Medientyp Audio. Mittel innen Ohr. Medien Technik. Medien Technik. Orgel: 16,4 Hz bis über 20 khz. Unter 16 Hz: Infraschall Über 20 khz: Ultraschall

Größe: px
Ab Seite anzeigen:

Download "Medientyp Audio. Mittel innen Ohr. Medien Technik. Medien Technik. Orgel: 16,4 Hz bis über 20 khz. Unter 16 Hz: Infraschall Über 20 khz: Ultraschall"

Transkript

1 Mittel und Innenohr Medienty Audio Schnecke Hörnerv Eustachisches Rohr (Druckausgleich) Hörfähigkeit: Mensch: 16 Hz Hz größte Emfindlichkeit (5.000) Hz Orgel: 16,4 Hz bis über 0 khz Unter 16 Hz: Infraschall Über 0 khz: Ultraschall Mittel und Innenohr Mittel innen Ohr Schalldruck Maßeinheit Pa Schallwellen Longitudinalwellen Schallgeschwindigkeit 35 m/s ( 10 C) 350 m/s (30 C) abhängig von Temeratur, CO (Blasinstrumente) (Schallwechseldruck) Pascal = Kraft/Fläche [N/m ] Luftdruck 10 5 Pa (1000 hpa) Hörbarkeitsschwelle *10 Pa bei 1000Hz Normal Lautstärke 0,1 Pa Schmerzgrenze 100 Pa

2 Schalldruc Logarithmische Skalierung ,1 0,01 0,001 0,0001 0,00001 Hörbarkeits schwelle Unterhaltung Sehr laut Schmerz Grenze Hörbarkeits schwelle Unterhaltung Sehr laut Schalldruc Verzehnfachung Schmerz Grenze Wegen lg = 0,301 = 3,01 db alle 3 db Verdoelung des Schalldruckegel s Definition Schalldruckegel = 0lg db 0 = *10 P L 0 dezibel: dimensionslose Größe (Größenvergleich) 100 = 0 lg * = lg * = *10 = 100 db Schalldruck? Alexander Graham Bell Taubstummenlehrer Erfinder Telefon, Audiometer Grammohon, Flugzeuge, Boote Definition Schalldruckegel Normallaut L L 0,1 = 0 lg *10 = 0 l + 74 db Schmerzgrenze = 0lg db 0 = *10 Pa L 0 ( g 0,5 4) 100 = 0 lg *10 = 0 lg 0, db ( ) Hörschwelle = 0 L = 0 db Telefon 1875 Lautstärke Wahrnehmung hängt auch von Frequenz ab hon Maß der subjektiven Lautstärke bei 1000 Hz identisch mit Schalldruckegel Beisiel: Schalldruckegel von 60 db bei 3000 Hz wird 70 hon laut emfunden Handbuch der Tonstudiotechnik Akustik & musik. Aufführungsraxis Linien gleicher Lautstärkewahrnehmung 60 Jährige: Hörvermögen über 10 khz um 5 db vermindert. Hörschwelle nahe an Lästigkeitsgrenze! Normalhörender 0 jähriger

3 Schmerzgrenze Normallautstärke Hörschwelle Periodische Funktion Frequenzdarstellung reiner Sinus Schwingungen ( ) = sin = sin( + ) f x x x π Substitutio n x = π ft ( ) sin ( π ft) f t Schallschnelle v ~ = 0,5 m/s = 0,9 km/h max ~ v =,5*10 4 normal ~ 8 v min = 5 *10 m/s = hat Periode 1/f, denn 50 Hz Sinus f ( t) = sin( π *50* t ) x m/s Geschwindigkeit der schwingenden Luftteilchen Schallgeschwindigkeit Ausbreitungs geschwindigkeit der Schallwelle Frequenzen 16,5 Hz C Orgel 33 Hz C 1 Kontrabaß 66 Hz C Violoncello 131 Hz c Bratsche 6 Hz c Geige 54 Hz c Tenor max 1047 Hz c Soran max 093 Hz c 4 Geige max 4185 Hz c 5 Piccolo Flöte 0 π 1 π f sin π f t + = sin π ft + f f Verdeckungseffekt Klangfarbe Wird durch das Sektrum bestimmt Störton 00 Hz Störton 100 Hz männlich weiblich

4 Wie klingt: ( ( π ft ) + ( π ft ) + ( π ft ) + ( π ft )) 1 * sin sin * sin * 4 sin * 6 4 Terzen 5:4 3:7 6:5 5:4 5:4 5:4 große Terz kleine Terz Quarten 4:3 4:3 4:3 45:3 4:3 Quinten Violinklang: a mit Vibrato Pizzicato (Ton h) 3: 40:7 3: 3: Je kleiner die Verhältniszahlen, desto wohlklingender Frequenzverhältnis 1 1 1/ / Prime 1 c 4 Sekunde 9/8 9/8 d 7 Terz 5/4 10/9 e 30 Quarte 4/3 16/15 f 3 Quinte 9/8 g 36 Sexte 5/3 10/9 a 40 Setime 15/8 9/8 h 45 Oktave 16/15 c 48 Verhältnis zur Prime Verhältnis Vorgänger Töne innerhalb einer Oktave D:Fis =4:5 Gr. Terz Es As B F Des Ges 1 1 C Fis 45 3 Berechnung der Halbtön über den Quintenzirkel G 3 H g D A 9 4 / g 7 = E g /

5 440 Hz Pythagoräische Stimmung reine Quarten und Quinten Mitteltönige Stimmung 8 gute, 4 schlecht Tonarten Wolfsquinte Reine Quinte Periode = ggt Wohltemerierte Stimmung Alle Tonarten sielbar Jede klingt anders Gleichstufige Stimmung Alle Tonarten gleich verstimmt (!) 660 Hz Gleichschwebende Temeratur, temerierte Stimmung Prinzi: die 1 Halbtöne einer Oktave Reine Quinte, 3 sec haben gleichen Abstand C:Cis = Cis:D=D:Dis=... 1 Die Stimmung wird heute als cent Abstand zur gleichstufigen Stimmung angegeben Quinte z.b. G:C = 1, cent = teilt einen Halbton in 100 Teile

6 F=440*1,4983 = 659,5 Hz Gleichstufige Quinte, 3 sec Schwebung Vergleichsfolge rein gleich rein gleich Pentatonik: c d e g a c Diatonik: c d e f g a h c Tetrachorde: c d e f, g a h c Chromatik: 1 Halbtöne Medientechnik WS 000/001 Dr. Manfred Jackel Studiengang Comutervisualistik Institut für Informatik Universität Koblenz Landau Rheinau Koblenz Manfred Jackel E Mail: jkl@uni koblenz.de koblenz.de/~jkl c 1 g d () a () 3 e () 4 h () 5 fis () 6 cis () 7 gis () 8 dis () 9 ais () 10 Pytagoräisches Komma eis () Literatur zu diesem Kaitel Hyerlinks zu diesem Kaitel Grafik Quellen

15:58. Medien Technik. Medientyp Audio. Schnecke. Hörnerv. Eustachisches Rohr (Druckausgleich)

15:58. Medien Technik. Medientyp Audio. Schnecke. Hörnerv. Eustachisches Rohr (Druckausgleich) Medientyp Audio Schnecke Hörnerv Eustachisches Rohr (Druckausgleich) Mittel und Innenohr Mittel innen Ohr Mittel und Innenohr Hörfähigkeit: Mensch: 16 Hz 20.000 Hz größte Empfindlichkeit 1.000 3.000 (5.000)

Mehr

Medientyp Audio. Medien- Technik. Schnecke. Hörnerv. Eustachisches Rohr (Druckausgleich)

Medientyp Audio. Medien- Technik. Schnecke. Hörnerv. Eustachisches Rohr (Druckausgleich) Medientyp Audio Schnecke Hörnerv Eustachisches Rohr (Druckausgleich) Äußeres Ohr Ohrmuschel Auricula auris Knorpel: Cartilago auriculae Äußerer Gehörgang Einfangen des Schalles (Trichter) Formgebung unterstützt

Mehr

Medientyp Audio. Medien- Technik. Hörnerv. Eustachisches Rohr (Druckausgleich)

Medientyp Audio. Medien- Technik. Hörnerv. Eustachisches Rohr (Druckausgleich) Medien- Medientyp Audio Schnecke Hörnerv Eustachisches Rohr (Druckausgleich) Medien- Äußeres Ohr Ohrmuschel Auricula auris Knorpel: Cartilago auriculae Äußerer Gehörgang Einfangen des Schalles (Trichter)

Mehr

Vorlesung Medientechnik Universität Koblenz-Landau SS2011

Vorlesung Medientechnik Universität Koblenz-Landau SS2011 Vorlesung Medientechnik Universität Koblenz-Landau SS2011 Schnecke Hörnerv Eustachisches Rohr (Druckausgleich) 2 Ohrmuschel Auricula auris Knorpel: Cartilago auriculae Äußerer Gehörgang Einfangen des Schalles

Mehr

Tontechnik 1. Schalldruck. Akustische Grundbegriffe. Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen Luftdrucks

Tontechnik 1. Schalldruck. Akustische Grundbegriffe. Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen Luftdrucks Tontechnik 1 Akustische Grundbegriffe Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Mikrofon-Aufnahmetechnik Schalldruck Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen

Mehr

Das Pythagoreische Komma

Das Pythagoreische Komma Das Pythagoreische Komma Grundlagen Kenngrößen Amplitude, Frequenz, Phase F2 Grundlagen Einheiten für Frequenz und Lautstärke Frequenz: Hertz (Heinrich Hertz,1857-1894) Ein Signal (Ton) hat die Frequenz

Mehr

Menge von (mindestens drei) gleichzeitig erklingenden Tönen. ein Merkmal einer Tonfunktion, mathematische Entsprechung der Tonstärke.

Menge von (mindestens drei) gleichzeitig erklingenden Tönen. ein Merkmal einer Tonfunktion, mathematische Entsprechung der Tonstärke. GLOSSAR Akkord Amplitude äquivalente Intervalle Diesis Menge von (mindestens drei) gleichzeitig erklingenden Tönen. ein Merkmal einer Tonfunktion, mathematische Entsprechung der Tonstärke. zwei Intervalle,

Mehr

Die Quinte und der Wolf über die Symmetrie der gleichstufigen Stimmung

Die Quinte und der Wolf über die Symmetrie der gleichstufigen Stimmung Die Quinte und der Wolf über die Symmetrie der gleichstufigen Stimmung Goethe-Gymnasium. 07/2014. Regensburg Clara Löh Fakultät für Mathematik. Universität Regensburg Überblick Die Quinte und der Wolf

Mehr

7. Akustische Grundlagen

7. Akustische Grundlagen -Übersicht 36. Einleitung. Strömungsmechanische Grundlagen 3. Aerodynamisches Fahrzeugdesign 4. Motorkühlung 5. üftung und Klimatisierung 6. Abgasturbolader Definition und Ausbreitung des Schalls Schalldruck-

Mehr

Anfänge in der Antike

Anfänge in der Antike Akustik Eine wesentliche Grundlage der Musik ist der Schall. Seine Eigenschaften erforscht die Akustik (griechisch: ακουειν = hören). Physikalisch ist Schall definiert als mechanische Schwingungen und

Mehr

a) Anzahl Löcher für grosse Terz: 45 Anzahl Löcher für kleine Terz 43.2, das ist keine ganze Zahl, also nicht möglich. Anzahl Löcher für Quinte: 54

a) Anzahl Löcher für grosse Terz: 45 Anzahl Löcher für kleine Terz 43.2, das ist keine ganze Zahl, also nicht möglich. Anzahl Löcher für Quinte: 54 Physik anwenden und verstehen: Lösungen. Akustik 4 Orell Füssli Verlag AG. Akustik Intervalle und Stimmung 4 a) Anzahl Löher ür grosse Terz: 45 Anzahl Löher ür kleine Terz 4., das ist keine ganze Zahl,

Mehr

Die Mathematik der Tonleiter

Die Mathematik der Tonleiter Die Mathematik der Tonleiter Jürgen Zumdick Wir betrachten eine Saite von 0 cm Länge. Wird sie in Schwingungen versetzt, so erzeugt sie einen Ton. Dessen Frequenz sei 60 Hertz. Verkürzt man die Saite um

Mehr

8. Akustik, Schallwellen

8. Akustik, Schallwellen Beispiel 2: Stimmgabel, ein Ende offen 8. Akustik, Schallwellen λ l = n, n = 1,3,5,.. 4 f n = n f1, n = 1,3,5,.. 8.Akustik, Schallwellen Wie gross ist die Geschwindigkeit der (transversalen) Welle in der

Mehr

Der Schall. L p = 20 lg p p 0

Der Schall. L p = 20 lg p p 0 Der Schall Aufgabennummer: B_067 Technologieeinsatz: möglich erforderlich S Als Schalldruck p werden die Druckschwankungen eines kompressiblen Schallübertragungsmediums (üblicherweise Luft) bezeichnet,

Mehr

Warum ist bei reiner Musik Gis As? Ein Problemfeld zur Aufklärung über die reine Stimmung mittels Bruchrechnung

Warum ist bei reiner Musik Gis As? Ein Problemfeld zur Aufklärung über die reine Stimmung mittels Bruchrechnung Günter GRAUMANN, Bielefeld Warum ist bei r Musik Gis As? Ein Problemfeld zur Aufklärung über die Stimmung mittels Bruchrechnung Schon aus der Zeit um 1000 v. Chr. sind aus China, Indien und Mesopotamien

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

Die Zahl ist das Wesen aller Dinge

Die Zahl ist das Wesen aller Dinge Pythagoras Πυθαγόρας * um 570 v. Chr um 500 v. Chr Mathematiker und Naturphilosoph Ausschnitt aus Die Schule von Athen Raffael 50 -gründete 53v.Chr die religiös-politische Lebensgemeinschaft der Pythagoreer.

Mehr

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole Seminar Akustik. Aufgaben zu Teil des Skripts Uwe Reichel, Phil Hoole Welche Kräfte wirken auf ein schwingendes Teilchen?! von außen angelegte Kraft (z.b. Glottisimpulse)! Rückstellkräfte (Elastizität,

Mehr

Tonhöhen in der Musik. Horst Eckardt, München 14. Juli 2013

Tonhöhen in der Musik. Horst Eckardt, München 14. Juli 2013 Tonhöhen in der Musik Horst Eckardt, München 14. Juli 2013 Inhalt Physik der Tonerzeugung (Akustik) Intervalle, Stimmung und Harmonik Besonderheiten der Musikgeschichte Tonhöhen und Solfeggio-Frequenzen

Mehr

1 Grundlagen. Grundlagen 9

1 Grundlagen. Grundlagen 9 1 Grundlagen Der Begriff Akustik stammt aus der griechischen Srache (ἀκούειν akoyein: hören) und bedeutet die Lehre vom Schall und seiner Ausbreitung. Er umfasst die Schwingungen in gasförmigen, flüssigen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Schwingungen und Wellen Dr. Daniel Bick 08. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 08. Dezember 2017 1 / 34 Übersicht 1 Schwingungen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Wellen Dr. Daniel Bick 07. Dezember 2016 Daniel Bick Physik für Biologen und Zahnmediziner 07. Dezember 2016 1 / 27 Übersicht 1 Wellen Daniel Bick Physik

Mehr

Die Zahl ist das Wesen aller Dinge

Die Zahl ist das Wesen aller Dinge Pythagoras Πυθαγόρας * um 570 v. Chr um 500 v. Chr Mathematiker und Naturphilosoph Ausschnitt aus Die Schule von Athen Raael 50 -gründete 5v.Chr die religiös-politische Lebensgemeinschat der Pythagoreer.

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Schwingungen und Wellen Dr. Daniel Bick 08. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 08. Dezember 2017 1 / 34 Übersicht 1 Schwingungen

Mehr

2. Schalldruckpegel. Definition: Nach dem Gesetz von Weber und Fechner besteht zwischen der Empfindungsänderung de p. de p.

2. Schalldruckpegel. Definition: Nach dem Gesetz von Weber und Fechner besteht zwischen der Empfindungsänderung de p. de p. Definition: Nach dem Gesetz von Weber und Fechner besteht zwischen der Empfindungsänderung de p und der Schalldruckänderung dp der Zusammenhang de p =C dp p Integration ergibt: E p =C ln p p ref Die Integrationskonstante

Mehr

Gehör. Ein Referat von Steffen Wiedemann

Gehör. Ein Referat von Steffen Wiedemann Gehör Ein Referat von Steffen Wiedemann E1VT2,März 2001 1. Der Aufbau des menschlichen Ohres Das Ohr wird in drei Teile unterteilt, das Außenohr, das Mittelohr und das Innenohr. Das Außenohr besteht aus

Mehr

Mikrofon. Medien- Technik. Wandlertechnik: Dynamisches M. Bändchen-M. Spule im Magnetfeld Elektret-Mikrofon Kondensator

Mikrofon. Medien- Technik. Wandlertechnik: Dynamisches M. Bändchen-M. Spule im Magnetfeld Elektret-Mikrofon Kondensator Mikrofon Piezo Kohle Wandlertechnik: Dynamisches M. Bändchen-M. Spule im Magnetfeld Elektret-Mikrofon Kondensator Frequenzgang: Dynamisch: tiefere Frequenzen Elektret: höhere Frequenzen Richtcharakteristik:

Mehr

Die wohltemperierte Mathematik

Die wohltemperierte Mathematik FB Mathematik/Informatik Universität Osnabrück wbruns@uos.de Osnabrück, den 25.11.2011 Musik und Mathematik Musik ist eine Wissenschaft, die wohlbestimmte Regeln haben sollte. Diese Regeln sollten aus

Mehr

Akustik Alles Schall und Rauch?

Akustik Alles Schall und Rauch? Akustik Alles Schall und Rauch? Physik am Samstag G. Pospiech 3. November 2007 Was ist Akustik? Lehre vom Schall Aspekte Das Ohr Physikalische Grundlagen Musik und Physik Wahrnehmung von Schall Die Physik

Mehr

Musikalische Temperatur: Stimmungslehre

Musikalische Temperatur: Stimmungslehre Musikalische Temperatur: Stimmungslehre Dr. M. zur Nedden, Humboldt Universität zu Berlin Was des eynen Uhl, ist des andren Nachtigall Abriss der historischen Stimmungslehre Berlin, Sommersemster 003 Seminar

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

Schwingende Luft Rüdiger Scholz Institut für Quantenoptik Leibniz Universität Hannover

Schwingende Luft Rüdiger Scholz Institut für Quantenoptik Leibniz Universität Hannover Schwingende Luft Rüdiger Scholz Institut für Quantenoptik Leibniz Universität Hannover Literatur... 1 1 Akustik... 2 2 Schallwellen... 2 3 Tonhöhe und Lautstärke... 2 4 Stehende Wellen in Rohren... 3 5

Mehr

Prof. Dr. Jochen Koubek Universität Bayreuth Digitale Medien. Akustik

Prof. Dr. Jochen Koubek Universität Bayreuth Digitale Medien. Akustik Prof. Dr. Jochen Koubek Universität Bayreuth Digitale Medien Akustik Schallwellen Schallgeschwindigkeit Medium v in m/s bei 20 C Luft 343 Wasser 1480 Glas 5200 Holz 3300 3400 Stahl ca. 5000 Wolkenscheibeneffekt

Mehr

BEISPIEL für LONGITUDINALE WELLEN: SCHALL

BEISPIEL für LONGITUDINALE WELLEN: SCHALL BEISPIEL für LONGITUDINALE WELLEN: SCHALL Schallerzeugung durch VIBRIERENDE FLÄCHEN: Es entstehen Verdichtungen und Verdünnungen vor der vibrierenden Fläche, die sich ausbreiten. Schallgeschwindigkeit

Mehr

Schallwellen. Klassizifierung. Audioschall. hörbar für das menschliche Ohr. Frequenzen geringer als 16 Hz. Frequenzen höher als 20 khz

Schallwellen. Klassizifierung. Audioschall. hörbar für das menschliche Ohr. Frequenzen geringer als 16 Hz. Frequenzen höher als 20 khz 7a Akustik Schallwellen Klassizifierung nfraschall Frequenzen geringer als 6 Hz Audioschall hörbar für das menschliche Ohr Ultraschall Frequenzen höher als 0 khz Geschwindigkeit von Schallwellen beweglicher

Mehr

m e z z o f o r t e - Verlag für Musiklehrmittel, CH-6005 Luzern - Alle Rechte vorbehalten -

m e z z o f o r t e - Verlag für Musiklehrmittel, CH-6005 Luzern - Alle Rechte vorbehalten - INHALTSVERZEICHNIS 1. KAPITEL: EINFÜHRUNG IN DIE NOTENSCHRIFT 3 1.1 Notensystem 3 1.2 Notenschlüssel 3 1.3 Hilfslinien 5 1.4 Oktavierungszeichen 5 1.5 Oktavlage 6 1.6 Halbtöne und Ganztöne 6 1.7 Versetzungszeichen

Mehr

2 Akustische Grundbegriffe

2 Akustische Grundbegriffe 2 Akustische Grundbegriffe 2.1 Schallentstehung Als Schall bezeichnet man Schwingungen eines elastischen Mediums (Gase, Flüssigkeiten, feste Körer). Ohne Materie im Vakuum kommt kein Schall vor. Luftschall

Mehr

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP

9. Akustik. I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge. 13. Vorlesung EP 13. Vorlesung EP I Mechanik 9.Akustik II Wärmelehre 10. Temperatur und Stoffmenge Versuche: Stimmgabel mit u ohne Resonanzboden Pfeife Echolot und Schallgeschwindigkeit in Luft Heliumstimme Bereich hörbarer

Mehr

Medien- Technik. Digital Audio

Medien- Technik. Digital Audio Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations

Mehr

Wir basteln uns ein Glockenspiel

Wir basteln uns ein Glockenspiel So soll es aussehen Wir basteln uns ein Glockenspiel Wie entstehen die Töne? Würde das Glockenspiel am Kopfende angestoßen, so würden damit Logitudinalschwingungen erzeugt. Diese Schwingungen sind allerdings

Mehr

Am Anfang war der Ton. OSZ Schüpfen, Musik Christian Maurer

Am Anfang war der Ton. OSZ Schüpfen, Musik Christian Maurer TONALITÄT Am Anfang war der Ton Der Ton In allen Musikkulturen lassen sich die grundlegenden Klangstrukturen und Zusammenhänge auf physikalische Gesetzmässigkeiten zurückführen. Musik ist Schwingung! Ein

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Schwingungen und Töne

Schwingungen und Töne KZU Mathematik G. Wick Schwingungen und Töne Theorie Dritter Teil Sommer 2001 (einige Kleinigkeiten verändert im Winter 2008) Inhaltsverzeichnis 14. SIEBENTONLEITERN Konzept Die pythagoräische C-Dur-Tonleiter

Mehr

Mathematik und Musik: Fourieranalyse

Mathematik und Musik: Fourieranalyse Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2

Mehr

Das Terzkomma ist der Unterschied zwischen dem großen und dem kleinen Ganzton. Intervalle große Reinterz minus großer Ganzton gleich kleiner Ganzton

Das Terzkomma ist der Unterschied zwischen dem großen und dem kleinen Ganzton. Intervalle große Reinterz minus großer Ganzton gleich kleiner Ganzton 2.2.2.2 Großer Ganzton, pythagoräische Großterz und das Quintkomma (= "Pythagoräisches Komma" p ) (RÜ) a) Großer Ganzton Intervalle 2 reine Quinten minus 1 Oktave gleich großer Ganzton Proportionen 3/2

Mehr

Wohltemperiert in guter Stimmung

Wohltemperiert in guter Stimmung Wohltemperiert in guter Stimmung Plauderei zu Mathematik und Musik Johannes Huber, Markus Mayrock Lehrstuhl für Informationsübertragung Friedrich-Alexander-Universität Erlangen-Nürnberg Tonleiter C Dur

Mehr

Akustische Phonetik Teil 1. Uwe Reichel, Phil Hoole IPS, LMU München

Akustische Phonetik Teil 1. Uwe Reichel, Phil Hoole IPS, LMU München Akustische Phonetik Teil 1 Uwe Reichel, Phil Hoole IPS, LMU München Inhalt! Schall! Schwingung! Zeitsignal! Schalldruck, Schallschnelle! Sinoidalschwingung! Schallarten! Periodische Signale! zeitliche

Mehr

Temperierung einer 20er Drehorgel Wolf-G. Blümich

Temperierung einer 20er Drehorgel Wolf-G. Blümich Temperierung einer 2er rehorgel Wolf-. lümich Zum Stimmen einer rehorgel findet man für den Laien erst einmal verwirrende ngaben. Man kann natürlich einfach einer nleitung folgen und mit Hilfe eines Stimmgerätes

Mehr

Was ist Lärm? Schall. Ton, Klang und Geräusch

Was ist Lärm? Schall. Ton, Klang und Geräusch Theoretische Grundlagen Was ist Lärm? Um das Phänomen Lärm verstehen zu können und um sich im Dschungel der später verwendeten Fachausdrücke nicht zu verlieren, sollte man über die wesentlichen physikalischen

Mehr

STIMMDATEN. Sonne Erde Mond Planeten

STIMMDATEN. Sonne Erde Mond Planeten STIMMDATEN Sonne Erde Mond Planeten Stimmdaten für die Töne der Erde, des Mondes, der Planeten und der Sonne Die folgenden Seiten enthalten die astronomischen Originalfrequenzen und deren oktavanaloge

Mehr

Halbtonschritte der Dur-Tonleiter

Halbtonschritte der Dur-Tonleiter 2 Halbtonschritte der Dur-Tonleiter zwischen 3. und 4. und 1 2 3 4 5 6 7 8 Ganztonschritte (alle andere) 7. u 8. Stufen Die Dur-Tonleiter besteht aus 7 Tönen, der 8. Ton ist wieder gleich dem ersten und

Mehr

Sinneswahrnehmungen des Menschen

Sinneswahrnehmungen des Menschen Sinneswahrnehmungen des Menschen Tastsinn Gleichgewicht Geruch Sehen Gehör Sprache Aktion Multimedia - Kanäle des Menschen Techniken für Medien im Wandel Multimediale Kommunikation Text : Bücher, Zeitschriften

Mehr

lnhalt THEORIE 1. Notenkunde... 5

lnhalt THEORIE 1. Notenkunde... 5 lnhalt THEORIE 1. Notenkunde... 5 Das Liniensystem... 5 Die Notenschlüssel... 6 Die Stammtöne... 6 Die Oktavräume... 7 Die gesamte Oktaveinteilung... 8 Notenwerte... 14 Pausenwerte... 15 Punktierte Notenwerte...

Mehr

Eine Folge von Tönen über die Länge einer Oktave wird als Tonleiter bezeichnet.

Eine Folge von Tönen über die Länge einer Oktave wird als Tonleiter bezeichnet. Seite 1/ II. Dur-Tonleiter, chromatische Tonleiter TONSCHRITT UND TONSPRUNG Eine Folge von Tönen über die Länge einer Oktave wird als Tonleiter bezeichnet. Oktave (Abstand zwischen c und c ) Man unterscheidet

Mehr

SCHREINER LERN-APP: « SCHALLSCHUTZ»

SCHREINER LERN-APP: « SCHALLSCHUTZ» Wie breitet sich Schall aus? Was ist der akkustische Unterschied zwischen einem Ton und einem Geräusch? Was gibt die Frequenz an? Was gibt der Schalldruck an? 443 Schallausbreitung 444 Ton - Geräusch 445

Mehr

IV. Intervalle. 1. Bezeichnungen 2. Verminderte und übermäßige Intervalle 3. Liedbeispiele zu den Intervallen. 1. Bezeichnungen

IV. Intervalle. 1. Bezeichnungen 2. Verminderte und übermäßige Intervalle 3. Liedbeispiele zu den Intervallen. 1. Bezeichnungen IV. Intervalle 1. Bezeichnungen 2. Verminderte und übermäßige Intervalle 3. Liedbeispiele zu den Intervallen 1. Bezeichnungen Ein Intervall gibt uns den Abstand zwischen zwei Tönen an. Dabei spielt es

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Abschlussklausur Bitte in Druckschrift leserlich ausfüllen!

Abschlussklausur Bitte in Druckschrift leserlich ausfüllen! Medientechnik Universität Koblenz-Landau Institut für Informatik WS 2007/8 Dr. Manfred Jackel Abschlussklausur 21.02.2008 Bitte in Druckschrift leserlich ausfüllen! Name Vorname E-Mail-Adresse @uni-koblenz.de

Mehr

Stimmungen und Skalen (Tonleitern)

Stimmungen und Skalen (Tonleitern) Stimmungen und Skalen (Tonleitern) Akustische Experimente: Mithilfe einer Gitarre, mit dem Programm Audite, mit Python. Vorkenntnisse: Schwingende Saiten haben eine Grundfrequenz f 0 (Wellenlänge = doppelte

Mehr

Musik und Mathematik Urs Vonesch

Musik und Mathematik Urs Vonesch Musik und Mathematik Urs Vonesch Klaviertastatur und Intervalle Gratis-App für ipad und iphone: Virtuoso (virtuelle Klaviertastatur): https://itunes.apple.com/ch/app/id304075989?mt=8&affid=2083460 Die

Mehr

Vorlesung 1 Akustik (Fortsetzung)

Vorlesung 1 Akustik (Fortsetzung) Vorlesung 1 Akustik (Fortsetzung) Zupfinstrumente Tasteninstrumente Partiturkunde Akustik Idiophone und Membranobphone Streichinstrumente Holzblasinstrumente Blechblasinstrumente 2018 Manfred Dings Wellenlänge,

Mehr

Akkordlehre ganz konkret Band 1 INFO-Datei 3

Akkordlehre ganz konkret Band 1 INFO-Datei 3 INFO-Datei 3 Seite 1 Akkordlehre ganz konkret Band 1 INFO-Datei 3 Der lange Weg zu unserem modernen Tonsystem Inhalt: 1. Die moderne Stimmung der Tasteninstrumente... Seite 1 2. Reine Stimmung nach der

Mehr

Pegelrechnung. Version Holger Stolzenburg. SAE-Hamburg

Pegelrechnung. Version Holger Stolzenburg. SAE-Hamburg Version 2.4 Inhaltsverzeichnis 1 Pegel...4 1.1 Absolute Pegel...4 1.1.1 Leistungspegel...4 1.1.2 Schalldruckpegel...4 1.1.3 Spannungspegel (Tonstudiotechnik)...4 1.1.4 Spannungspegel (Hifi-Technik)...4

Mehr

CHINA DIE ERSTEN BEIDEN TEXTE

CHINA DIE ERSTEN BEIDEN TEXTE DIE ERSTEN BEIDEN TEXTE FRÜHLING UND HERBST DES LÜ BU WE Unter diesem Titel erschien anno 1928 «verdeutscht und erläutert» von Richard Wilhelm bei Diederichs in Jena eine Übersetzung des Buches «Lüshi

Mehr

Arbeitsblätter: Noten schreiben

Arbeitsblätter: Noten schreiben Arbeitsblätter: Noten schreiben Diese Seiten enthalten umfangreiche und systematisch angelegte Arbeitsblätter zum Thema Noten lernen. Diese können als Lernzielkontrolle oder einfach nur zur Übung eingesetzt

Mehr

Tieffrequente Geräusche und Infraschall - Physikalische Aspekte -

Tieffrequente Geräusche und Infraschall - Physikalische Aspekte - Tieffrequente Geräusche und Infraschall - Physikalische Aspekte - Thomas Przybilla LANUV NRW Fachbereich 45: [...], Geräusche und Erschütterungen Fon: 0201-7995-1492 E-Mail: thomas.przybilla@lanuv.nrw.de

Mehr

Medien- Technik. Videotechnik

Medien- Technik. Videotechnik Videotechnik 1 Optimaler Sehabstand Winkel < 1/60 Europa 625 / 50 / 2:1 USA 625 / 59.94 / 2:1 HDTV 1125 / 60 / 2:1 Seitenverhältnis 4:3 trad. 16:9 HDTV Bildwiederholrate muß bei hellem Umfeld höher sein

Mehr

Das Gehirn. Chemie Mechanik. Optik

Das Gehirn. Chemie Mechanik. Optik Hören Das Gehirn Chemie Mechanik Optik Hörbereich 20 20.000 Hz 10 3.000 Hz 20 35.000 Hz 1000 10.000 Hz 10 100.000 Hz 1000 100.000 Hz Hörbereich Menschliches Ohr: Wahrnehmbarer Frequenzbereich 16 Hz 20.000

Mehr

20 3. MATHEMATIK UND MUSIK. kl. Sekund Sekund kl. Terz Terz Quart Tritonus 9 8 10 9 9 8. Quint kl. Sext Sext kl. Septim Septim Oktav 8 5 24

20 3. MATHEMATIK UND MUSIK. kl. Sekund Sekund kl. Terz Terz Quart Tritonus 9 8 10 9 9 8. Quint kl. Sext Sext kl. Septim Septim Oktav 8 5 24 0. MATHEMATIK UND MUSIK Verhältnis 1 Dominante 1 Subdominante 1 1 Verhältnis Dominante Subdominante kl. Sekund Sekund kl. Terz Terz Quart Tritonus 10 6 7 0 Quint kl. Sext Sext kl. Septim Septim Oktav 1

Mehr

Verhältnistabelle reine Stimmung

Verhältnistabelle reine Stimmung Musikalische Stimmungen Anhänge. 55 Anhänge Bildliche Erläuterungen Verhältnistabelle reine Stimmung In der folgenden Graphik sehen sie für jeden Ton der Dur Tonleiter seine Frequenz als Vielfaches der

Mehr

Notenlesen für Physiker

Notenlesen für Physiker Notenlesen für Physiker Seminar Mathematische Physik, 24. Jänner 2013 Laurin Ostermann Zusammenfassung Der vorliegende Text beschäftigt sich mit der Fragestellung wie einem Notensymbol, das ein Musiker

Mehr

Welche Töne spielen wir da eigentlich? Eine kurze Abhandlung über die Stimmung und das Stimmen des schottischen Dudelsackes

Welche Töne spielen wir da eigentlich? Eine kurze Abhandlung über die Stimmung und das Stimmen des schottischen Dudelsackes Welche Töne spielen wir da eigentlich? Eine kurze Abhandlung über die Stimmung und das Stimmen des schottischen Dudelsackes Englischer Originaltext: Ewan MacPherson Übersetzt und ergänzt: Philipp Muheim

Mehr

Hören WS 2009/2010. Hören. (und andere Sinne)

Hören WS 2009/2010. Hören. (und andere Sinne) WS 2009/2010 Hören (und andere Sinne) Hören Chemie Mechanik Optik Hörbereich 20 16.000 Hz 10 3.000 Hz 20 35.000 Hz 1000 10.000 Hz 10 100.000 Hz 1000 100.000 Hz Hörbereich Menschliches Ohr: Wahrnehmbarer

Mehr

Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug

Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug Ing. LAMMER Christian Amt der Steiermärkischen Landesregierung, Fachabteilung 17C Leiter des Referates SEL schall-und erschütterungstechn. ASV

Mehr

Die # ( Kreuz )-Dur-Tonarten und die Reihenfolge ihrer Tonstufen

Die # ( Kreuz )-Dur-Tonarten und die Reihenfolge ihrer Tonstufen Seite 1 von 14 Die # ( Kreuz )-Dur-Tonarten und die Reihenfolge ihrer Tonstufen Die Fingersätze für die rechte Hand sind über den Noten, die Fingersätze für die linke Hand sind unter den Noten notiert.

Mehr

Hören Was ist Schall? Schalldruck. Hören Was ist Schall? Lautstärke. e = 329,63 Hz. Frequenz

Hören Was ist Schall? Schalldruck. Hören Was ist Schall? Lautstärke. e = 329,63 Hz. Frequenz Was ist Schall? hoher Druck Niedrige Frequenz hohe Frequenz Schalldruck niedriger Druck Schalldruck Niedrige Intensität Weg hohe Intensität Weg Periode Was ist Schall? Lautstärke e Ton e = 329,63 Hz Lautstärke

Mehr

3 Tonsysteme / Musikalische Stimmungen

3 Tonsysteme / Musikalische Stimmungen Schwingungslehre in Kursstue / 7 Ernst Schreier Tonsysteme / Musikalische Stimmungen. Harmonie: Konsonanz und Dissonanz Bisher nur mit einem Klang bzw. einer Tonhöhe beschätigt Jetzt geht es um das Zusammenklingen

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

K3.1 Phonetik und Phonologie II. 6. Sitzung Das menschliche Ohr. Anatomie und Funktion

K3.1 Phonetik und Phonologie II. 6. Sitzung Das menschliche Ohr. Anatomie und Funktion K3.1 Phonetik und Phonologie II 6. Sitzung Das menschliche Ohr Anatomie und Funktion Der Aufbau des menschlichen Ohrs 2 Gehörgang 3 Ohrmuschel 4 Trommelfell 5 Ovales Fenster 6 Hammer 7 Amboss 8 Steigbügel

Mehr

Meeting/Event name Month date, 2011, Type of event, Country Arial regular size 8 AKUSTIK

Meeting/Event name Month date, 2011, Type of event, Country Arial regular size 8 AKUSTIK Meeting/Event name Month date, 2011, Type of event, Country Arial regular size 8 AKUSTIK Agenda Was ist Schall? Was ist Akustik? Warum Akustik wichtig ist Lärm und Gesundheit Nachhallzeit Schallabsorption

Mehr

Einführung in die Akustik

Einführung in die Akustik Einführung in die Akustik von HANS BORUCKI 3., erweiterte Auflage Wissenschaftsverlag Mannheim/Wien/Zürich Inhalt 1. Allgemeine Schwingungslehre 13 1.1. Begriff der Schwingung 13 1.1.1. Die mechanische

Mehr

EXKURS GERÄUSCHWAHRNEHMUNG. Vortrag von Sibylle Blümke

EXKURS GERÄUSCHWAHRNEHMUNG. Vortrag von Sibylle Blümke EXKURS GERÄUSCHWAHRNEHMUNG Vortrag von Sibylle Blümke INHALT Aufbau des Ohres Wie hören wir? Welche Frequenzen sind wahrnehmbar? Frequenzen in der Musik Bezug auf unser Projekt 2 Sibylle Blümke, Exkurs

Mehr

1. Die theoretischen Grundlagen

1. Die theoretischen Grundlagen Musiktheorie: Tonleitern 1 Inhaltsverzeichnis 1. Die theoretischen Grundlagen 2. Wofür braucht man Tonleitern? 1. Die theoretischen Grundlagen Tonleitern sind sozusagen das Basis-Material in der Musik.

Mehr

Zusammenfassung. f m v. Interfernzφ. Chladnische Klangfiguren. oberes Vorzeichen: Objekte bewegen sich aufeinander zu

Zusammenfassung. f m v. Interfernzφ. Chladnische Klangfiguren. oberes Vorzeichen: Objekte bewegen sich aufeinander zu 7c Akustik Zusammenfassung f Dopplereffekt vmedium ± v ' = vmedium m v D Q f oberes Vorzeichen: Objekte bewegen sich aufeinander zu unteres Vorzeichen: Objekte entfernen sich voneinander ΔL Interfernzφ

Mehr

Zusammenfassung. f m v. Überschall. Interfernzφ. Stehende Welle. Chladnische Klangfiguren. Quelle

Zusammenfassung. f m v. Überschall. Interfernzφ. Stehende Welle. Chladnische Klangfiguren. Quelle 7c Akustik Zusammenfassung f allgemeine Formel Dopplereffekt vmedium ± v ' = vmedium m v D Q f oberes Vorzeichen: Objekte bewegen sich aufeinander zu unteres Vorzeichen: Objekte entfernen sich voneinander

Mehr

AUDIO-TECHNIK 2. Semester

AUDIO-TECHNIK 2. Semester FH St.Pölten Telekommunikation und Medien AUDIO-TECHNIK 2. Semester Erstellt: 11/2004 Hannes Raffaseder / FH St. Pölten / Telekommunikation und Medien 1/27 1 FH St. Pölten, Telekommunikation und Medien

Mehr

Arbeitsmaterialien zum Thema. Tetrachord

Arbeitsmaterialien zum Thema. Tetrachord Schulpraktische Seminare Musik Arbeitsmaterialien zum Thema Tetrachord Tetrachorde Lied (Zwei gleich gebaute Tetrachorde - zwei Tonarten) Mögliche Lernziele und methodische Schritte Lehrerbegleitnoten

Mehr

Programme (hier können Sie selber üben) Einführung in die Linguistik (Ling 101) WS 2009/10. Wiederholung. Thema heute: Sprachsignale

Programme (hier können Sie selber üben) Einführung in die Linguistik (Ling 101) WS 2009/10. Wiederholung. Thema heute: Sprachsignale Fachbereich Sprachwissenschaft Einführung in die Linguistik (Ling 101) WS 2009/10 Programme (hier können Sie selber üben) Für die Demo in der heutigen Vorlesung wird Praat benutzt Link: http://www.fon.hum.uva.nl/praat/

Mehr

Physik & Musik. Monochord. 1 Auftrag

Physik & Musik. Monochord. 1 Auftrag Physik & Musik 2 Monochord 1 Auftrag Physik & Musik Monochord Seite 1 Monochord Bearbeitungszeit: 30 Minuten Sozialform: Einleitung Einzel- oder Partnerarbeit Das Monochord ist ein einfaches Saiteninstrument

Mehr

Die Höhe eines Tons. Was ist Schall?

Die Höhe eines Tons. Was ist Schall? Was ist Schall? Vorgängen im Haus. Wer das Ohr an die Wand drückt, hört besser was hinter ihr gesprochen wird. Das ist zwar unmoralisch, aber wenn der Volksmund sagt Der Lauscher an der Wand hört seine

Mehr

Tontechnisches Praktikum

Tontechnisches Praktikum Was ist Schall? Mal ganz einfach: Schall ist bewegte Luft. Etwas genauer: Schall ist eine zeitlich beliebige mechanische Zustandsänderung elastischer Medien (nicht nur Luft!). Hervorgerufen wird diese

Mehr

Schall und Hören. Wie wir Schall wahrnehmen und wie das Ohr funktioniert.

Schall und Hören. Wie wir Schall wahrnehmen und wie das Ohr funktioniert. Schall und Hören 1 Wie wir Schall wahrnehmen und wie das Ohr funktioniert. Diese Broschüre ist die erste in einer Reihe, die Widex über die Themen Hören und HörSysteme herausgibt. Was ist Schall? Schall

Mehr

Übung Musiktheorie vor 1600: Mathematische Grundbegriffe

Übung Musiktheorie vor 1600: Mathematische Grundbegriffe Übung Musiktheorie vor 16: Mathematische Grundbegriffe Dozent: Albert Gräf (Dr.Graef@t-online.de), Wintersemester 212 Zur Festlegung musikalischer Intervalle gibt es zwei komplementäre Vorgehensweisen,

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen

3 Akustik. 3.1 Schallwellen (Versuch 23) 12 3 AKUSTIK. Physikalische Grundlagen 12 3 AKUSTIK 3 Akustik 3.1 Schallwellen (Versuch 23) (Fassung 11/2011) Physikalische Grundlagen Fortschreitende (laufende) Wellen Eine in einem elastischen Medium hervorgerufene Deformation breitet sich

Mehr

Notation von Musik die Notenschrift I. Die Tonhöhe

Notation von Musik die Notenschrift I. Die Tonhöhe Notation von Musik die Notenschrift I. Die Tonhöhe 1) Aufbau der Notenzeile: 5 Linien 4 Zwischenräume (von unten nach oben gezählt) 5 4 3 2 1 Note liegt auf der Linie Note liegt im Zwischenraum Noten mit

Mehr