b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x"

Transkript

1 K1 Punkte: / Note: Schnitt:.10.1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: Leiten Sie ab und vereinfachen Sie gegebenenfalls (denken Sie an die Produktregel, die Kettenregel und an das Umformen der Funktionen vor dem Ableiten) a) [P] f (x) = sin(x ) b) [P] 7x x + x f (x) = 4x + cos(x) 7x c) [P] f (x) = d) [P] f (x) = x e 7x Lösungsvorschlag 1: f '(x) = cos x 6x = 6x cos x a) mit der Kettenregel ergibt sich: ( ) ( ) b) Beide Summanden einzeln ableiten und beim ersten die Kettenregel verwenden: f '(x) = 1x sin(x) = sin(x) = x sin(x) 1 1x 4x 4 x oder den ersten Summanden vor dem Ableiten umwandeln: 1 f (x) = x + cos(x) also f '(x) = x sin(x) = x sin(x) 1 c) Vor dem Ableiten umwandeln: f (x) = x + x Also f '(x) = 1+ x = x f '(x) = 1 e + x e 14x = 1+ 14x e d) Mit der Produktregel: ( ) 7x 7x 7x Aufgabe : [4P] Ermitteln Sie die Gleichung der Tangente an das Schaubild von f ( x) = x 4x + 6 im Punkt Q(/?). Bestimmen Sie die Nullstelle der Tangente. Lösungsvorschlag : Wir leiten die Funktion ab: f '(x) = x 8x und bestimmen die nötigen Terme für die Tangentengleichung t(x) = f '(a) ( x a) + f (a) : a = f(a) = f() = = - f (a) = f () = 1-16 = -4 t(x) = f '(a) x a + f (a) = 4 x = 4x + 6 Also ( ) ( ) Sei x eine Nullstelle der Tangente, dann gilt t(x) = 0, also 4x + 6 = 0 oder x = W. Seyboldt Seite 1 (von 6)

2 K1 Punkte: / Note: Schnitt:.10.1 Aufgabe : [P] Die Abbildung unten ist das Schaubild der Ableitungsfunktion f' einer Funktion f.geben Sie für jeden der folgenden Sätze an, ob er richtig, falsch oder nicht entscheidbar ist. Begründen Sie jeweils Ihre Antwort. (1) Das Schaubild von f hat bei x = 5 einen Tiefpunkt () Das Schaubild von f hat für - x genau zwei Wendepunkte. () Das Schaubild von f verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. Lösungsvorschlag : a) Bei x=5 ist dann ein Tiefpunkt, wenn die 1. Ableitung =0 ist und einen Vorzeichenwechsel von - nach + hat. Das erste ist der Fall, das zweite nicht, also hat f bei x=5 keinen Tiefpunkt (sondern einen Hochpunkt). b) Eine Funktion f hat einen Wendepunkt, wenn die zweite Ableitung = 0 ist und einen Vorzeichenwechsel hat. Bei x=- und x=1 hat die Funktion einen Extrempunkt, die. Ableitung ist also jeweils Null. Außerdem wechselt die Ableitung der 1. Ableitung das Vorzeichen bei den beiden Punkten. (bei x=- von nach +, bei x=1 von + nach -) In den anderen Punkten zwischen - und ist die Tangente an die Ableitungsfunktion nie parallel zur x-achse. Damit hat das Schaubild genau zwei Wendepunkte. c) Dem Schaubild entnimmt man, dass f (0) = 4 ist, also ist die Steigung im Ursprung größer als 1 = Steigung der Winkelhalbierenden. W. Seyboldt Seite (von 6)

3 K1 Punkte: / Note: Schnitt:.10.1 Wahlteil (etwa 40 min) Mit GTR und Formelsammlung nach Abgabe des Pflichtteils kann der GTR und die Formelsammlung verwendet werden. Aufgabe 4: Die ankommenden Zuschauer pro Minute bei einem Regionalligaspiel sollen modellhaft durch die Funktion Z mit Z(t) = t e beschrieben werden. Dabei ist 1 0,1t + t die Zeit in Minuten seit 17:00 Uhr und Z(t) die Anzahl der ankommenden Besucher pro Minute. a) [P] Skizzieren Sie die Funktion in einem vernünftigen Bereich und bestimmen Sie den Zeitpunkt, an dem die meisten Zuschauer pro Minute kommen. b) [P] Wann ist die Abnahme der ankommenden Besucher am größten? (Tipp: Wie sieht die rechnerische Ableitung von Z(t) aus? Skizziere) Lösungsvorschlag 4: a) Die Funktion Z(t) ist gegeben durch Z : Zeit in min seit 17:00 Besucher pro min 1 0,1t + t t e Der GTR ergibt den Graphen (x-achse: step 10, y-achse step 5) Der GTR liefert als Maximum x=10 und y=1,59. (Nur zur Info, bei den Lösungen nicht aufschreiben: sh/f5 = G-Solv, F=Max) Damit kommen um 17:10 die meisten Besucher pro min, nämlich etwa 1,5 Person / min. (Dieser Satz ist wichtig!) b) Die Abnahme ist am Wendepunkt der Funktion zwischen t=10 und t=60 am größten. Um den Wendepunkt zu bestimmen, berechnen wir die Ableitung von 1 0,1t + Z(t) = t e. Mit der Produkt- und Kettenregel ergibt sich 1 0,1t + 1 0,1t + 1 0,1t + Z'(t) = e + t e ( 0.1) = ( 1 0,1 t) e Der Graph dieser Ableitung ist: W. Seyboldt Seite (von 6)

4 K1 Punkte: / Note: Schnitt:.10.1 Der GTR liefert als Minimum: x = 0 und y = -0.5 Damit ist die Abnahme der ankommenden Zuschauer um 17:0 am größten, es kommen dann 0,5 Zuschauer/min weniger. Bemerkung: Vgl. Mathe-Buch S. 1 Nr. 15 Aufgabe 5: [4P] Bestimmen Sie die Punkte der Funktion f (x) = x + 6, in denen die Tangente durch den Ursprung (0/0) geht. Geben Sie die Tangenten an. (Tipp: Nehmen Sie an, dass a die x-koordinate eines Punktes sei, dessen Tangente durch den Ursprung geht ) Lösungsvorschlag 5: Sei a die x-koordinate eines Punktes, dessen Tangente durch den Ursprung geht. Dann ist die Gleichung der Tangente t(x) = f '(a) x a + f (a). Da ( ) f (x) = x + 6 ist, ist die Ableitung f '(x) = 6x. Damit gilt ( ) ( ) t(x) = 6a x a + a + 6 = 6ax a + 6 Der Nullpunkt liegt auf der Geraden, also gilt t(0) = 0 oder a + 6 = 0 oder a1/ = ±. Dies bedeutet, dass nur solche Punkte P(a/f(a)) eine Tangente durch den Ursprung haben können, für die a = oder a = ist, alle anderen Punkte kommen nicht in Frage, da deren Tangente ja nicht durch den Ursprung geht. Wir müssen also nur noch diese beiden Punkte weiter untersuchen. Die Tangente für a = ist t(x) = 6 x + 6 = 6 x. Die Tangente an f in a = ist t(x) = 6 x + 6 = 6 x Da bei beide Tangenten der y-achsenabschnitt c = 0 ist, gehen sie durch den Ursprung. Bemerkung: Im ersten Teil ( notwendigen Teil) haben wir gezeigt, dass nur die beiden Punkte mit x = a = und x = a = eine Tangete durch den Ursprung haben können, im zweiten ( hinreichenden Teil) haben wir für diese beiden Punkte die Tangenten bestimmt und gesehen, dass sie beide durch den Ursprung gehen. Diese Verfahrensweise taucht bei vielen Aufgaben auf, d.h. wir trennen in einen notwendigen und einen hinreichenden Teil. Aufgabe 6 Gegeben ist die Funktion f mit f (x) = 4 sin x für 0 x 1 1 Ihr Schaubild sei K. a) [P] Skizzieren Sie K. Geben Sie die gemeinsamen Punkte von K mit der Geraden y = 0,x an. b) [5P] Wir wollen nun die Seitenlängen des flächengrößten Rechtecks bestimmen, bei dem zwei Ecken auf der x-achse und die beiden anderen Ecken auf K liegen. Tipp: Gehen Sie dazu etwa wie folgt vor: Zeichnen Sie in der Skizze oben die Senkrechte in den Punkten z und 1-z ( 0 z < 6 ) ein - wählen Sie in der Skiz- W. Seyboldt Seite 4 (von 6)

5 K1 Punkte: / Note: Schnitt:.10.1 ze z.b. z=1. Bestimmen Sie die Fläche des Rechtecks bestehend aus den Punkten A(z,0), B(1-z, 0), C(1-z,f(1-z)), D(z,f(z)). Diese Fläche F(z) =. hängt von z ab. Geben Sie diese Funktion an. Bestimmen Sie z so, dass der Flächeninhalt F maximal wird (Sie dürfen den GTR benutzen) Lösungsvorschlag 6: a) Der GTR liefert für f(x) folgenden Graphen: (Zeichenbereich: x=0..1, step, y=0..4, steps= Vorsicht, GTR auf RAD stellen) Um die gemeinsamen Punkte von f und der Gerade zu bekommen, zeichnen wir die Gerade ebenso mit dem GTR und bestimmen die Schnittpunkte mit dem GTR. Die gemeinsamen Punkte sind A(0/0) und B(10/) (siehe GTR) b) Wenn wir wie im Tipp angegeben, die Geraden x=1 und x=11 einzeichnen, erhalten wir Die Länge l des Rechtes ist l = Ende- Anfang = ( 1 z) z = 1 z Die Höhe ist h = f (z) = 4 sin z =,61. Damit ist die Fläche des Rechtecks 1 A = l h = ( 1 z) 4 sin x Die Fläche ist eine Funktion von z. Die notwendige Bedingung für Maximum in z ist A '(z) = 1 0 W. Seyboldt Seite 5 (von 6)

6 K1 Punkte: / Note: Schnitt:.10.1 Die Ableitung ist übrigens π A '(z) = ( ) 4 sin z + ( 1 z) 4 cos z = π = 8 sin z + ( 1 z) cos z 1 1 Allerdings benötigen wir diese Ableitung nicht, denn wir können die Funktion A(z) mit dem GTR zeichnen und das Maximum bestimmen. Der GTR liefert für A(z) = ( 1 z) 4 sin z den Graphen 1 Der GTR liefert für das Maximum von A(z) die Werte z =,71 mit y = 17,1 Damit ist die Fläche bei z =,71 maximal. Die maximale Fläche ist 17,1. Die Seitenlangen sind dann l = 1 z = 1, 71 = 6, 58 und h = f (,71) = 4 sin,71 =,61 1 Bem.: Diese Aufgabe war Teil des Abis 06 Aufgabe I.1, siehe (Benutzer gzg / Kennwort Diese Lösungen findet man am Ende des File Langsam und überlegt rechnen! Viel Erfolg. W. Seyboldt Seite 6 (von 6)

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

2 Wiederholung der Ableitungsregeln und höhere Ableitungen

2 Wiederholung der Ableitungsregeln und höhere Ableitungen 2 Wiederholung der Ableitungsregeln und höhere Ableitungen In der Abbildung sehen Sie die Graphen der Funktionen f und g mit f (x) = x 2 und g (x) = _ 1 x 2 4 sowie die Graphen der Ableitungsfunktionen

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie)

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie) I. Grenzverhalten von Funktionen. Verhalten einer Funktion für bzw.. Bestimmen Sie den Grenzwert a) b) ) ( + ( ) c) ( + ) ( ) II. Symmetrie.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften.

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

De Taschäräschnr Casio (Reihe: 9750, 9850,...)

De Taschäräschnr Casio (Reihe: 9750, 9850,...) De Taschäräschnr Casio (Reihe: 9750, 9850,...) Übersicht: 1. Nullstellen 2. Gleichungen 2. oder 3. Grades lösen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. Steigung

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

K2 MATHEMATIK KLAUSUR 3

K2 MATHEMATIK KLAUSUR 3 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3

Mehr

Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre

Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Lösungshinweise und Tipps Die Lösungshinweise beziehen sich auf die konkrete Aufgabenstellung, während die von Fall zu Fall beigefügten

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Lösungen ==================================================================

Lösungen ================================================================== Lösungen ================================================================== Aufgabe Bestimme f '(x) a) f(x) = e x f '(x) = e x ( ) = 4 e c x b) f(x) = x e x f '(x) = e x ( ) = + e x c) f(x) = 3 e (x+)

Mehr

4. Klassenarbeit Mathematik

4. Klassenarbeit Mathematik Name: 30. Mai 2007 Klasse 11A 4. Klassenarbeit Mathematik Thema: Differentialrechnung Allgemeine Bearbeitungshinweise: Die Bearbeitung muss von einer geeigneten Dokumentation begleitet werden. Hierzu gehören:

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von Zentrale Klausur am Ende der Einführungsphase 011 Mathematik Aufgabenstellung In Nordrhein-Westfalen sind Hochwasser nichts Unbekanntes. Insbesondere die Rheinschiene im Großraum

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! 12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie

Mehr

Classpad 300 / Classpad 330 (Casio) Der Taschenrechner CAS:

Classpad 300 / Classpad 330 (Casio) Der Taschenrechner CAS: Der Taschenrechner CAS: Classpad 300 / Classpad 330 (Casio) Übersicht: 1. Katalog (wichtige Funktionen und wie man sie aufruft) 2. Funktionen definieren (einspeichern mit und ohne Parameter) 3. Nullstellen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ihlenburg Ott Deusch Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 5. Auflage 05 ISBN 978--80-8- Das

Mehr

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4 1 Aufgaben Untersuche die folgende Funktionen auf Nullstellen, Schnittpunkte mit den Koordinatenachsen, Extremwerte, y-achsensymmetrie und Punktsymmetrie zum Ursprung (0 0) und zeichnen den Graph der Funktion.

Mehr

CAS / GTR. endlich mal eine verständliche Bedienungsanleitung. Texas Instruments TI Copyright. Havonix Schulmedien-Verlag

CAS / GTR. endlich mal eine verständliche Bedienungsanleitung. Texas Instruments TI Copyright. Havonix Schulmedien-Verlag CAS / GTR endlich mal eine verständliche Bedienungsanleitung Texas Instruments TI 83 Kostenlose Mathe-Videos auf Mathe-Seite.de - 1 - Copyright Inhaltsübersicht 1. Nullstellen 2. Gleichungen lösen 3. Schnittpunkte

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

1. Übungsaufgabe zu Exponentialfunktionen

1. Übungsaufgabe zu Exponentialfunktionen 1. Übungsaufgabe zu Exponentialfunktionen Die folgende Funktion y = f(t) = 8 t e stellt die Konzentration eines Stoffes in einer Flüssigkeit dar. y ist die Konzentration des Stoffes in mg / Liter. t ist

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

1 Die natürliche Exponentialfunktion und ihre Ableitung

1 Die natürliche Exponentialfunktion und ihre Ableitung Schülerbuchseite 5 5 Lösungen vorläuig VI Natürliche Eponential- und Logarithmusunktion Die natürliche Eponentialunktion und ihre Ableitung S. 5 Durch Ausprobieren erkennt man, dass < a

Mehr

Kurvendiskussion einer ganzrationalen Funktion

Kurvendiskussion einer ganzrationalen Funktion Kurvendiskussion einer ganzrationalen Funktion Lernzuflucht 24. November 20 L A TEX M. Neumann Folgende Funktion soll in einer Kurvendiskussion bearbeitet werden: f(x) = x 4 2x 2 ; D = R () Diese Funktion

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5.

Parabeln. x y Um die Beziehung von x und y aufzudecken, teilen wir die y-werte durch 5. c) = (x a) Parabeln Wir stellen uns vor, einen Stein von einem hohen Gebäude fallen zu lassen und interessieren uns für den Zusammenhang von verstrichener Zeit x (in Sekunden) und zurückgelegter Fallstrecke

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Extrempunkte bestimmen

Extrempunkte bestimmen FUNKTIONEN: Extrempunkte bestimmen Gegeben sei eine Funktion f(x). Die notwendige Bedingung für einen Extrempunkt ist f '(x 0 ) = 0 Die hinreichende Bedingung für einen Hochpunkt ist f '(x 0 ) = 0 und

Mehr

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Übungsaufgaben zu quadratischen Gleichungen und Parabeln Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel

Mehr

Einführung in die Differentialrechnung I (MD)

Einführung in die Differentialrechnung I (MD) Betrachte den Graphen von f(x) als Profilkurve eines Berges und laufe ihn von "- nach +" ab. An jedem Punkt des Graphen kannst du die Steigung beschreiben und mit dem Anstieg in der Umgebung vergleichen.

Mehr

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Etrem- und Wendepunkte und zeichne ein Schaubild

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik bla Differenzialrechnung Ort - Zeit - Geschwindigkeit E:\1_GYMER\_Unterricht\AUFGABEN\0_3 Differenzialrechnung\00_differenzialrechnung.docx 1 Das Weg-Zeit-Diagramm und die Geschwindigkeit Ordne

Mehr

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen Die Lerndominos sind ein idealer Weg, um Gelerntes zu vertiefen. Das Domino wird mit der Start-Karte begonnen, dann werden die passenden Antwort-Karten angelegt bis die Ziel-Karte erreicht ist. Bewährt

Mehr

Erfolg im Mathe-Abi 2015

Erfolg im Mathe-Abi 2015 Gruber I Neumann Erfolg im Mathe-Abi 2015 Übungsbuch Hilfsmittelfreier Teil mit Tipps und Lösungen Inhaltsverzeichnis Vorwort... 5 Der hilfsmittelfreie Teil der Abiturprüfung... 7 Die Anforderungsbereiche

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 1 14.03.2016 Aufgabe PT WTA WTGS Gesamtpunktzahl (max) 30 15 15 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 3 4 4 3 WT Ana A.1a) b) c) Summe P. (max) 7 5 3 15 WT Geo G.a)

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Extrempunkte eine Einführung

Extrempunkte eine Einführung Extrempunkte eine Einführung Kurzer Überblick Grundsätzlich ist ein Extrempunkt der entweder ein Hochpunkt oder ein Tiefpunkt sein kann ein Punkt am Graphen einer Funktion, dessen Wert (y- Koordinate)

Mehr

Herzlich Willkommen. GeoGebra für Anfänger

Herzlich Willkommen. GeoGebra für Anfänger Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Inhaltsverzeichnis Viel Erfolg!... 1 Ableitung einer Funktion...2...2...2 Tangenten einer Funktion...3...3...3 Kurvendiskussion...4...4...4

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

VORBEREITUNG AUF DAS ABITUR

VORBEREITUNG AUF DAS ABITUR VORBEREITUNG AUF DAS ABITUR 9.5 Sinus- und Kosinusfuntionen 9.5. Bleib fit in Sinus- und Kosinusfuntionen. a) Die. Koordinate eines Puntes P ann diret in den Graphen übertragen werden. r = b) Die. Koordinate

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Untersuchungen von Funktionen 1

Untersuchungen von Funktionen 1 Untersuchungen von Funktionen 1 Führen Sie für die Funktionen diese Untersuchungen durch : Untersuchen Sie den Graphen auf Symmetrie. Untersuchen Sie das Verhalten der Funktionswerte im Unendlichen. Bestimmen

Mehr

Analysis Lehrbuch. Skriptum zum Vorbereitungskurs

Analysis Lehrbuch. Skriptum zum Vorbereitungskurs Analysis Lehrbuch Skriptum zum Vorbereitungskurs WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen oder auf andere

Mehr

Tangentensteigung. Differenzialrechnung. Ableitung elementarer Funktionen. Erläuterungen

Tangentensteigung. Differenzialrechnung. Ableitung elementarer Funktionen. Erläuterungen Tangentensteigung 2 24 Differenzialrechnung Bedeutung der Ableitung Rechenregeln Tangenten- und Normalengleichung Kurvendiskussion Wachstumsprozesse Steigungswinkel der Tangente in? In der Schule lernt

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Unterthema 2 Funktionen aufstellen nach Bedingungen

Unterthema 2 Funktionen aufstellen nach Bedingungen Unterthema 2 Funktionen aufstellen Eingangsbeispiel Datum 28 Funktionen aufstellen ährend es in dem vorangegangenen Kapitel darum ging, eine gegebene Funktion so genau zu untersuchen, dass man deren wichtigen,

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Vorbereitung auf das Abitur: Sinusfunktionen

Vorbereitung auf das Abitur: Sinusfunktionen Niedersachsen 11./1. Schuljahr Grundlegendes und erhöhtes Niveau Herausgegeben von Heinz Griesel, Andreas Gundlach, Helmut Postel, Friedrich Suhr Vorbereitung auf das Abitur: Sinusfunktionen Vorbereitung

Mehr