Wie komme ich von hier zum Hauptbahnhof?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wie komme ich von hier zum Hauptbahnhof?"

Transkript

1 NP-Vollständigkeit

2 Wie komme ich von hier zum Hauptbahnhof?

3 P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte! Alternativ: Bestelle ein Taxi! P

4 P Wie komme ich von hier zum Hauptbahnhof? verwende für kann ich reduzieren auf Finde Reduktion jemand, kann der den rekursiv Weg sein: kennt! Alternativ: Finde eine Stadtkarte! Alternativ: kaufen Bestelle ein Taxi! P Das Problem von Berlin nach Köln zu kommen reduziert sich auf das Problem, eine Fahrkarte zu das wiederum reduziert sich darauf, Geld für die Fahrkarte zu verdienen reduziert sich auf das Problem, einen Job zu finden

5 Reduktion Eine mächtige Technik: Algorithmendesign Transformation f P P verwende Lösung (f - ) Falls f, P und f - effizient berechenbar, dann auch P!

6 Breite? Beispiele Fläche eines Rechtecks Das Problem, die Fläche eines Rechtecks zu bestimmen, reduziert sich auf das Problem, dessen Seitenlängen zu bestimmen. Fläche? : P Gleichungssysteme lösen Das Problem, ein lineares Gleichungssystem zu lösen, reduziert sich auf das Problem, eine Matrix zu invertieren. P: Länge?

7 Heute: Perverse Reduktion Reduktion kann auch dazu verwendet werden, zu zeigen dass ein Problem schwer ist. Transformation f P P verwende Lösung Falls f und f - effizient berechenbar und P schwer ist, so muss auch P schwer sein.

8 Heute: Perverse Reduktion Reduktion kann auch dazu verwendet werden, zu zeigen Wenn P schwer dann auch P? dass ein Problem schwer ist. Transformation f Gilt das auch umgekehrt? P P verwende Lösung Falls f und f - effizient berechenbar und P schwer ist, so muss auch P schwer sein.

9 Repetition: Effiziente Algorithmen Fundamentale algorithmische Probleme Matching Spannbäume Kürzeste Pfade Probleme schwer? Exponentiell viele gültige Lösungen! n Männer, n Frauen: n! Matchings Graph mit n Knoten: n n- Spannbäume Exponentiell viele Pfade von s nach t Trotzdem: sehr effiziente Algorithmen! Brillante Techniken: greedy Algorithmen, dynamische Programmierung, lineare Programmierung Geht das für alle Probleme??

10 Repetition: P, NP, P=NP P: Probleme, die in polynomieller Zeit lösbar sind NP: (Entscheidungs-)Probleme, die in polynomieller Zeit verifizierbar sind NP steht für nicht-deterministische Polynomialzeit (Lösung raten ) Klar: P NP (lösen impliziert verifizieren) Bis heute unklar: P=NP? Eher unwahrscheinlich Kann exponentielle Suche immer vermieden werden? Theorem beweisen nicht schwerer als Beweis verifizieren? Mathematiker überflüssig? Erfüllbarkeit logischer Formeln (SAT): seit 0 Jahren ungelöst

11 Relevanz: Polynomiell vs Exponentiell Die Legende von Sissa Monarch der Sissa belohnen möchte Wunsch: Reiskörner auf Schachfeld Verdopplung: Mehr Reis als in ganz Indien! Moore s Law hilft nicht viel! Beispiel: Entscheidbarkeit (SAT) Exponentiell: Variable mehr pro Jahr Polynomielle Algorithmen: doppelt so viele Variablen pro Jahr! Asymmetrische Kryptographie Brisanterweise ist Komplexität von Faktorisierung unklar

12 Heute: NP-Vollständig NP-vollständig: Die schwersten Probleme in NP Definiert über Reduktion: Alle Probleme in NP lassen sich in polynomieller Zeit auf jedes NPvollständige Probleme reduzieren ( sind höchstens so schwer ) jedes NP Problem jedes NP-vollständige Problem

13 Heute: NP-Vollständig NP-vollständig: Die schwersten Probleme in NP Wie kann ich also versuchen zu beweisen, dass P=NP? Definiert über Reduktion: Alle Probleme in NP lassen sich in polynomieller Zeit auf jedes NPvollständige Probleme reduzieren ( sind höchstens so schwer ) jedes NP Problem jedes NP-vollständige Problem

14 Heute: NP-Vollständig NP-vollständig: Die schwersten Probleme in NP Wie kann ich also versuchen zu beweisen, dass P=NP? Definiert über Reduktion: Es reicht eines zu lösen alle Alle Probleme in NP lassen sich in polynomieller in polynomieller Zeit lösbar. Zeit auf jedes NPvollständige Probleme reduzieren ( sind höchstens so schwer ) jedes NP Problem jedes NP-vollständige Problem

15 Heute: NP-Vollständig NP-vollständig: Die schwersten Probleme in NP Definiert über Reduktion: Alle Probleme in NP lassen sich in polynomieller Zeit auf jedes NPvollständige Probleme reduzieren ( sind höchstens so schwer ) jedes NP Problem Aber: gibt es denn überhaupt solche Probleme? jedes NP-vollständige Problem

16 Die Schwersten Probleme in NP Stephen A. Cook und Leonid Levin (90) Alle NP Probleme Erfüllbarkeit der Aussagenlogik (SAT)

17 Die Schwersten Probleme in NP Stephen A. Cook und Leonid Levin (90) Alle NP Probleme Erfüllbarkeit der Aussagenlogik (SAT) 000e von NP-vollständigen Probleme: die meisten indirekt bewiesen, durch Reduktion von NP-vollständigem Problem (z.b. SAT)

18 Vollständigkeitsbeweis durch Reduktion Alle NP Probleme SAT SAT Independent Set

19 Vollständigkeitsbeweis durch Reduktion Wenn ich SAT lösen kann, kann ich alle NP Probleme lösen! Alle NP Probleme SAT SAT Poly-Zeit Reduktion Poly-Zeit Reduktion Poly-Zeit Reduktion Independent Set

20 Vollständigkeitsbeweis durch Reduktion Wenn ich SAT lösen kann, kann ich alle NP Probleme lösen! Wenn ich SAT lösen kann, kann ich SAT lösen! Also auch alle NP Probleme (transitiv: Polynom + Polynom = Polynom). Alle NP Probleme SAT SAT Poly-Zeit Reduktion Poly-Zeit Reduktion Poly-Zeit Reduktion Independent Set

21 Vollständigkeitsbeweis durch Reduktion Wenn ich SAT lösen kann, kann ich alle NP Probleme lösen! Wenn ich SAT lösen kann, kann ich SAT lösen! Also auch alle NP Probleme (transitiv: Polynom + Polynom = Polynom). Wenn ich IS lösen kann, kann ich SAT lösen! Also auch alle NP Probleme (transitiv). Alle NP Probleme SAT SAT Poly-Zeit Reduktion Poly-Zeit Reduktion Poly-Zeit Reduktion Independent Set

22 Beispiel: MM Maximum Matching (MM): Gegeben ein ungerichteter Graph G(V,E). Ein Matching ist eine Kantenmenge M E(G), sodass jeder Knote inzident zu maximal einer Kante in M ist. Ein MM ist ein Matching maximaler Kardinalität.

23 Beispiel: Matching?

24 Beispiel: Matching?

25 Beispiel: Maximum Matching (MM)?

26 Beispiel: Maximum Matching (MM)?

27 Beispiel: IS Independent Set (IS): Gegeben ein ungerichteter Graph G(V,E). Ein IS ist eine Menge U V(G), sodass {u,u } ϵ E(G) für u, u ϵ U. Ein Maximum IS (maxis) ist ein IS maximaler Kardinalität U.

28 Beispiel: IS?

29 Beispiel: IS?

30 Beispiel: MaxIS?

31 Beispiel: MaxIS?

32 Beispiel: NP-Vollständigkeit Reduktion Angenommen MM ist NP-vollständig. Wie kann ich vorgehen, um zu zeigen, dass MaxIS NPvollständig ist? transformiere Tipp: Reduktion P P verwende Lösung

33 MaxIS ist NP-vollständig: Beweisidee Zeige Reduktion: Poly-Zeit Transformation MM MaxIS verwende Lösung Zeige: MaxIS ist in NP Kann ich in polynomieller Zeit Entscheidungsproblem verifizieren: ist ein gegebenes IS der Größe M gültig?

34 MaxIS ist NP-vollständig: Beweisidee Zeige Reduktion: Poly-Zeit Transformation MM MaxIS verwende Lösung. Gehe durch alle Kanten, prüfe ob max ein Endpunkt im IS.. Prüfe ob es wirklich M viele Knoten sind. Zeige: MaxIS ist in NP Kann ich in polynomieller Zeit Entscheidungsproblem verifizieren: ist ein gegebenes IS der Größe M gültig?

35 Reduktion. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS

36 Reduktion. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS

37 Reduktion. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS Kanten ensprechen Knoten!

38 Reduktion MM. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident effizient! MaxIS Kanten ensprechen Knoten!

39 Reduktion. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS berechne Lösung!

40 Reduktion. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS entsprechende Kanten sind Matching!

41 Reduktion. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS Weshalb? Immer ein gültiges und maximum Matching?

42 Reduktion MM. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident maximiere # Knoten im Independent Set gdw maximiere # Kanten im Matching Knoten rechts sind benachbart gdw Kanten links benachbart sind! Mengen sollen maximiert werden. MaxIS Ja, Äquivalent: Knoten in MaxIS unabh. gdw. Kanten im Matching gültig ( unabh. )

43 Reduktion. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS. IS Knoten entsprechen MM Kanten effizient!

44 Beweisidee. Ersetze Kanten durch Knoten. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident MM MaxIS. IS Knoten entsprechen MM Kanten Gültiges IS muss gültiges Matching sein: IS Knote blockiert adjazente Knoten = entsprechende Matching Kante blockiert inzidente Kanten!

45 Beweisidee MM. Ersetze Kanten durch Knoten Wenn MaxIS effizient lösbar wäre, so müsste auch MM effizient lösbar sein. Widerspruch!. Verbinde resultierende Knoten falls ursprüngliche Kanten inzident. IS Knoten entsprechen MM Kanten MaxIS effizient? Gültiges IS muss gültiges Matching sein: IS Knote blockiert adjazente Knoten = entsprechende Matching Kante blockiert inzidente Kanten!

46 Vertex Cover (VC): Gegeben ein ungerichteter Graph G(V,E). Ein Vertex Cover (VC) ist eine Menge von Knoten U V(G), sodass jede Kante in E(G) inzident zu mind. einem Knoten in U ist. Ein Minimum Vertex Cover (minvc) ist ein Vertex Cover minimaler Kardinalität U.

47 Beispiel: MinVC

48 Beispiel: MinVC

49 Beispiel: NP-Vollständigkeit Reduktion Wie kann ich vorgehen, um zu zeigen, dass MinVC NP-vollständig ist?

50 Beispiel: NP-Vollständigkeit Reduktion Wie kann ich vorgehen, um zu zeigen, dass MinVC NP-vollständig ist? Reduktion von MaxIS! Wir wissen: MaxIS is NPvollständig.

51 MinVC ist NP-vollständig: Beweisidee Zeige Reduktion: Poly-Zeit Transformation MaxIS MinVC verwende Lösung Zeige: MinVC ist in NP

52 MinVC ist NP-vollständig: Beweisidee Zeige Reduktion: Poly-Zeit Transformation MaxIS MinVC verwende Lösung. Gehe durch alle Kanten, prüfe ob mind. ein Endpunkt im DS.. Prüfe, ob auch die Anzahl Knoten stimmt (Entscheidungsproblem). Zeige: MinVC ist in NP

53 Reduktion? Effizient! P? P? Effizient! Vertex Cover schwer? 8

54 Reduktion triviale Transformation MaxIS MinVC 8 8

55 Reduktion MaxIS MinVC Löse! 8 8

56 Reduktion MaxIS MinVC Gegeben MinVC S: Nehme die anderen Knoten! MaxIS = V\S die anderen Knoten 8 8

57 Reduktion triviale Transformation! MaxIS MinVC Gegeben MinVC S: MaxIS = V\S die anderen Knoten 8 Menge S berührt jede Kante genau dann wenn restliche Knoten unabhängig sind. 8

58 Reduktion triviale Transformation! Sicher keine anderen IS Knoten in der Nachbarschaft: MaxISalle Nachbarkanten sind durch VC Knoten abgedeckt. Gegeben MinVC S: MinVC MaxIS = V\S die anderen Knoten 8 Menge S berührt jede Kante genau dann wenn restliche Knoten unabhängig sind. 8

59 Reduktion triviale Transformation! MaxIS minimale Anzahl Knoten im VC = maximal viele restliche Knoten! Gegeben MinVC S: MinVC MaxIS = V\S die anderen Knoten 8 Menge S berührt jede Kante genau dann wenn restliche Knoten unabhängig sind. 8

60 Reduktion Wenn MinVC effizient lösbar wäre, so triviale Transformation! müsste auch MaxIS effizient lösbar sein. Widerspruch! MaxIS MinVC Gegeben MinVC S: effizient? MaxIS = V\S die anderen Knoten 8 Menge S berührt jede Kante genau dann wenn restliche Knoten unabhängig sind. 8

61 Warnung : Details sind wichtig! Bemerkungen Harte Probleme (NP) SAT Traveling Salesman Longest Path Independent Set Balanced Cut Einfache Probleme (P) SAT, Horn SAT Minimum Spanning Tree Shortest Path Independent Set auf Bäumen Minimum Cut Warnung : Es gibt Probleme, die sind schwerer als NP-schwer! Z.B. gar nicht lösbar. Bemerkung : Selbst NP-vollständige Probleme lassen sich in der Praxis oft gut lösen: Gebiet der Approximationsalgorithmen. Bemerkung : NP-vollständige Probleme haben bisher Quantencomputern stand gehalten. (Faktorisierung nicht: aber fast niemand glaubt heute, dass Faktorisierung NP-vollständig ist.)

62 Zusammenfassung Komplexitätstheorie: eine der faszinierendsten (und relevantesten) Themen unserer Zeit Insbesondere polynomiell vs nicht polynomiell Aber auch allgemein: Komplexität von Zahlen- und Matritzenmultiplikation ungelöst! Reduktion: Nicht nur um Probleme zu lösen, sondern auch um zu zeigen, dass sie nicht lösbar sind Achtung: Reduktionen sind gerichtet Auf ein NP vollständiges Problem reduzieren von einem NP vollständigen Problem reduzieren

63 Nächste Woche Alle NP Probleme SAT

64 Backup

65 Alle NP Probleme Circuit SAT output Circuit SAT Boolean Circuit in DAG Form Verallgemeinerung von SAT: Finde Belegung für? sodass Output wahr, oder sage dass das unmöglich ist Operatoren: AND, OR: in-degree NOT: in-degree Bekannte Inputs: true-false Unbekannte Inputs:? AND NOT OR AND OR AND true???

66 Alle NP Probleme Circuit SAT output Circuit SAT Boolean Circuit in DAG Form Verallgemeinerung von SAT: Finde Belegung für? sodass Output wahr, oder sage dass das unmöglich ist Operatoren: AND, OR: in-degree NOT: in-degree Bekannte Inputs: true-false Unbekannte Inputs:? AND NOT OR AND OR AND true false true true

67 Beliebiges NP-Problem X Circuit SAT Klingt schwierig: Was wissen wir über X? Gar nichts Nicht ganz: Gegeben Probleminstanz I und Lösung L: es gibt einen polynomiellen Algorithmus, der prüft, ob L eine Lösung für I ist Diesen Algorithmus kann man immer als Circuit polynomieller Größe darstellen Setze bekannte Inputs auf I und unbekannte Inputs auf L Die erfüllenden Belegungen für L sind die Lösungen für unser Problem X! Die Reduktion ist komplett.

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben...

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben... Vorwort v I Approximative Algorithmen 1 1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT).... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben..... 18 2 DieKomplexitätsklassen

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007 Informatik III Christian Schindelhauer Wintersemester 26/7 24. Vorlesung 26..27 NP-Vollständigkeit Gegeben ein unbekanntes NP-Problem X, sollte man nicht nur nach einem Algorithmus mit polynomieller Laufzeit

Mehr

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

LogSpace. Isomorphie von Bäumen (gerichtet und ungerichtet) Entscheiden, ob ein Graph zusammenhängend ist (gerichtet und ungerichtet)

LogSpace. Isomorphie von Bäumen (gerichtet und ungerichtet) Entscheiden, ob ein Graph zusammenhängend ist (gerichtet und ungerichtet) LogSpace Weitere Probleme in LogSpace z.b.: Isomorphie von Bäumen (gerichtet und ungerichtet) Entscheiden, ob ein Graph zusammenhängend ist (gerichtet und ungerichtet) Pattern matching: gegeben Wort w

Mehr

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

23.1 Constraint-Netze

23.1 Constraint-Netze Grundlagen der Künstlichen Intelligenz 1. April 2015 2. Constraint-Satisfaction-Probleme: Constraint-Netze Grundlagen der Künstlichen Intelligenz 2. Constraint-Satisfaction-Probleme: Constraint-Netze Malte

Mehr

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces Overview Testen von Planarität Markus Chimani LS XI Algorithm Engineering, TU Dortmund VO Automatisches Zeichnen von Graphen 15 Planarität Grundbegriffe Wie erkennt man Planarität Boyer-Myrvold Überblick

Mehr

Grundlagen der Künstlichen Intelligenz. 9.1 Einführung und Beispiele. 9.2 Constraint-Netze. 9.3 Belegungen und Konsistenz. 9.

Grundlagen der Künstlichen Intelligenz. 9.1 Einführung und Beispiele. 9.2 Constraint-Netze. 9.3 Belegungen und Konsistenz. 9. Grundlagen der Künstlichen Intelligenz 8. April 201 9. Constraint-Satisfaction-Probleme: Einführung Grundlagen der Künstlichen Intelligenz 9. Constraint-Satisfaction-Probleme: Einführung Malte Helmert

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Flüsse, Schnitte, Bipartite Graphen II

Flüsse, Schnitte, Bipartite Graphen II Flüsse, Schnitte, Bipartite Graphen II Jonathan Hacker 06.06.2016 Jonathan Hacker Flüsse, Schnitte, Bipartite Graphen II 06.06.2016 1 / 42 Gliederung Einführung Jonathan Hacker Flüsse, Schnitte, Bipartite

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

Einführung in die Weihnachtliche Informatik

Einführung in die Weihnachtliche Informatik Frohe Weihnachten! Einführung in die Weihnachtliche Informatik A. Clausing, Einführung in die Weihnachtliche Informatik, 23. 12. 2004 EWI 1 Kathrinchens Wunschzettel Weihnachtswünsche Vor langer, langer

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Spiele in der Informatik

Spiele in der Informatik Spiele in der Informatik Martin Lange Lehr- und Forschungseinheit Theoretische Informatik Informatik-Schnupperstudium an der LMU, 29.3.2010 Übersicht Teil 1 Schokoladenessen für Spieltheoretiker ein kleines

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Parametrisierte Algorithmen

Parametrisierte Algorithmen Parametrisierte Algorithmen Markus Lohrey Martin-Luther Universität Halle-Wittenberg Sommersemester 2006 Folien basieren auf Vorlagen von Jens Gramm und Rolf Niedermeier, Univ. Tübingen Markus Lohrey (Univ.

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4

Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4 Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS 2015 http://www.fmi.informatik.uni-stuttgart.de/alg Institut für Formale Methoden der Informatik Universität Stuttgart Übungsblatt 4 Punkte: 50 Problem

Mehr

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

Komplexität und Komplexitätsklassen

Komplexität und Komplexitätsklassen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Informatik. Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Informatik Rheinische Friedrich-Wilhelms-Universität Bonn Hauptseminar: Schnelle Parallele Algorithmen Leitung: Prof. Dr. M. Karpinksi, P. Wegner, M. Hauptmann Sommersemester 2000 Ausarbeitung

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

4 Lineare Gleichungssysteme, Rang, Kern

4 Lineare Gleichungssysteme, Rang, Kern 4 Lineare Gleichungssysteme, Rang, Kern Jörn Loviscach Versionsstand: 1 April 2011, 23:07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung Videos dazu: http://wwwj3l7hde/videoshtml

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Längen-beschränkte Schnitte und Flüsse

Längen-beschränkte Schnitte und Flüsse Seminarausarbeitung über G. Baiers et al. Abhandlung über: Längen-beschränkte Schnitte und Flüsse (oder: Length-bounded Cuts and Flows) Frank Obermüller 06. Dezember 2009 1 Einleitung Sei G = (V, E) ein

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Praktikum Planare Graphen

Praktikum Planare Graphen 1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 2 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Parametrisierte Algorithmen

Parametrisierte Algorithmen Parametrisierte Algorithmen Rolf Niedermeier in Zusammenarbeit mit Jochen Alber Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13, D-72076 Tübingen niedermr@informatik.uni-tuebingen.de

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Schwierige Probleme in der Informatik Informationen für die Lehrperson

Schwierige Probleme in der Informatik Informationen für die Lehrperson Schwierige Probleme in der Informatik Informationen für die Lehrperson Thema, Adressaten,... Das Thema dieses Moduls sind NP-vollständige Probleme, also schwierige Probleme in der Informatik. GraphBench

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Parameterisierte Algorithmen WS 2007/08 in Trier. Henning Fernau

Parameterisierte Algorithmen WS 2007/08 in Trier. Henning Fernau Parameterisierte Algorithmen WS 2007/08 in Trier Henning Fernau fernau@uni-trier.de 1 Parameterisierte Algorithmen Gesamtübersicht Einführung Grundbegriffe Problemkerne Suchbäume Graphparameter Weitere

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Anwendung: Das Heiratsproblem Ganzzahligkeit von Polyedern Anwendung: Netzwerkflüsse Mehrgüterflussprobleme Ganzzahlige Optimierung Inhaltsübersicht für heute: Anwendung: Das

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

The weighted farthest color Voronoi diagram on trees and graphs

The weighted farthest color Voronoi diagram on trees and graphs The weighted farthest color Voronoi diagram on trees and graphs Torsten Baumgartner 6. September 004 Zusammenfassung Ausarbeitung zu einem gleichnamigen Vortrag im Rahmen des Informatik-Seminars Algorithmische

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

TU8 Beweismethoden. Daniela Andrade

TU8 Beweismethoden. Daniela Andrade TU8 Beweismethoden Daniela Andrade daniela.andrade@tum.de 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr