatur Kapitel 13 * Grimmett & Stirzaker: Kapitel 6.9 Wie am Schluss von Kapitel

Mehr

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse 2 Halbgruppen von Übergangswahrscheinlichkeiten Markov-Prozesse Im Folgenden sei (X, B) ein (polnischer) Messraum und T = [0, ) oder T = N 0 Definition 21 Eine Familie (P t ) t T von (X, B) mit Übergangswahrscheinlichkeiten

Mehr

Gebietserkennung in einem parabolisch-elliptischen Problem

Gebietserkennung in einem parabolisch-elliptischen Problem Gebietserkennung in einem parabolisch-elliptischen Problem Bastian Gebauer gebauer@math.uni-mainz.de Johannes Gutenberg-Universität Mainz, Germany Zusammenarbeit mit Florian Fruehauf & Otmar Scherzer,

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Korteweg-de-Vries-Gleichung

Korteweg-de-Vries-Gleichung Florian Oppermann 25. April 2012 Inhaltsverzeichnis Wann war was? 1834: John Russell beobachtet Solitonen in einem Kanal 1871/1876: Herleitung der Wellenform und -geschwindigkeit aus bekannten en 1895:

Mehr

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency Bernd Jähne, Reinhard Nielsen, Christopher Pop, Uwe Schimpf, and Christoph Garbe Interdisziplinäres Zentrum für Wissenschaftliches Rechnen

Mehr

zeitabhängige Wechselwirkungen auftreten

zeitabhängige Wechselwirkungen auftreten Floquet Theorie ist überall wo periodische, zeitabhängige Wechselwirkungen auftreten Vortrag zum Seminar: Quantenoptik tik und nichtlineare Optik Von Alexander Martin 24. Nov. 2010 Quantenoptik und nicht-lineare

Mehr

Lattice-Boltzmann-Methode

Lattice-Boltzmann-Methode Lattice-Boltzmann-Methode Ausarbeitung zum CES-Seminarvortrag Markus Frings (274290) 27. Juli 2013 Inhaltsverzeichnis 1 Einleitung 1 2 Zelluläre Automaten 2 3 Lattic-Gas-Automaten 2 3.1 FHP-I.....................................

Mehr

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg VORLESUNGEN Strömungslehre 5 Angewandte Strömungsmechanik Math. Methoden der Strömungslehre 6 Numerische Strömungsmechanik 7 Trainings-Kurs 8 Diplomarbeit Strömungsmechanik Kolleg Mathematische Methoden

Mehr

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos Wintersemester 2018/19 22.01.2019 M. Zaks hintergrund Kontext: Wettervorhersage. Entstehung von Luftbewegungen infolge der thermischen

Mehr

Prüfung. Prüfung: mündl min, Termin nach Absprache ( )

Prüfung. Prüfung: mündl min, Termin nach Absprache ( ) Prüfung Prüfung: mündl. 20-30 min, Termin nach Absprache (Email) (Ergänzte/Geordnete) Unterlagen zur Vorlesung werden ab dem 22.7. am LTI verkauft (3 ) XIV: Nichtlineare Optik - Maxwell-Gleichungen und

Mehr

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie 30.11.2007 Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie Johanna Flock Gliederung Einleitung Kurze Wiederholung Statistischer Mechanik Ensemble Statistische Beschreibung von Kolloid

Mehr

Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern

Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern Thomas Hübner, Stefan Turek (thomas.huebner@math.uni-dortmund.de, ture@featflow.de) LS

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Herbst 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Reibung Ein Teilchen der Masse m bewege sich mit der Anfangsgeschwindigkeit v 0 > 0 in x-richtung und soll durch

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Kurs-Skript http://www.uni-due.de/ adb297b

Mehr

Divergenz, Rotation und Laplace-Operator

Divergenz, Rotation und Laplace-Operator 6 Divergenz, Rotation und Laplace-Operator... Stokes besaß einen sehr wichtigen prägenden Einfluss auf die folgenden Generationen von Cambridge-Studenten, unter ihnen auch Maxwell. Zusammen mit Green,

Mehr

Molekulardynamik-Simulation realer Fluide in Nanokanälen

Molekulardynamik-Simulation realer Fluide in Nanokanälen Status- und Perspektivseminar des SFB 716 Molekulardynamik-Simulation realer Fluide in Nanokanälen Markt Irsee, 21. September 2009 Martin HORSCH und Jadran VRABEC SFB 716 Vortragsgliederung Modellierung

Mehr

https://cuvillier.de/de/shop/publications/6886

https://cuvillier.de/de/shop/publications/6886 Kristofer Leach (Autor) Modelling Force Transfer in Boundary Layers of Moving Walls for Compressible and Incompressible Turbulent Flows Across Multiple Scales https://cuvillier.de/de/shop/publications/6886

Mehr

Transport Einführung

Transport Einführung Transport Einführung home/lehre/vl-mhs-1/inhalt/folien/vorlesung/8_transport/deckblatt.tex Seite 1 von 24. p.1/24 1. Einführung 2. Transportgleichung 3. Analytische Lösung Inhaltsverzeichnis 4. Diskretisierung

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

Bohmian Mechanics. The Physics and Mathematics of Quantum Theory. Bearbeitet von Detlef Dürr, Stefan Teufel

Bohmian Mechanics. The Physics and Mathematics of Quantum Theory. Bearbeitet von Detlef Dürr, Stefan Teufel Bohmian Mechanics The Physics and Mathematics of Quantum Theory Bearbeitet von Detlef Dürr, Stefan Teufel 1. Auflage 2009. Buch. xii, 393 S. Hardcover ISBN 978 3 540 89343 1 Format (B x L): 15,5 x 23,5

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

Die Dichtematrix. Sebastian Bröker. 2.November 2011

Die Dichtematrix. Sebastian Bröker. 2.November 2011 Die Dichtematrix Sebastian Bröker 2.November 2011 Westfälische Wilhelms-Universität Münster BSc Physik Seminar zur Theorie der Atome, Kerne und kondensierter Materie Die Dichtematrix Bröker 2 Inhaltsverzeichnis

Mehr

Elektromagnetisch induzierte Transparenz (EIT) Langsames Licht

Elektromagnetisch induzierte Transparenz (EIT) Langsames Licht EIT/Slow Light: Elektromagnetisch induzierte Transparenz (EIT) Langsames Licht Johannes Zeiher Garching, EIT/Slow Light: Photon-Photon Wechselwirkung Langsames Licht [von:

Mehr

Institut für Numerische Mathematik

Institut für Numerische Mathematik Institut für Numerische Mathematik Ulrich Langer Bachelor - Infoabend Linz, 17 Jänner 2019 http://www.numa.uni-linz.ac.at/ U. Langer (JKU + RICAM) Institut für Numerische Mathematik Linz, 17 Jänner 2019

Mehr

Spezialisierte adaptive Algorithmen für die Modellprädiktive Regelung von PDEs

Spezialisierte adaptive Algorithmen für die Modellprädiktive Regelung von PDEs Spezialisierte adaptive Algorithmen für die Modellprädiktive Regelung von PDEs Lehrstuhl für Angewandte Mathematik Mathematisches Institut Universität Bayreuth 28.02.2018 12. Elgersburg Workshop (26.02.

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr