2 Aufgaben aus [Teschl, Band 2]

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2 Aufgaben aus [Teschl, Band 2]"

Transkript

1 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y , x 0.75 Y iv. Varianz: s Standardabweichung: s 0.75 v. Spannweite: 2.6 b 8 / % c Dies gibt der Median an: Übungsaufgabe 25.4: Lineare Regression Pearson scher Korrelationskoeffizient: Regressionsgerade: y 2.58x Geschätzter Stammdurchmesser bei 14 m Höhe: 36.6 cm 2.2 Kap. 26: Wahrscheinlichkeitsrechnung 26.1 Übungsaufgabe 26.1 Ω {s 1, s 2 {s 1, s 2 } {w 1, w 2,..., w 50 }}, A : {s 1, s 2 Ω s 1 korrekt}, B : {s 1, s 2 Ω s 2 korrekt} a p proba B proba probb A Etwas weniger formal hingeschrieben: p probs 1 korrekt probs 2 korrekt s 1 korrekt

2 2 AUFGABEN AUS [TESCHL, BAND 2] 21 b p proba B A B proba B + proba B proba probb A + proba probb A Etwas weniger formal hingeschrieben: p probs 1 korrekt probs 2 fehlerhaft s 1 korrekt c + probs 1 fehlerhaft probs 2 korrekt s 1 fehlerhaft p proba B proba probb A Etwas weniger formal hingeschrieben: p probs 1 fehlerhaft probs 2 fehlerhaft s 1 fehlerhaft Übungsaufgabe 26.2 A B A B A \ B B \ A proba B proba B + proba \ B + probb \ A proba B+probA\B+probA B +probb\a proba B proba + probb proba B 26.3 Übungsaufgabe 26.3 A sei das Ereignis Teil A störungsfrei und B das Ereignis Teil B störungsfrei.

3 Kap. 26: Wahrscheinlichkeitsrechnung a b p proba B proba probb da A und B unabhängig p proba B 1 proba probb c p proba B 1 proba 1 probb d p proba B proba + probb proba B Übungsaufgabe 26.4 T sei die vom Kandidaten zunächst gewählte Tür. Die beiden möglichen Ereignisse sind T M Mercedes hinter der Tür und T Z Ziege hinter der Tür. Offensichtlich ist probt M 1 3 und probt Z 2 3. a Der Kandidat entscheidet per Münzwurf zwischen Mercedes und Ziege. Er gewinnt also mit Wahrscheinlichkeit 1 / 2 den Mercedes. b Der Kandidat bleibt bei seiner Wahl. Er gewinnt den Mercedes, falls T M, also mit der Wahrscheinlichkeit probt M 1 3. c Der Kandidat wählt die andere Tür. Er gewinnt den Mercedes, falls T Z, also mit der Wahrscheinlichkeit probt Z Übungsaufgabe probdna x , probtest positiv DNA x probtest negativ DNA x

4 2 AUFGABEN AUS [TESCHL, BAND 2] 23 a probtest positiv probdna x 1 probtest negativ DNA x + probdna x probtest positiv DNA x Bei 10 Millionen 10 7 Menschen erwartet man positive Tests. b Vorwissen: Der Täter A ist ein Element der Menge {X 1,..., X 20 }. X werde zufällig aus dieser Menge von Personen gewählt. pos X bzw. neg X sei das Ereignis Der DNA-Test bei X ist positiv bzw. negativ. E X sei das Ereignis Das DNA-Profil von X ist identisch mit dem DNA-Profil des Täters. Dann ist probx A 1 20 probpos X 1 20 probpos X X A 10 5 Mit dem Satz von Bayes ergibt sich die Wahrscheinlichkeit probx A pos X, dass Mister X unschuldig ist, obwohl sein DNA-Test positiv ist, als probx A pos X probpos X X A % probx A probpos X Bei dieser Rechnung haben wir vernachlässigt, dass die Ereignisse E X und X A nicht ganz identisch sind, sondern mit der geringen Wahrscheinlichkeit 10 6 das DNA-Profil von X mit dem Profil des Täters übereinstimmt, obwohl X A ist. Auch die Fehlerwahrscheinlichkeit des Tests wurde bei probpos X nicht berücksichtigt. Etwas genauer ergibt sich mit probe X X A 10 6 probpos X probe X probpos X E X

5 Kap. 27: Zufallsvariablen und + probe X probpos X E X probe X probe X 10 5 probe X probx A probe X X A + probx A probe X X A probpos X X A probe X X A probpos X E X X A + probe X X A probpos X E X X A probe X X A probpos X E X + probe X X A probpos X E X Es ergibt sich mit diesen genauerern Werten eine etwas höhere Wahrscheinlichkeit, dass Mister X trotz positiven Tests unschuldig ist: probx A pos X probpos X X A probx A probpos X % 2.3 Kap. 27: Zufallsvariablen 27.2 Übungsaufgabe 27.2

6 2 AUFGABEN AUS [TESCHL, BAND 2] 25 a ˆp1 i0 p i 1. b c ˆp z i p i z i 1, i1 EX i p i i p i ˆp 1. i0 i1 ˆp z i i 1 p i z i 2, i2 ˆp 1+ˆp 11 ˆp 1 ˆp 1+ˆp 1 ˆp 1 2 ˆp 1+ˆp 1 EX 2 i + i i 1 p i EX 2 i 2 p i EX 2 i1 i0 EX 2 EX 2 VarX Übungsaufgabe 27.3 a X {1, 2, 3,...} b c probx i i probx 1+probX 2+probX Übungsaufgabe 27.4: Geometrische Zufallsvariable / Verteilung ˆpz i1 p1 p i 1 z i p 1 p 1 pz i i1

7 Kap. 27: Zufallsvariablen pz 1 pz i i0 pz 1 1 pz, ˆp z p1 1 pz + pz1 p 1 1 pz 2 p 1 1 pz 2, ˆp z 2p1 p 1 1 pz 3, EX ˆp 1 p p 2 1 p, VarX ˆp 1 + ˆp 11 ˆp 1 2p1 p p p 1 1 p 21 p + p 1 p 2 p 2 1 p p Übungsaufgabe 27.9 a V n sei der Verlust nach n Runden. n 1 V n i n 1 i0 b Der Gewinn in der n-ten Runde ist n 1, der gesamte Gewinn also n n c n n n 1 6 n 7. d probverlust probrot oder null 7 Also probgewinn 99% %. 37 proberstes Schwarz in Runde i probrot oder null i 1 probschwarz i

8 2 AUFGABEN AUS [TESCHL, BAND 2] 27 EVerdoppelungsstrategie 7 proberstes Schwarz in Runde i 100 i1 probverlust V i i oder, einfacher mit den vorherigen Ergebnissen, EVerdoppelungsstrategie 1 probverlust 100 probverlust V Kap. 28: Diskrete Verteilungen 28.2 Übungsaufgabe 28.2 X Anzahl der Bitfehler bei der Übertragung einer zufälligen Bitfolge der Länge n. a Binomialverteilung Bin; p: probx i n b n i1 probx i n n i1 i 1 p n 1 1 p n. c EX np Satz Übungsaufgabe 28.3 i p i 1 p n i, 0 i n. p i 1 p n i n i0 n i p i 1 p n i Es werden % Plätze verkauft. Poisson- Verteilung Poλ mit λ Die Wahrscheinlichkeit, dass die Maschine überbucht ist, ist gegeben durch probstorno 4 4 Po10.5i i0

9 Kap. 28: Diskrete Verteilungen e % Übungsaufgabe 28.8 X Anzahl der falschen Scheine unter den 3 geprüften. a Exakte Lösung mit der hypergeometrischen Verteilung: X H3; 10; 60. p 1 probx %. b Angenäherte Lösung mit der Binomialverteilung: X Bi3; 10 / 60. p Übungsaufgabe %. 6 Sei X Poλ. ˆpZ e λ i0 λ i i! e λ Z i λz i i0 i! e λ e λz e λz 1. Also und ˆp Z λe λz 1 und EX ˆp 1 λ ˆp Z λ 2 e λz 1 und VarX ˆp 1 + ˆp 11 ˆp 1 λ 2 + λ1 λ λ.

10 2 AUFGABEN AUS [TESCHL, BAND 2] Kap. 29: Stetige Verteilungen 29.2 Übungsaufgabe 29.2 a X Anzahl der Punkte. Es ist X Nµ; σ 2 N100; probx > probx Φ 50 1 Φ % b Gesucht x mit probx x 0.9. x 100 probx x Φ x x Also: Höchstens 10 % erreichen 165 Punkte oder mehr Übungsaufgabe 29.3 X Anzahl der Störungen. Es ist X Po16. Approximiere die Poisson- durch die Normalverteilung λ 16 > 9: x probx x e 16 i0 i 16 i! x λ Φ λ probx > 20 1 probx 20 1 Φ 16 1 Φ % Übungsaufgabe 29.4 X Anzahl der fehlerhaften Chips. Es ist X Bin; p Bi1000; 0.03 Nµ; σ 2 Nnp; np1 p N30; 29.1 np1 p 29.1 > probx 25 1 probx 24 1 Φ 29.1

11 Kap. 30: Schließende Statistik Φ 1 Φ Φ1.02 Φ % 29.6 Übungsaufgabe 29.6: Z sei eine standardnormalverteilte Zufallsvariable. Für die Momente gilt: { 0 falls n ungerade, EZ n n 1 falls n gerade Beweis: Sei n 2. EZ n 1 2π 1 2π t n e t2 2 dt partielle Integration: f t n 1, g e t π t n 1 e t2 2 f g dt 1 2π f g 1 2π 0 + n 1 + n 1 n 1 EZ n 2 t n 2 e t2 2 dt f g dt t n 2 e t2 2 dt Aus EZ 0 und EZ 0 E1 1 folgt nun iterativ genauer: per vollständiger Induktion 0 EZ EZ 3 EZ 5 EZ 7... EZ 2 1, EZ 4 3 EZ 2 1 3, EZ 6 5 EZ , Kap. 30: Schließende Statistik 30.1 Übungsaufgabe 30.1 X sei das Gewicht einer Tafel Schokolade, X : n i1 X i der Mittelwert der Stichprobe hier n 10.

12 2 AUFGABEN AUS [TESCHL, BAND 2] 31 X ist ein erwartungstreuer Schätzer für den Erwartungswert µ von X. Annahme: Die Gewichte sind normalverteilt mit Standardabweichung σ 2. X ist normalverteilt mit Erwartungswert µ und Standardabweichung σ σ / n 2 / 10 10/ , also ist X µ / σ standardnormalverteilt. X µ 99.9 X µ 98.9 µ 1 σ X µ prob Φ σ 1 1 Φ1.581 Φ Mit 94.3% Wahrscheinlichkeit ist der Erwartungswert also Übungsaufgabe 30.2 Auszuführen ist eine Intervallschätzung für den Erwartungswert einer Normalverteilung bei nicht bekannter Varianz mit einem Vertrauensniveau von 95 %: Benutze die Quantile der t-verteilung α 0.05, n 25, x 101, s 0.77 : t n 1,1 α/2 t 24, Mit 95 % Wahrscheinlichkeit liegt der Erwartungswert im Intervall [ ] s s x t n 1,1 α/2, x + t n 1,1 α/2 n n [ , ] [100.68, ]

13 Kap. 30: Schließende Statistik 30.3 Übungsaufgabe 30.3 Auszuführen sind Intervallschätzungen für Erwartungswert und Varianz einer Normalverteilung mit einem Vertrauensniveau von jeweils 95 % Wir präzisieren die Aufgabenstellung: Die Vorgaben werden einzeln betrachtet. Jede der beiden Vorgaben soll, einzeln betrachtet, mit 95 % erfüllt sein. Wollte man beide gemeinsam mit 95 % Sicherheit schätzen, so wird es kompliziert, da die beiden Schätzungen ja nicht unabhängig voneinander sind. Schätzung des Erwartungswerts: Da der Stichprobenumfang groß ist n 50 > 30, können wir statt der t-verteilung die Normalverteilung benutzen. Mit 95 % Wahrscheinlichkeit liegt der Erwartungswert im Intervall [ ] s s x z 1 α/2, x + z 1 α/2 n n [ ] z 0.975, z [ , ] [99.98, ], liegt also in der erlaubten Toleranz. Schätzung der Standardabweichung: Benutze die Quantile der χ 2 -Verteilung α 0.05, n 50, approximiert mittels der Normalverteilung : 3 χ 2 n 1,α/2 χ ,0.025 n 1 1 9n 1 + z 2 α/2 9n z ohne Näherung , χ 2 n 1,1 α/2 χ 2 49, Mit 95 % Wahrscheinlichkeit liegt die Standardabweichung im Intervall [ ] [ ] n 1s 2 n 1s, χ 2 n 1,1 α/2 χ 2 n 1,α/ , 2 [0.092, 0.137],

14 2 AUFGABEN AUS [TESCHL, BAND 2] 33 liegt also in der erlaubten Toleranz Übungsaufgabe 30.4 Löse die Aufgabenstellung von 30.3 mit Hypothesentests. a Teste, ob der Erwartungswert nicht zu groß ist. H 0 : Der Erwartungswert µ ist > µ % H 1 : Der Erwartungswert µ ist µ Signifikanzniveau α 2.5% Prüfwert t x µ 0 s/ n / Dieser ist t-verteilt mit n 1 Freiheitsgraden. Quantil t n 1,1 α t 49,0.975 z exakt t 49, H 0 wird verworfen, da t < t n 1,1 α Berechnung des p-werts α 0 : t n 1,1 α0 t 49,1 α α α % approximativ mit Normalverteilung und nur mit Tabelle aus Teschl: z 1 α α 0 > α 0 < % b Teste, ob der Erwartungswert nicht zu klein ist. H 0 : Der Erwartungswert µ ist < µ % H 1 : Der Erwartungswert µ ist µ Signifikanzniveau α 2.5% Prüfwert t x µ 0 s/ n / Dieser ist t-verteilt mit n 1 Freiheitsgraden. Quantil t n 1,1 α t 49,0.975 z exakt t 49,

15 34 H 0 wird verworfen, da t > t n 1,1 α Berechnung des p-werts α 0 : t n 1,1 α0 t 49,1 α α α % approximativ mit Normalverteilung und nur mit Tabelle aus Teschl: z 1 α α 0 > α 0 < % c Teste, ob die Standardabweichung zu groß, d.h. > 2 ist. H 0 : Die Standardabweichung σ ist > σ H 1 : Die Standardabweichung σ ist σ Signifikanzniveau α 5% 0.05 Prüfwert y n 1s2 σ Dieser ist χ 2 -verteilt mit n 1 Freiheitsgraden. Quantil χ 2 n 1,α χ 2 49, H 0 wird verworfen, da y < χ 2 n 1,α Berechnung des p-werts α 0 : χ 2 n 1,α 0 χ 2 49,α α % 3 Transformationen 3.1 Fourierreihen 1. Begründe die Aussage in der Bemerkung nach Theorem 3.2: Soll die Fourierreihe gegen die Funktion konvergieren, so muss man die Koeffizienten c k wie oben definieren.

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben Einleitung Dieses sind die kompletten Präsenzaufgaben, die bei der Übung zur Vorlesung Einführung in die Stochastik im Sommersemester 2007 gerechnet wurden. Bei Rückfragen und Anmerkungen bitte an brune(at)upb.de

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik rof. Dr. Günter Hellmig Aufgabenskript Induktive Statistik Inhalt:.Kombinatorik: Variation und Kombination, jeweils ohne Wiederholung 2.Rechnen mit Wahrscheinlichkeiten: Additions- und Multiplikationssätze

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Schleswig-Holstein Kernfach Mathematik

Schleswig-Holstein Kernfach Mathematik Aufgabe 5: Stochastik Der Schokoladenhersteller Nikolaus Hase produziert für namhafte Discounter Ostereier. Auf Grund langjähriger Erfahrungen ist davon auszugehen, dass 95 % der Produktion der Norm entsprechen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing. Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Statistik für Maschinenbauer (Teil II)

Statistik für Maschinenbauer (Teil II) Statistik für Maschinenbauer (Teil II) Die Statistik versucht auf Grund einer relativ kleinen Stichprobe von Daten Aussagen über eine große Menge von Daten (die Gesamtpopulation) zu machen. Zum Beispiel

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

M13 Übungsaufgaben / pl

M13 Übungsaufgaben / pl Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle Dr. rer. nat. Regina Storm 5., verbesserte Auflage 72 Bilder, 21 Tafeln und einer Beilage VEB Fachbuchverlag Leipzig

Mehr

Inhaltsverzeichnis Was man über Microsoft Excel wissen sollte

Inhaltsverzeichnis Was man über Microsoft Excel wissen sollte Inhaltsverzeichnis 1 Was man über Microsoft Excel wissen sollte... 1 1.1 Eingabenanalyse durch Excel... 1 1.1.1 Trennung zwischen numerischer und nichtnumerischer Eingabe. 1 1.1.2 Speicherung numerischer

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Von der Binomialverteilung zur Normalverteilung

Von der Binomialverteilung zur Normalverteilung Von der Binomialverteilung zur Normalverteilung Wir interessieren uns für Binomialverteilungen mit grossen Werten für n. Als Beispiele können wir uns das Experiment vorstellen, dass ein idealer Würfel

Mehr

Angewandte Wahrscheinlichkeitstheorie

Angewandte Wahrscheinlichkeitstheorie Skript zur Vorlesung Angewandte Wahrscheinlichkeitstheorie SS 04 Georg Hoever Fachbereich Elektrotechnik und Informationstechnik FH Aachen Inhaltverzeichnis i Inhaltsverzeichnis. Grundlagen.. Wahrscheinlichkeiten

Mehr

3.3. Aufgaben zur Normalverteilung und Hypothesentests

3.3. Aufgaben zur Normalverteilung und Hypothesentests 3.3. Aufgaben zur Normalverteilung und Hypothesentests Aufgabe : Näherung der Binomialverteilung durch die Normalverteilung a) Die Zufallsvariable X sei B,,5 ()-verteilt. Sizziere das Histogramm von X

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Statistik II. Sommersemester PD Dr. Michael Krapp Institut für Statistik und Mathematische Wirtschaftstheorie. Universität Augsburg

Statistik II. Sommersemester PD Dr. Michael Krapp Institut für Statistik und Mathematische Wirtschaftstheorie. Universität Augsburg Statistik II Sommersemester 2005 PD Dr. Michael Krapp Institut für Statistik und Mathematische Wirtschaftstheorie Klausur und Unterlagen Klausur: Spielregeln : Wie Statistik I Nachholklausur im WS 2005

Mehr

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006

Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006 3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Formelsammlung Statistik II (SS 2010) 1. 1 Numerische und graphische Zusammenfassung quantitativer

Formelsammlung Statistik II (SS 2010) 1. 1 Numerische und graphische Zusammenfassung quantitativer TU Kaiserslautern 40700 FB Mathematik Prof Dr Jörn Saß Formelsammlung Statistik II (SS 00) umerische und graphische Zusammenfassung quantitativer Daten Beobachtet werden Daten x,, x Die Ordungsstatistiken

Mehr