Kapitel 11: Association Rules

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 11: Association Rules"

Transkript

1 Kapitel 11: Association Association Einleitung Association : Eine wichtige Art von Mustern, an der man im Data-Mining Kontext interessiert ist. Muster mit einfacher Struktur. Ziel im folgenden: Finden aller Association (manchmal mit Einschränkungen); nicht Überprüfen, ob eine bestimmte Association Rule vorkommt. Techniken für das Finden von Mustern komplexerer Struktur verallgemeinern oft Basis-Techniken für das Finden von Association. Data Warehousing und Mining: Association 1 Data Warehousing und Mining: Association 2 Association Einleitung Gliederung dieses Kapitels Grobe Übersicht über dieses und folgende Kapitel: Einleitung, Association Begriffsbildung, Frequent Itemsets, -Algorithmus für die Bestimmung aller Association, Verbesserungen von, Grundsätzlich anderer (und überlegener) Ansatz: FP-Trees, Analyse von Zeitreihen, Die meisten Regeln sind interessant, manche jedoch irreführend. Was heißt Interessantheit? Effiziente Algorithmen. Quantitative Association. Association (Insbesondere: Warum sind Association aussagekräftiger als Frequent Itemsets?), Multidimensionale Association (Beziehungen zwischen Werten unterschiedlicher Attribute, Attribute sind nicht mehr nur boolsch, kleinerer Punkt), Association. Data Warehousing und Mining: Association 3 Data Warehousing und Mining: Association 4

2 Beispielszenario: Warenkorbanalyse Ziel der Warenkorbanalyse (1) Identifizieren von Kundengewohnheiten, indem man Assoziationen und Korrelationen zwischen unterschiedlichen Waren findet, die Kunden in ihren Einkaufswagen legen. ( Ware heißt: ja oder nein, Anzahl/Menge bleibt zunächst außen vor.) Milch, Eier, Zucker, Brot Milch, Eier, Cornflakes, Brot Eier, Zucker Extrahieren von Information aus dem Kaufverhalten. Handlungsvorschläge, z. B. anderes Layout der Geschäfte, andere Anordnung der Waren, Veränderung der Sortimente, Sonderangebote. Transaktion1 Transaktion2 Transaktion3 Data Warehousing und Mining: Association 5 Data Warehousing und Mining: Association 6 Ziel der Warenkorbanalyse (2) Association Warenkorbanalyse ist anwendbar, wenn ein Kunde mehreres zusammen kauft, z. B.: Drücken aus, wie Phänomene zueinander in Beziehung stehen. Kreditkarte, Dienste von Telekommunikationsanbietern, Bankdienstleistungen, medizinische Behandlung. Techniken auch anwendbar für andere Phänomene, z. B. Naturwissenschaften. Beispiel für Association Rule, noch ziemlich ungenau: Wenn ein Patient das Pipapo-Syndrom hat, dann hat er oft auch Krämpfe. Association sind die Art von Zusammenhängen, an denen wir in diesem Kapitel interessiert sind. Data Warehousing und Mining: Association 7 Data Warehousing und Mining: Association 8

3 Zugrundeliegende Konzepte Item: einzelnes Element, Itemset: Menge von Items. Transaktion: Relationale Struktur Kompakte Struktur <Tid,item> <Tid,itemset> <1, item1> <1, {item1,item2}> <1, item2> <2, {item3}> <2, item3> In der Warenkorbanalyse sind die Items die Waren; eine Transaktion ist ein einzelner Einkauf; Begriff Transaktion hat nichts zu tun mit dem klassischen Datenbank-Konzept. Zugrundeliegende Konzepte (1) Support eines Itemsets I: Anzahl der Transaktionen, die I enthalten. Beispiel: Milch, Eier, Zucker, Brot Milch, Eier, Cornflakes, Brot Eier, Zucker Transaktion1 Transaktion2 Transaktion3 Data Warehousing und Mining: Association 9 Data Warehousing und Mining: Association 10 Zugrundeliegende Konzepte (2) Frequent Itemsets (1) Minimum Support σ: Schwellenwert für Support Frequent Itemset: Itemset mit Support σ. Frequent Itemsets identifizieren Mengen von Items, die positiv miteinander korreliert sind, wenn der Support-Schwellenwert groß ist. Transaction ID Gekaufte Items 1 Milch, Obst 2 Milch, Obst, Gemüse 3 Milch 4 Obst, Brot Support({Milch}) = 3 (75%), Support({Obst}) = 3 (75%), Support({Milch, Obst}) = 2 (50%). Wenn σ = 60%, dann: {Milch} und {Obst} sind frequent, aber {Milch, Obst} ist nicht frequent. Data Warehousing und Mining: Association 11 Data Warehousing und Mining: Association 12

4 Frequent Itemsets (2) Beispielszenario: Warenkorbanalyse Frequent Itemset ist maximal, gdw. es nicht Teilmenge eines anderen Frequent Itemsets ist. Es reicht, die maximalen Frequent Itemsets explizit zu erzeugen, um die Frequent Itemsets zu kennen. Gilt aber nicht für Association. Identifizieren von Kundengewohnheiten, indem man Assoziationen und Korrelationen zwischen unterschiedlichen Waren findet, die Kunden in ihren Einkaufswagen legen. ( Ware heißt: ja oder nein, Anzahl/Menge bleibt zunächst außen vor.) Milch, Eier, Zucker, Brot Milch, Eier, Cornflakes, Brot Eier, Zucker Transaktion1 Transaktion2 Transaktion3 Data Warehousing und Mining: Association 13 Wichtige : Item, Itemset, Transaktion, Support, Frequent Itemset. Data Warehousing und Mining: Association 14 z Frequent Itemsets vs. Logik-Regeln (1) Frequent Itemsets vs. Logik-Regeln (2) Items a, b. a (bzw. b) in Diagramm Menge der Kunden, die a (bzw. b) kauft. Frequent Itemset I = {a, b} reflektiert Unterschied zwischen (1), (2) und (4) nicht. (1) (3) (1) (3) (2) (4) (2) (4) Regeln erlauben, den Unterschied darzustellen. Data Warehousing und Mining: Association 15 Data Warehousing und Mining: Association 16

5 Illustration {Bier} {Chips} Wer Bier kauft, kauft auch Chips (mit relativ hoher Wahrscheinlichkeit). Diese Association Rule ist aussagekräftiger als Aussage der Form Bier und Chips werden oft zusammen gekauft. Kriterien für die Auswahl der Association formale Definition (1) A B [s, c] A und B sind Itemsets. s = Support von A B = support(a B) support(a B) Anzahl der Mengen, die A B enthalten. Support war bereits definiert für Mengen, wird jetzt definiert für Regeln. c = Confidence von A B = support(a B)/support(A) Data Warehousing und Mining: Association 17 Data Warehousing und Mining: Association 18 Kriterien für die Auswahl der Association formale Definition (2) Bedeutung der Kriterien Kriterien für Auswahl der Regeln: Minimum Support σ Minimum Confidence γ Wir wollen nur Regeln, für die gilt: s σ und c γ Nächste Folie abstrakte Erläuterung, dann Illustration. A B [s, c] Support: Häufigkeit der Regel in Menge der Transaktionen. Hoher Wert Regel beschreibt Großteil des Datenbestands. support(a B [s, c]) = p(a B) Confidence: Anteil der Transaktionen mit A, die auch B enthalten; Schätzung der bedingten Wahrscheinlichkeit. Wie stark ist Abhängigkeit? dasselbe confidence(a B [s, c]) = p(b A) = p(a B)/p(A). Confidence würde nicht gebraucht, wenn wir nur mit Frequent Itemsets arbeiteten. Data Warehousing und Mining: Association 19 Data Warehousing und Mining: Association 20

6 Beispiel Association schematische Darstellung von Confidence T1 T2 T3 T4 T5 {Zahnpasta, Schokolade, Milch} {Schokolade, Milch} {Brot, Käse} {Zahnpasta, Milch, Käse} {Milch, Brot, Käse} (Fläche a viel kleiner als b.) (Schnittfläche sehr klein.) Confidence Support Brot Käse 100% 40% Käse Milch 66.6% 40% Zahnpasta Schokolade 50% 20% Warum hat Brot => Käse eine andere Confidence als Käse => Brot? Beispiel für Regel mit hohem Support, aber kleiner Confidence? Data Warehousing und Mining: Association 21 Data Warehousing und Mining: Association 22 Association Support und Confidence Association die Parameter σ und γ Beispiel für Association Rule mit hohem Support, aber recht geringer Confidence: 30% der Kunden kaufen Bier und Schnaps. 100% der Kunden kaufen Bier. Bier Schnaps hat recht hohen Support (30%), aber eher wenig Confidence (auch 30%). Minimum Support σ: Hoch Niedrig Minimum Confidence γ: Hoch wenige Frequent Itemsets, wenige Regeln, die oft vorkommen. viele gültige Regeln, die selten vorkommen. wenige Regeln, aber alle logisch fast wahr. Niedrig viele Regeln, aber viele sehr unsicher. Data Warehousing und Mining: Association 23 Typische Werte: σ = 2 10 % γ = % z Data Warehousing und Mining: Association 24

7 Beispiel für Candidate Generation Algorithmus zum Finden von Frequent Itemsets und Association. Erzeugen der einelementigen Frequent Itemsets Frequent Itemsets Association Finden von Frequent Itemsets, Erzeugen der einelementigen Frequent Itemsets - Laufvariable k - - Laufvariable k - Erzeugen der k-elementigen Join Frequent Itemsets Prune Support Counting Frequent Itemsets Association Die erste Phase ist i. Allg. die aufwendigere. Berechnung der Kandidaten besteht aus zwei Schritten, wie auf Folie zuvor angegeben. 3-Sets {1 2 3} {1 2 4} {1 3 4} {1 3 5} {2 3 4} Join Zwischenergebnis Kandidaten für 4-Sets { } { } { } Prune Data Warehousing und Mining: Association 25 Data Warehousing und Mining: Association 26 Erläuterung Identifizieren von Itemsets Kein Prune-Schritt, wenn k=2. Warum? Finden aller Itemsets mit ausreichendem Support, ausführlichere Darstellung als auf voriger Folie: Beginn mit einelementigen Sets (1-Sets) einfaches Abzählen. Berechnung der k-sets aus den (k-1)-sets: Join-Step: Ermittlung von Kandidaten; -Trick: Alle (k-1)-elementigen Teilmengen eines k-sets sind (k-1)-sets, Prune-Step: Löschen aller Kandidaten, die eine unzulässige (k-1)-elementige Teilmenge haben. Support Counting, d. h. Abzählen, wie häufig die Kandidaten wirklich sind. (übernächste Folie) Generierung der Kandidaten (letzte Folie) Data Warehousing und Mining: Association 27 Data Warehousing und Mining: Association 28

8 Algorithmus L 1 = {large 1-itemsets}; for (k=2; L k-1 ; k++) do begin C k =apriori-gen(l k-1 ); // Generierung neuer Kandidaten // gemäß voriger Folie forall transactions t D do begin C t = subset(c k, t); // candidates contained in t forall candidates c C t do c.count++; end L k ={c C k c.count minsup} end Answer = k L k ; Abzählen für alle Transaktionen Ist Candidate Itemset in Transaktion t enthalten? (1) Wie führt man diese Überprüfung effizient für viele t durch? Verwendung eines Hash-Trees - Beispiel: Kandidaten: {1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {1 3 9}, {2 3 4}; Hash-Tree repräsentiert diese Menge der Kandidaten. Hash-Tree wird einmal aufgebaut für die Kandidaten in jedem Schritt. 1, , {2 3 4} , 9 {1 2 3} {1 2 4} {1 3 4} {1 3 5}, {1 3 9} Wie geht also Hinzunehmen eines weiteren Itemsets? Ein Blatt mit mehreren Kandidaten Data Warehousing und Mining: Association 29 Data Warehousing und Mining: Association 30 Ist Candidate Itemset in Transaktion t enthalten? (2) Ermitteln der Association aus den Itemsets (1) Fortsetzung des Beispiels: Transaktion t = { }. Welche der Mengen {1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {1 3 9}, {2 3 4} ist Teilmenge von t = { }? Jede Transaktion wird mit dem Hash-Tree verglichen. 1, , {2 3 4} , 9 Betrachtung aller Subsets a eines Frequent Itemsets I. Ist a (I - a) Association Rule? Noch einmal zur Erinnerung: Regel X Y hat Support s gdw. s % der Transaktionen X und Y enthalten; Regel X Y hat Confidence c gdw. c % der Transaktionen, die X enthalten, enthalten auch Y; (bzw. c % der Transaktionen, die X enthalten, enthalten auch X Y) Support(X Y) conf = Support(X) {1 2 3} {1 2 4} {1 3 4} {1 3 5}, {1 3 9} a (I - a) hat Confidence conf = Support(I) Support(a) Data Warehousing und Mining: Association 31 Data Warehousing und Mining: Association 32

9 Ermitteln der Association aus den Itemsets (2) a (I - a) hat Confidence a (I - a) ist Association Rule, wenn Support(I) Support(a) minconf, d. h. Support(I) Support(a) >= minconf conf = Regel wird so stets nur einmal erzeugt. Support(I) Support(a) I={2,3,4} [40% Support] minconf=75% Subsets: {2,3} {4} Support(I) = 40% Support(a)= 50% {2} {3,4} Support(I) = 40% Support(a) = 80% Beispiel {2,3} {2,4} {3,4} {2} {3} {4} 50% 70% 60% 80% 60% 70% Confidence = 80 % OK! Confidence = 50 % NO! (Da I den geforderten Support hat, haben alle Teilmengen von I ebenfalls den geforderten Support.) z Data Warehousing und Mining: Association 33 Data Warehousing und Mining: Association 34 Multidimensionale Association Beziehungen zwischen Werten verschiedener Attribute: Regeln: CID nationality age income 1 Italian 50 low 2 French 40 high 3 French 30 high 4 Italian 50 medium 5 Italian 45 high 6 French 35 high nationality = French income = high [50%, 100%] income = high nationality = French [50%, 75%] age = 50 nationality = Italian [33%, 100%] Eindimensionale vs. multi-dimensionale (1) Multi-dimensional Single-dimensional Zur Anwendung von <1, Italian, 50, low> <1, {nat/ita, age/50, inc/low}> <2, French, 45, high> <2, {nat/fre, age/45, inc/high}> Data Warehousing und Mining: Association 35 Data Warehousing und Mining: Association 36

10 Eindimensionale vs. multi-dimensionale (2) Association Single-dimensional (Intra-attribute) Ereignisse: Items A, B und C gehören zur gleichen Transaktion Vorkommen der Ereignisse: Transaktionen Multi-dimensional (Inter-attribute) Ereignisse: Attribut A hat Wert a, Attribut B hat Wert b, und Attribut C hat Wert c. Vorkommen der Ereignisse: Tupel Kategorisierung der Items, z. B. Lebensmittel Milch Brot... Diät... Voll Weiß Vollkorn... Eventuell bestehen interessante Zusammenhänge, wenn man Konzepte auf allen Ebenen in Beziehung zu setzen versucht. Data Warehousing und Mining: Association 37 Data Warehousing und Mining: Association 38 Association Beispiel Beispiel: Bisher: Milch Brot [80%] Jetzt: Diätmilch Weißbrot [75%] Probleme: Hoher Support i. Allg. nur mit High-Level Concepts erreichbar, High-Level Regeln tendenziell weniger interessant, z. B. Eßware Getränk Naheliegender Ansatz Menge der Items enthält auch die Kategorien, z. B. {Vollkornbrot, Brot, Lebensmittel,...} Vorgehen wie bisherige Verfahren, bis auf daß Items, die hierarchische Beziehung haben, nicht kombiniert werden. Negative Effekte: Menge der Frequent Itemsets wächst exponentiell mit der Tiefe der Hierarchie, viele ähnliche Zusammenhänge. Data Warehousing und Mining: Association 39 Data Warehousing und Mining: Association 40

11 Illustration kodierte TA-Tabelle Codierung der verschiedenen Items: Milch 1 Diätmilch 11 Vollmilch 12 Brot 2 Weißbrot 21 Vollkornbrot 22 Transaktionstabelle: T1: {11,21,22,32} T2: {21,22,31}... Datenstrukturen für Berechnung von Association Kodierte Transaktionstabelle TID Items T 1 {111, 121, 211, 221} T 2 {111, 211, 222, 323} T 3 {112, 122, 221, 411} T 4 {111, 121} T 5 {111, 122, 211, 221, 413} T 6 {211, 323, 524} T 7 {323, 411, 524, 713} zweidimensionale Itemset-Tabelle Größe der Itemsets, Tiefe in der Hierarchie, Bis jetzt hatten wir nur eindimensionale Tabelle L j, jetzt L[i,j]. Data Warehousing und Mining: Association 41 Data Warehousing und Mining: Association 42 Beispiel Übersicht über die aufgebauten Tabellen Zusammenfassung Level-1 minsup = 4 Level-1 large 1-itemsets L[1,1] Itemset Support Level-1 large 2-itemsets L[1,2] Itemset Support {1**, 2**} 4 Level-1 large 3-itemsets L[1,3] Itemset Support Algorithmus beinhaltet herkömmliche Techniken zum Finden von Large Itemsets. Jedes Level wird nacheinander durchlaufen. Level-2 minsup = 3 Level-2 large 1-itemsets L[2,1] Level-2 large 2-itemsets L[2,2] Level-2 large 3-itemsets L[2,3] Itemset Support Itemset Support Itemset Support Level-3 minsup = 3... Data Warehousing und Mining: Association 43 Data Warehousing und Mining: Association 44

12 Varianten des Algorithmus Level-Crossing Association Erzeugung von L[l,1] für alle Levels mit einem Scan. Wenn Item angetroffen wird, werden mehrere Zähler inkrementiert (für jedes Level einer). Erzeugung des k-itemsets (für k > 1) wie im Single-Concept Level Fall. Zur Erzeugung der Kandidatenmengen können Itemsets unterschiedlicher Ebenen verknüpft werden. Beispiel: Weißbrot Milch. Für Mixed-Level Kandidaten kann man als Minimum-Support den des unteren Levels nehmen. Data Warehousing und Mining: Association 45 Data Warehousing und Mining: Association 46 Mögliche Prüfungsfragen Zusammenfassung Association präzise Begriffsbildung, Algorithmus zum Finden von Association (), Verfeinerungen. aufwendig, wenn große Frequent Itemsets viele Durchläufe durch die Daten, große Zwischenergebnisse. Was sind Association? Wie findet man sie? Wie überprüft man rasch für viele Transaktionen, welche Kandidaten sie enthalten? Geben Sie ein Beispiel für eine Association Rule mit hohem/niedrigem Support und hoher/niedriger Confidence. Was sind multidimensionale Association? Was sind Association, und wie findet man sie? Data Warehousing und Mining: Association 47 Data Warehousing und Mining: Association 48

13 Literatur Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining Association, Proc. of the 20th Int'l Conference on Very Large Databases, 1994 Jiawei Han, Y. Fu Discovery of Multiple-level Association from Large Databases, Proc. of the 21th Int'l Conference on Very Large Databases, Data Warehousing und Mining: Association 49

6.6 Vorlesung: Von OLAP zu Mining

6.6 Vorlesung: Von OLAP zu Mining 6.6 Vorlesung: Von OLAP zu Mining Definition des Begriffs Data Mining. Wichtige Data Mining-Problemstellungen, Zusammenhang zu Data Warehousing,. OHO - 1 Definition Data Mining Menge von Techniken zum

Mehr

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold Algorithms for Pattern Mining AprioriTID Stefan George, Felix Leupold Gliederung 2 Einleitung Support / Confidence Apriori ApriorTID Implementierung Performance Erweiterung Zusammenfassung Einleitung 3

Mehr

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren?

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren? Mining über RDBMSe von Christian Widmer Wie gut lässt sich Mining mit SQL realisieren? Müssen neue Konstrukte zur Verfügung gestellt werden, wenn ja welche? Vortragsüberblick Association Rules Apriori

Mehr

5. Assoziationsregeln

5. Assoziationsregeln 5. Generieren von Assoziationsregeln Grundbegriffe 5. Assoziationsregeln Assoziationsregeln beschreiben gewisse Zusammenhänge und Regelmäßigkeiten zwischen verschiedenen Dingen, z.b. den Artikeln eines

Mehr

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Institut für Statistik LMU München Sommersemester 2013 Zielsetzung

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus FernUniversität in Hagen Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln Thema 1.1.1 Der Apriori-Algorithmus Referentin: Olga Riener Olga Riener. Thema 1.1.1. Der

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Erkennung Sequenzieller Muster Algorithmen und Anwendungen

Erkennung Sequenzieller Muster Algorithmen und Anwendungen Achim Eisele, Thema 1.4.3: Sequenzielle Muster 1 FernUniversität in Hagen Seminar 01912 im Sommersemester 2008 Erkennung Sequenzieller Muster Algorithmen und Anwendungen Thema 1.4.3: Sequenzielle Muster

Mehr

VII.3 Assoziationsregeln

VII.3 Assoziationsregeln VII.3 Assoziationsregelverfahren VII.3. Einführung [Bollinger 96] VII.3 Assoziationsregeln Algorithmen zum Entdecken von Assoziationsregeln sind typische Vertreter von Data Mining Verfahren. Assoziationsregeln

Mehr

Schema Mapping. Armin Roth 25.04.2013. arminroth.de. Armin Roth (arminroth.de) II Schema Mapping 25.04.2013 1 / 23

Schema Mapping. Armin Roth 25.04.2013. arminroth.de. Armin Roth (arminroth.de) II Schema Mapping 25.04.2013 1 / 23 Schema Mapping Armin Roth arminroth.de 25.04.2013 Armin Roth (arminroth.de) II Schema Mapping 25.04.2013 1 / 23 Agenda 1 Wiederholung: Schema Mapping 2 Logische Mappings 3 Erzeugung der Anfragen Armin

Mehr

Vom Suchen und Finden individueller Empfehlungen aus großen Objektmengen. PD Dr.-Ing. habil. Meike Klettke meike.klettke@uni-rostock.

Vom Suchen und Finden individueller Empfehlungen aus großen Objektmengen. PD Dr.-Ing. habil. Meike Klettke meike.klettke@uni-rostock. Vom Suchen und Finden individueller Empfehlungen aus großen Objektmengen PD Dr.-Ing. habil. Meike Klettke meike.klettke@uni-rostock.de 1 Informationsflut Amazon: Alle lieferbaren Bücher (930.000 Titeln

Mehr

WIRTSCHAFTSUNIVERSITÄT WIEN DIPLOMARBEIT

WIRTSCHAFTSUNIVERSITÄT WIEN DIPLOMARBEIT WIRTSCHAFTSUNIVERSITÄT WIEN DIPLOMARBEIT Titel der Diplomarbeit: Visualisierung von Assoziationsregeln mit R Verfasserin/Verfasser: Martin Vodenicharov Matrikel-Nr.: 0253795 Studienrichtung: Betriebswirtschaft

Mehr

Data Mining im Einzelhandel Methoden und Werkzeuge

Data Mining im Einzelhandel Methoden und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Professur Technische Informationssysteme Proseminar Technische Informationssysteme Data Mining im Einzelhandel Methoden und Werkzeuge Betreuer: Dipl.-Ing.

Mehr

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing SE Data Cleansing Domain-independent independent Duplicate Detection Vortrag von Marko Pilop & Jens Kleine http://www.informatik.hu-berlin.de/~pilop/didd.pdf {pilop jkleine}@informatik.hu-berlin.de 1.0

Mehr

Mining top-k frequent itemsets from data streams

Mining top-k frequent itemsets from data streams Seminar: Maschinelles Lernen Mining top-k frequent itemsets from data streams R.C.-W. Wong A.W.-C. Fu 1 Gliederung 1. Einleitung 2. Chernoff-basierter Algorithmus 3. top-k lossy counting Algorithmus 4.

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

Objektorientierte Modellierung (1)

Objektorientierte Modellierung (1) Objektorientierte Modellierung (1) Die objektorientierte Modellierung verwendet: Klassen und deren Objekte Beziehungen zwischen Objekten bzw. Klassen Klassen und Objekte Definition Klasse Eine Klasse ist

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr.

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr. LEIBNIZ UNIVERSITÄT HANNOVER FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIK INSTITUT FÜR PRAKTISCHE INFORMATIK FACHGEBIET DATENBANKEN UND INFORMATIONSSYSTEME Masterarbeit im Studiengang Informatik Kombinationen

Mehr

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis Historische Aspekte Data Mining als Teildisziplin

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Studienprojekt Invisible Web (Dipl.-Inform. Gudrun Fischer - WS 2003/04) Blockseminar

Mehr

Vorlesung. Datenschutz und Privatheit in vernetzten Informationssystemen

Vorlesung. Datenschutz und Privatheit in vernetzten Informationssystemen Vorlesung Datenschutz und Privatheit in vernetzten Informationssystemen Kapitel 7: Privacy Preserving Data Mining Thorben Burghardt, Erik Buchmann buchmann@ipd.uka.de Thanks to Chris Clifton & Group IPD,

Mehr

Assoziationsanalyse und Konzeptbeschreibung

Assoziationsanalyse und Konzeptbeschreibung Assoziationsanalyse und Konzeptbeschreibung Helge Saathoff 7. März 2003 ABSTRACT Wir leben im Informationszeitalter. Fortschritte in der Hard- und Softwaretechnologie haben es ermöglicht, daß heutzutage

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

5 Data Warehouses und Data Mining

5 Data Warehouses und Data Mining 5 Data Warehouses und Data Mining Mittels OLAP Techniken können große Datenmengen unterschiedlich stark verdichtet und gezielt aufbereitet werden. Mittels Data Mining können große Datenmengen nach bisher

Mehr

Visualisierung der Imperfektion in multidimensionalen Daten

Visualisierung der Imperfektion in multidimensionalen Daten Visualisierung der Imperfektion in multidimensionalen Daten Horst Fortner Imperfektion und erweiterte Konzepte im Data Warehousing Betreuer: Heiko Schepperle 2 Begriffe (1) Visualisierung [Wikipedia] abstrakte

Mehr

Besser essen bei Typ 2

Besser essen bei Typ 2 Besser essen bei Typ 2 Typ 2 Ernährungsratgeber* Liebe Patientin, lieber Patient, mit diesem kleinen Ratgeber möchten wir Ihnen eine Hilfestellung geben, sich im Alltag bei der Auswahl Ihrer Lebensmittel

Mehr

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Ausarbeitung AW1 WS2011/2012. Jan-Christoph Meier Datenanalyse mit Data Mining

Ausarbeitung AW1 WS2011/2012. Jan-Christoph Meier Datenanalyse mit Data Mining Ausarbeitung AW1 WS2011/2012 Jan-Christoph Meier Datenanalyse mit Data Mining Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department of Computer Science

Mehr

Ma 13 - Stochastik Schroedel Neue Wege (CON)

Ma 13 - Stochastik Schroedel Neue Wege (CON) Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

Business Analytics im E-Commerce

Business Analytics im E-Commerce Business Analytics im E-Commerce Kunde, Kontext und sein Verhalten verstehen für personalisierte Kundenansprache Janusz Michalewicz CEO Über die Firma Crehler Erstellung von Onlineshops Analyse von Transaktionsdaten

Mehr

On-Line Analytical Processing

On-Line Analytical Processing OLAP und Data Mining ƒ OLAP Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen ƒ Data Mining Begriff und Prozeß Verfahren Vorlesung Data-Warehouse-Technologien 9-1 On-Line Analytical Processing

Mehr

Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken

Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken Diplomarbeit Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken Irina Alesker Diplomarbeit am Fachbereich Informatik der Universität Dortmund 23. Juni 2005 Betreuer: Prof.

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalse k-means-algorithmus Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalse Support

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

ERNÄHRUNG ERNÄHRUNG SPRACHSENSIBLER UNTERRICHT (ÖSZ 2015) Individuell. UNTERRICHTSFACH Sachunterricht Bereich Natur. THEMENBEREICH(E) Der Körper

ERNÄHRUNG ERNÄHRUNG SPRACHSENSIBLER UNTERRICHT (ÖSZ 2015) Individuell. UNTERRICHTSFACH Sachunterricht Bereich Natur. THEMENBEREICH(E) Der Körper ERNÄHRUNG Erstellerin: Evelin Fuchs UNTERRICHTSFACH Sachunterricht Bereich Natur THEMENBEREICH(E) Der Körper SCHULSTUFE Grundstufe 2 ZEITBEDARF Individuell INHALTLICH- FACHLICHE ZIELE SPRACHLICHE ANFORDERUNGEN

Mehr

OLAP und Data Mining. On-Line Analytical Processing. Coddsche Regeln OLAP. Data Mining. Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen

OLAP und Data Mining. On-Line Analytical Processing. Coddsche Regeln OLAP. Data Mining. Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen OLAP und Data Mining OLAP Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen Data Mining Begriff und Prozeß Verfahren Vorlesung Data-Warehouse-Technologien 9-1 On-Line Analytical Processing

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph Seminar Map/Reduce Algorithms on Hadoop Topics Alex, Christoph Organisatorisches Prioritisierte Liste mit allen vorgestellten Themen bis heute 23:59 an Alexander.Albrecht@hpi.uni-potsdam.de Vergabe der

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalyse k-means-algorithmus Canopy Clustering Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalyse

Mehr

Parallelisierung von Data Mining - Algorithmen

Parallelisierung von Data Mining - Algorithmen Fakultät für Elektrotechnik und Informatik Institut für Praktische Informatik Fachgebiet Datenbanken und Informationssysteme Parallelisierung von Data Mining - Algorithmen Masterarbeit im Studiengang Informatik

Mehr

Data Mining zur Entscheidungsunterstützung in der Hydrologie

Data Mining zur Entscheidungsunterstützung in der Hydrologie Data Mining zur Entscheidungsunterstützung in der Hydrologie Thomas Seidl, Ralph Krieger, Ira Assent, Boris Glavic, Heribert Nacken, Sabine Bartusseck, Hani Sewilam Zusammenfassung Zur Umsetzung der europäischen

Mehr

Bachelorarbeit. Jörn Slotta. Vergleich von Algorithmen zur Assoziationsanalyse basierend auf Webserver Logfiles

Bachelorarbeit. Jörn Slotta. Vergleich von Algorithmen zur Assoziationsanalyse basierend auf Webserver Logfiles Bachelorarbeit Jörn Slotta Vergleich von Algorithmen zur Assoziationsanalyse basierend auf Webserver Logfiles Fakultät Technik und Informatik Studiendepartment Informatik Faculty of Engineering and Computer

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Warenkorbanalyse mit Hilfe der Statistiksoftware R

Warenkorbanalyse mit Hilfe der Statistiksoftware R Warenkorbanalyse mit Hilfe der Statistiksoftware R Michael Hahsler (1), Kurt Hornik (2) & Thomas Reutterer (3) (1) Institut für Informationswirtschaft, WU-Wien. (2) Institut für Statistik und Mathematik,

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln

Mehr

Pflegetheorien. Theorien und Modelle der Pflege

Pflegetheorien. Theorien und Modelle der Pflege Pflegetheorien Theorien und Modelle der Pflege Übersicht Einführung in die Theorieentwicklung der Pflege Phasen der Theoriebildung bis heute Aktuelle Entwicklungen Woraus besteht eine Theorie? Ausgewählte

Mehr

Kapitel 19: Datenbank-Unterstützung für Datenanalyse

Kapitel 19: Datenbank-Unterstützung für Datenanalyse Kapitel 19: Datenbank-Unterstützung für Datenanalyse Datenbank-Unterstützung für Data Mining Unterschiedliche Ebenen: Erweiterung des Datenbank-Kerns ( Datenbank-Primitive ), Erweiterungen der Anfragesprache,

Mehr

Ein Schlüssel ist eine Menge von Attributen (also eines oder mehrere), die eine Datenzeile (Tupel) einer Tabelle eindeutig identifiziert

Ein Schlüssel ist eine Menge von Attributen (also eines oder mehrere), die eine Datenzeile (Tupel) einer Tabelle eindeutig identifiziert Maika Büschenfeldt Datenbanken: Skript 1 1. Was ist eine relationale Datenbank? In Datenbanken können umfangreiche Datenbestände strukturiert abgelegt werden. Das Konzept relationaler Datenbanken soll

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Einführung in Data Mining Ulf Leser Wissensmanagement in der Bioinformatik Wo sind wir? Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung des

Mehr

Vortrag Evaluation und Fragebogenkonstruktion

Vortrag Evaluation und Fragebogenkonstruktion Vortrag Evaluation und Fragebogenkonstruktion Dipl. Soz. David Schneider, Hochschulreferat Studium und Lehre 25.04.2012 Was erwarten unsere Benutzerinnen und Benutzer von uns? Umfragen in Bibliotheken

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Gliederung. Algorithmen und Datenstrukturen II. Problem: Längste gemeinsame Teilsequenz. Problem: Längste gemeinsame Teilsequenz

Gliederung. Algorithmen und Datenstrukturen II. Problem: Längste gemeinsame Teilsequenz. Problem: Längste gemeinsame Teilsequenz Gliederung Algorithmen und Datenstrukturen II Algorithmen zur Textverarbeitung II D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg

Mehr

Maschinelles Lernen und Data Mining: Methoden und Anwendungen

Maschinelles Lernen und Data Mining: Methoden und Anwendungen Maschinelles Lernen und Data Mining: Methoden und Anwendungen Eyke Hüllermeier Knowledge Engineering & Bioinformatics Fachbereich Mathematik und Informatik GFFT-Jahrestagung, Wesel, 17. Januar 2008 Knowledge

Mehr

Seminar Komplexe Objekte in Datenbanken

Seminar Komplexe Objekte in Datenbanken Seminar Komplexe Objekte in Datenbanken OPTICS: Ordering Points To Identify the Clustering Structure Lehrstuhl für Informatik IX - Univ.-Prof. Dr. Thomas Seidl, RWTH-Aachen http://www-i9.informatik.rwth-aachen.de

Mehr

Data Mining mit Microsoft SQL Server

Data Mining mit Microsoft SQL Server Data Mining mit Microsoft SQL Server Analyse und Mustererkennung in Daten mit Excel 2007 und SQL Server 2005/2008 von Jan Tittel, Manfred Steyer 1. Auflage Data Mining mit Microsoft SQL Server Tittel /

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

SQL. Komplexe Abfragen. SQL-Komplexe Abfragen. SQL-Komplexe Abfragen. Komplexe Abfragen verknüpfen mehrere Tabellen miteinander.

SQL. Komplexe Abfragen. SQL-Komplexe Abfragen. SQL-Komplexe Abfragen. Komplexe Abfragen verknüpfen mehrere Tabellen miteinander. SQL Komplexe Abfragen Komplexe Abfragen verknüpfen mehrere Tabellen miteinander. Voraussetzung für das Verständnis ist die Beherrschung einfacher SELECT-Abfragen Die Möglichkeit, Tabellen zu verknüpfen,

Mehr

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume von Lars-Peter Meyer im Seminar Methoden wissensbasierter Systeme bei Prof. Brewka im WS 2007/08 Übersicht Überblick maschinelles Lernen

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Datenbankmodelle 1. Das Entity-Relationship-Modell. Prof. Dr. Bernhard Schiefer 2-1

Datenbankmodelle 1. Das Entity-Relationship-Modell. Prof. Dr. Bernhard Schiefer 2-1 Datenbankmodelle 1 Das Entity-Relationship-Modell Prof. Dr. Bernhard Schiefer 2-1 Datenbankmodelle ER-Modell hierarchisches Modell Netzwerkmodell relationales Modell objektorientierte Modelle Prof. Dr.

Mehr

Teil X Business Intelligence Anwendungen

Teil X Business Intelligence Anwendungen Teil X Business Intelligence Anwendungen Business Intelligence Anwendungen 1 Begriffsklärung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung: 19.09.2012 10 1 Business Intelligence

Mehr

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Schulinternes Curriculum Mathematik Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Legende: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

!!! DASH Ernährung für Ihren Blutdruck

!!! DASH Ernährung für Ihren Blutdruck für Ihren Blutdruck für Ihren Blutdruck Die richtige Ernährung kann Ihren Blutdruck sehr günstig beeinflussen. Und mehr als das: Sie verringert Ihr Risiko für zahlreiche weitere Erkrankungen und Sie behalten

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Grundlagen der Programmierung 2 Einführung in Datenbanken Grundlagen der Programmierung 2 I-1 Inhalt Einführung Entity-Relationship-Diagramm Relationales Modell Entity-Relationship-Diagramm ins Relationales

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy

Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy Grundkurs Semantik Sitzung 3: Mengenlehre Andrew Murphy andrew.murphy@uni-leizpig.de Grundkurs Semantik HU Berlin, Sommersemester 2015 http://www.uni-leipzig.de/ murphy/semantik15 15. Mai 2015 Basiert

Mehr

Klassenarbeit - Ernährung. Ordne die Wörter zu dem richtigen Feld ein. 3. Klasse / Sachkunde

Klassenarbeit - Ernährung. Ordne die Wörter zu dem richtigen Feld ein. 3. Klasse / Sachkunde 3. Klasse / Sachkunde Klassenarbeit - Ernährung Nahrungsmittelkreis; Zucker; Eiweiß; Nährstoffe; Vitamine; Getreide Aufgabe 1 Ordne die Wörter zu dem richtigen Feld ein. Brot, Paprika, Spiegelei, Öl, Quark,

Mehr

Unified Modeling Language (UML )

Unified Modeling Language (UML ) Unified Modeling Language (UML ) Seminar: Programmiersprachenkonzepte Inhalt Einleitung UML 2.0 Diagrammtypen 2 Einleitung Objektorientierte Modellierungssprache Definiert vollständige Semantik Dient der

Mehr

Testverfahren. 1. Pepsi vs. Coca-Cola

Testverfahren. 1. Pepsi vs. Coca-Cola 1. Pepsi vs. Coca-Cola Testverfahren Über Geschmack lässt sich bekanntermaßen streiten. Häufig stellt sich nämlich die Frage, ob der Unterschied zwischen zwei Produkten überhaupt feststellbar ist. Einer

Mehr

Bachelorarbeit Entwicklung eines Konzeptes zur angemessenen Beschriftung von Informationsobjekten

Bachelorarbeit Entwicklung eines Konzeptes zur angemessenen Beschriftung von Informationsobjekten Bachelorarbeit Entwicklung eines Konzeptes zur angemessenen Beschriftung von Informationsobjekten Institut für Informatik Rostock 1 Inhaltsübersicht 1. Einleitung und Begriffsbildung 2. Bestehende geeignete

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Dynamisches Programmieren - Problemstruktur

Dynamisches Programmieren - Problemstruktur Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Wirtschaftsinformatik 2. Tutorium im WS 11/12

Wirtschaftsinformatik 2. Tutorium im WS 11/12 Wirtschaftsinformatik 2. Tutorium im WS 11/12 Entity/Relationship-Modell SQL Statements Tutorium Wirtschaftsinformatik WS 11/12 2.1 Datenmodellierung mit ERM (1) Datenmodellierung zur Erarbeitung des konzeptionellen

Mehr

7 Endliche Automaten. Reimund Albers Papierfalten Kapitel 7 Endliche Automaten 103

7 Endliche Automaten. Reimund Albers Papierfalten Kapitel 7 Endliche Automaten 103 Reimund Albers Papierfalten Kapitel 7 Endliche Automaten 103 7 Endliche Automaten Ein erstes Beispiel Ganz im Sinn der vorangegangenen Kapitel machen wir wieder Anleihen in einem wohl etablierten Gebiet.

Mehr

Quantitatives Frequent-Pattern Mining über Datenströmen

Quantitatives Frequent-Pattern Mining über Datenströmen Quantitatives Frequent-Pattern Mining über Datenströmen Daniel Klan, Thomas Rohe Department of Computer Science & Automation TU Ilmenau, Germany {first.last}@tu-ilmenau.de Abstract Das Aufdecken unbekannter

Mehr

Microsoft Access 2010 SQL nutzen

Microsoft Access 2010 SQL nutzen Microsoft Access 2010 SQL nutzen Welche Bestellungen hat Kunde x aufgegeben? Welche Kunden haben noch nie bestellt? Wer hat welche Bestellungen von welchen Kunden aufgenommen? S(tructured)Q(uery)L(anguage)

Mehr

Datenbankmodelle 1. Das Entity-Relationship-Modell

Datenbankmodelle 1. Das Entity-Relationship-Modell Datenbankmodelle 1 Das Entity-Relationship-Modell Datenbankmodelle ER-Modell hierarchisches Modell Netzwerkmodell relationales Modell objektorientierte Modelle ER Modell - 2 Was kann modelliert werden?

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

HS-Niederrhein Fachbereich Oecotrophologie Methodenlehre SPSS-Kurs. Heißhunger. Vs.

HS-Niederrhein Fachbereich Oecotrophologie Methodenlehre SPSS-Kurs. Heißhunger. Vs. HS-Niederrhein Fachbereich Oecotrophologie Methodenlehre SPSS-Kurs Heißhunger Vs. Gesunde Ernährung Seite 1 Inhaltsverzeichnis 1. Gliederung 1.1 Anlass 1.2 Thema 1.3 Datengrundlage 2. Hypothesen 3. Inhaltliche

Mehr

Repetitorium. Data Warehousing und Data Mining 11/12. Sebastian Wandelt 13./16. Februar 2012

Repetitorium. Data Warehousing und Data Mining 11/12. Sebastian Wandelt 13./16. Februar 2012 Repetitorium Data Warehousing und Data Mining 11/12 Sebastian Wandelt 13./16. Februar 2012 Inhalt Data Warehousing und Data Mining auf 40 Slides Weder in-, noch exklusiv! Subjektive Zusammenfassung pro

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

Einführung in Datenbanksysteme. H. Wünsch 01.2001

Einführung in Datenbanksysteme. H. Wünsch 01.2001 Einführung in Datenbanksysteme H. Wünsch 01.2001 H. Wünsch 01/2001 Einführung Datenbanken 2 Was sind Datenbanken? Datenbanken sind Systeme zur Beschreibung, Speicherung und Wiedergewinnung von Datenmengen.

Mehr

ESSPROTOKOLL. Bewusst und gesund das gewünschte Gewicht erlangen.

ESSPROTOKOLL. Bewusst und gesund das gewünschte Gewicht erlangen. . Bewusst und gesund das gewünschte Gewicht erlangen. SELBSTREFLEXION IHR PERSÖNLICHES Überlegen Sie sich zu Ihrem Essprotokoll folgende Fragen: Notieren Sie sich, WIE VIEL und WAS Sie zu sich genommen

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 9

Stoffverteilungsplan Mathematik im Jahrgang 9 Überprüfung und Bewertung von Problembearbeitungen Problemlösungsstrategien (Funktionsplotter) Arithmetik / Algebra Operieren Lösen einfacher quadratischer (z.b. durch Faktorisieren oder pq-formel) Verwendung

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Data Mining in der Cloud

Data Mining in der Cloud Data Mining in der Cloud von Jan-Christoph Meier Hamburg, 21.06.2012 1 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur 2 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Oracle-Statistiken im Data Warehouse effizient nutzen

Oracle-Statistiken im Data Warehouse effizient nutzen Oracle-Statistiken im Data Warehouse effizient nutzen Reinhard Mense ARETO Consulting Köln Schlüsselworte: DWH, Data Warehouse, Statistiken, Optimizer, Performance, Laufzeiten Einleitung Für die performante

Mehr

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert:

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: 1 des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval Information

Mehr