Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke"

Transkript

1 Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum Methoden in der Helmholtz-Gemeinschaft zur Netzwerkanalyse

2 Inhalt Zerlegung von Graphen Das Problem des dünnsten Schnitts 2 Henning Meyerhenke:

3 Einführung Definition (SPARSESTCUT) Sei G = (V, E) ein Graph mit n Knoten und m Kanten Für eine nicht leere Menge S V bezeichne (S, S) die Menge der Kanten von G, die genau einen Endknoten in S haben (Schnitt) Ein dünnster Schnitt des Graphen G = (V, E) hat die Größe E(S, S) min S V, S V /2 S Das Berechnen des dünnsten Schnitts hat wichtige Anwendungen in der Theorie: Divide-and-Conquer-Algorithmen 3 Henning Meyerhenke:

4 Einführung Approximationsalgorithmen Wie Probleme zuvor ist SPARSESTCUT N P-schwer zu optimieren Bisher haben wir Heuristiken ohne Qualitätsgarantien betrachtet (oder zumindest keine Garantien hergeleitet) Nun: Approximationsalgorithmus 4 Henning Meyerhenke:

5 Einführung Approximationsalgorithmen Wie Probleme zuvor ist SPARSESTCUT N P-schwer zu optimieren Bisher haben wir Heuristiken ohne Qualitätsgarantien betrachtet (oder zumindest keine Garantien hergeleitet) Nun: Approximationsalgorithmus Definition Bezeichne Π ein Optimierungsproblem. Ein Algorithmus A heißt α-approximationsalgorithmus, wenn A zu jeder Instanz I von Π eine zulässige, aber nicht notwendigerweise optimale Lösung berechnet, so dass R A (I) α wobei R A (I) := A(I), falls Π Minimierungsproblem OPT (I) OPT (I) R A (I) :=, falls Π Maximierungsproblem A(I) Hier bezeichnet A(I) den Wert der Lösung, die A für I berechnet und OPT (I) ist der Wert einer optimalen Lösung für I. Der Faktor α ist die relative Güte von A. 4 Henning Meyerhenke:

6 Historie Approximationen für SPARSESTCUT und eng verwandte Probleme: Eigenvektor-basierte Ansätze mit Faktor-n-Approximation (Cheeger 70, Alon 85, Alon-Milman 85) O(log n)-approximation mit LP (Mehrgüter-Flüsse) von Leighton und Rao ( 88) Nun: Arora, Rao und Vazirani ( 04, 09): O( log n)-approximation in Polynomialzeit Neuere Techniken existieren (schneller, aber nicht mit besserer Güte) 5 Henning Meyerhenke:

7 Der ARV-Algorithmus [Arora, Rao und Vazirani] Kernidee: Einbettung der Knoten in einen abstrakten Raum, wobei die Kanten nicht zu sehr gedehnt werden dürfen, Partitionierung des Graphen durch Partitionierung des Raumes 6 Henning Meyerhenke:

8 Der ARV-Algorithmus [Arora, Rao und Vazirani] Kernidee: Einbettung der Knoten in einen abstrakten Raum, wobei die Kanten nicht zu sehr gedehnt werden dürfen, Partitionierung des Graphen durch Partitionierung des Raumes Vorgehensweise: Wir konstruieren ein semidefinites Programm (SDP) für SPARSESTCUT Die Lösung des SDP weist jedem Knoten i einen Punkt x i auf der Einheitskugel im R n zu Diese Lösung kann man als l 2 2 -Metrik ansehen: d(i, j) = x i x j 2 Ziel: Zuweisung finden, die die durchschnittliche Distanz zwischen allen Knotenpaaren groß macht, die durchschnittliche Distanz zwischen adjazenten Knoten aber klein Komplexität der Einbettung hängt von Metrik ab, für l 1 und l 2 N P-schwer, daher verwenden wir die l 2 2 -Norm 6 Henning Meyerhenke:

9 Der ARV-Algorithmus Vorgehensweise (Forts.) Das Haupttheorem besagt, dass man unter gewissen Voraussetzungen ein Paar von Teilmengen S, T X eines metrischen Raums X findet, so dass S, T = Ω(n) und 1 d(s, T ) = = Ω( ) log n Dann lässt sich d in l 1 mit durchschnittlicher Verzerrung O( log n) einbetten: Bilde jedes x X auf d(x, S) ab Hierdurch wird auf die Gerade R eingebettet Wähle für d in X die quadratische Euklidische Norm l Henning Meyerhenke:

10 Der ARV-Algorithmus Vorgehensweise (Forts.) Das Haupttheorem besagt, dass man unter gewissen Voraussetzungen ein Paar von Teilmengen S, T X eines metrischen Raums X findet, so dass S, T = Ω(n) und 1 d(s, T ) = = Ω( ) log n Dann lässt sich d in l 1 mit durchschnittlicher Verzerrung O( log n) einbetten: Bilde jedes x X auf d(x, S) ab Hierdurch wird auf die Gerade R eingebettet Wähle für d in X die quadratische Euklidische Norm l 2 2 Beim anschließenden Runden macht man nicht zu viel falsch 7 Henning Meyerhenke:

11 Der ARV-Algorithmus Vorgehensweise (Forts.) Um das Theorem zu beweisen, gibt man einen randomisierten Algorithmus mit zwei Phasen an, der die gewünschten Teilmengen S und T findet Phase 1: Wähle zufällig eine Hyperebene und teile X in zwei Punktmengen, die relativ weit (Θ(1/ log n)) von der Hyperebene entfernt liegen, jeweils auf unterschiedlichen Seiten Phase 2: Entferne wiederholt Paare von Punkten, die in den verschiedenen ( Hälften liegen und einander zu nah sind (näher als O 1 log n )) 8 Henning Meyerhenke:

12 Der ARV-Algorithmus Vorgehensweise (Forts.) Um das Theorem zu beweisen, gibt man einen randomisierten Algorithmus mit zwei Phasen an, der die gewünschten Teilmengen S und T findet Phase 1: Wähle zufällig eine Hyperebene und teile X in zwei Punktmengen, die relativ weit (Θ(1/ log n)) von der Hyperebene entfernt liegen, jeweils auf unterschiedlichen Seiten Phase 2: Entferne wiederholt Paare von Punkten, die in den verschiedenen ( Hälften liegen und einander zu nah sind (näher als O 1 log n )) Man erhält so zwei Mengen, die weit genug auseinander liegen Schwierigkeit: Zu zeigen, dass beide Mengen Ω(n) Punkte haben 8 Henning Meyerhenke:

13 Modellierung von SPARSESTCUT { } E(S, S) SC(G) = min : S V, S n S 2 { } ij E d(i, j) E(S, S) η(g) = min = d=δ S i,j d(i, j) S S Mit Indikatorvektor x ergibt sich: SC(G) nη(g) 2SC(G) η(g) = ij E (x i x j ) 2 min x i { 1,1} i,j (x i x j ) 2 Zur Erinnerung: ij E (x i x j ) 2 = x T Lx Klar: Optimierung von η(g) ist N P-schwer 9 Henning Meyerhenke:

14 Einheits-l 2 2 -Repräsentation Idee: Relaxierung mit Einheits-l 2 2 -Repräsentation Definition (l 2 2 -Repräsentation) Eine l 2 2-Repräsentation eines Graphen ist eine Zuweisung eines Punktes (Vektors) an jeden Knoten, etwa x i an Knoten i, so dass für alle i, j, k die Dreiecksungleichung gilt: x i x j 2 + x j x k 2 x i x k 2 Eine l 2 2 -Repräsentation heißt Einheits-l2 2 -Repräsentation, falls alle Punkte auf der Einheitskugel liegen, d. h. Länge 1 haben. 10 Henning Meyerhenke:

15 Relaxierung von SPARSESTCUT Relaxierung der x i von ganzen Zahlen aus der Menge { 1, 1} zu n-dimensionalen Einheitsvektoren: η (G) = ij E x i x j 2 min x i R n, x i 2 =1 i,j x i x j 2 Resultat: Semidefinites Programm (SDP): 1 min x i R n 4 x i x j 2 (1) ij E s.t. i x i 2 = 1 (Vektoren der Länge 1) (2) i, j, k x i x j 2 + x j x k 2 x i x k 2 (3) i<j x i x j 2 4c(1 c)n 2 (4) 11 Henning Meyerhenke:

16 Relaxierung von SPARSESTCUT (Forts.) Umformung in SDP durch passende Skalierung: min x i x j 2 (5) ij E s.t. i, j, k x i x j 2 + x j x k 2 x i x k 2 (6) i<j x i x j 2 = 1 (7) Durch die Dreiecksungleichungen werden die Lösungen auf l 2 2-Metriken beschränkt Durch die Länge 1 der gesuchten Vektoren (vorige Formulierung) liegen diese auf der Einheitskugel 12 Henning Meyerhenke:

17 Semidefinite Programmierung Definition Eine n n-matrix Y über R heißt genau dann positiv semidefinit, wenn gilt: x R n : x T Yx 0. Definition SEMIDEFINITES PROGRAMM SDP: optimiere C Y = c ij y ij i,j gemäß A k Y = a k,ij y ij b k i,j k, wobei Y = (y ij ) symmetrisch positiv semidefinit ist. Semidefinite Optimierung kann in Zeit O(poly(n, m, log( 1 ε )) mit absoluter Güte ε für beliebiges ε > 0 gelöst werden. 13 Henning Meyerhenke:

18 Fakten zur SDP Y ist genau dann symmetrisch positiv semidefinit, wenn es eine m n-matrix X gibt mit X T X = Y. Also: Y ij = x i, x j 14 Henning Meyerhenke:

19 Fakten zur SDP Y ist genau dann symmetrisch positiv semidefinit, wenn es eine m n-matrix X gibt mit X T X = Y. Also: Y ij = x i, x j Ist Y positiv semidefinit und symmetrisch, kann die obige Matrix X in Zeit O(n 3 ) mittels Cholesky-Zerlegung berechnet werden. Sind alle Diagonaleinträge einer symmetrisch positiv semidefiniten Matrix Y gleich 1, sind die Spalten der zugehörigen Matrix X Einheitsvektoren im R n. Wir betrachten den SDP-Löser einfach als Black Box, der die gewünschte Lösung in Polynomialzeit berechnet 14 Henning Meyerhenke:

20 Zusammenhang zwischen Schnitt und Lösung des SDP Jeder Schnitt (S, S) ergibt direkt eine offensichtliche Einheits-l 2 2 -Repräsentation: Allen Knoten in S wird ein Einheitsvektor v 0 zugewiesen Allen Knoten in S wird der Vektor v 0 zugewiesen 15 Henning Meyerhenke:

21 Zusammenhang zwischen Schnitt und Lösung des SDP Jeder Schnitt (S, S) ergibt direkt eine offensichtliche Einheits-l 2 2 -Repräsentation: Allen Knoten in S wird ein Einheitsvektor v 0 zugewiesen Allen Knoten in S wird der Vektor v 0 zugewiesen Für diese Zuweisung sind die Werte von η(g) und η (G) gleich Wichtige Beobachtung Es gilt immer: η (G) η(g) Grund: Jede zulässige Lösung für SPARSESTCUT ist auch eine zulässige Lösung für das SDP (Auffüllen des Vektors mit lauter Nullen) Es gibt aber für das SDP noch mehr zulässige Lösungen mit potentiell niedrigeren Zielfunktionswerten 15 Henning Meyerhenke:

22 Partitionierung von l 2 2 Große Mengen finden Definition Seien v 1, v 2,..., v n R n und 0. Zwei Mengen von Vektoren S und T heißen -separiert, wenn für jedes x i S, x j T gilt: x i x j 2. Wir benötigen zwei -separierte Mengen S, T linearer Größe, also d l 2 2 (S, T ) = min x i x j 2 i S,j T Wollen: = Ω((log n) 1/2 ) 16 Henning Meyerhenke:

23 Partitionierung von l 2 2 Haupttheorem Theorem (Haupttheorem) Für jedes c > 0 gibt es c, b > 0 derart, dass jede Einheits-l 2 2 -Repräsentation mit i<j x i x j 2 4c(1 c)n 2 und n Punkten -separierte Teilmengen S, T der Größe c n enthält, wobei = b/ log n Es gibt einen randomisierten Polynomialzeit-Algorithmus, der diese Teilmengen S und T findet Bemerkung: Der obige Wert für ist scharf. Beispiel: Hypercube { 1, 1} d (nächste Übung) 17 Henning Meyerhenke:

24 Der ARV-Algorithmus Zur Erinnerung Um das Theorem zu beweisen, gibt man einen randomisierten Algorithmus mit zwei Phasen an, der die gewünschten Teilmengen S und T findet Phase 1: Wähle zufällig eine Hyperebene und teile X in zwei Punktmengen, die relativ weit (Θ(1/ log n)) von der Hyperebene entfernt liegen, jeweils auf unterschiedlichen Seiten Phase 2: Entferne wiederholt Paare von Punkten, die in den verschiedenen Hälften liegen und einander zu nah sind (näher als O ( 1 log n )) 18 Henning Meyerhenke:

25 Transformation SDP Schnitt Approximationsfaktor Sei W = ij E x i x j 2 der optimale Wert für das SDP. Wissen: W = η (G) η(g) Wieviel verlieren wir durch das Runden der Lösung? 19 Henning Meyerhenke:

26 Transformation SDP Schnitt Approximationsfaktor Sei W = ij E x i x j 2 der optimale Wert für das SDP. Wissen: W = η (G) η(g) Wieviel verlieren wir durch das Runden der Lösung? Lemma Es gibt einen randomisierten Polynomialzeit-Algorithmus, der mit hoher Wkt. einen Schnitt findet, der c -balanciert ist und Größe O(W log n) hat. Definition Ein Schnitt (S, S) ist c -balanciert, falls sowohl S als auch S mindestens c V Knoten haben. 19 Henning Meyerhenke:

27 Beweis Approximationsfaktor Beweis. Der Algorithmus zum Haupttheorem liefert -separierte Mengen S und T für = b/ log n Bezeichne V 0 die Knoten, deren Vektoren in S liegen Assoziiere mit jeder Kante e = {i, j} eine Länge w e = x i x j 2 Also: W = e E w e 20 Henning Meyerhenke:

28 Beweis Approximationsfaktor Beweis. Der Algorithmus zum Haupttheorem liefert -separierte Mengen S und T für = b/ log n Bezeichne V 0 die Knoten, deren Vektoren in S liegen Assoziiere mit jeder Kante e = {i, j} eine Länge w e = x i x j 2 Also: W = e E w e S und T sind mindestens voneinander entfernt (bzgl. dieser Distanz) Bezeichne V s die Knoten mit Maximalabstand s von S 20 Henning Meyerhenke:

29 Beweis Approximationsfaktor (Forts.) Beweis. Wir erstellen einen Schnitt wie folgt: Ziehe eine Zufallszahl r zwischen 0 und Gebe den Schnitt (V r, V V r ) aus Weil S V r und T V V r, ist dies ein c -balancierter Schnitt 21 Henning Meyerhenke:

30 Beweis Approximationsfaktor (Forts.) Beweis. Wir erstellen einen Schnitt wie folgt: Ziehe eine Zufallszahl r zwischen 0 und Gebe den Schnitt (V r, V V r ) aus Weil S V r und T V V r, ist dies ein c -balancierter Schnitt Bezeichne E s die Menge der Kanten, die aus V s herausführen Weil V 0 = S c n: E s = E s V s V s E s V s c n 21 Henning Meyerhenke:

31 Beweis Approximationsfaktor (Forts.) Beweis. Wir erstellen einen Schnitt wie folgt: Ziehe eine Zufallszahl r zwischen 0 und Gebe den Schnitt (V r, V V r ) aus Weil S V r und T V V r, ist dies ein c -balancierter Schnitt Bezeichne E s die Menge der Kanten, die aus V s herausführen Weil V 0 = S c n: E s = E s V s V s E s V s c n Wir wollen nun die Größe des Schnitts beschränken Beitrag jeder Kante e = {i, j} zu E s im Intervall (s 1, s 2 ) s 1 = d(i, V 0 ), s 2 = d(j, V 0 ) Aus Dreiecksungleichung folgt: s 2 s 1 w e 21 Henning Meyerhenke:

32 Beweis Approximationsfaktor (Forts.) Beweis. W = e w e s=0 E s ds Also: Der erwartete Wert von E s über dem Intervall [0, ] ist höchstens W / 22 Henning Meyerhenke:

33 Beweis Approximationsfaktor (Forts.) Beweis. W = e w e s=0 E s ds Also: Der erwartete Wert von E s über dem Intervall [0, ] ist höchstens W / Der Algorithmus berechnet daher einen Schnitt mit Größe höchstens 2W / mit Wkt. mindestens 1/2 2W / = O(W log n) 22 Henning Meyerhenke:

34 Beweis Approximationsfaktor (Forts.) Beweis. W = e w e s=0 E s ds Also: Der erwartete Wert von E s über dem Intervall [0, ] ist höchstens W / Der Algorithmus berechnet daher einen Schnitt mit Größe höchstens 2W / mit Wkt. mindestens 1/2 2W / = O(W log n) Schließlich: W = η (G) η(g) W log n η(g) log n 22 Henning Meyerhenke:

35 Zusammenfassung ARV Approximation von Graphzerlegungen SPARSESTCUT ist strukturell eng verwandt mit anderen besprochenen Problemstellungen Relaxierung hier mit SDP statt mit Eigenvektorproblem Viel komplexer in der Laufzeit, aber mit besserer Qualitätsschranke ARV-Algorithmus ist wichtiger Beitrag zur Approximation von Partitionierungsproblemen Aus Zeitgründen in der Vorlesung nicht vollständig Literaturhinweis Sanjeev Arora, Satish Rao, Umesh V. Vazirani: Expander flows, geometric embeddings and graph partitioning. J. ACM 56(2): (2009) 23 Henning Meyerhenke:

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Längen-beschränkte Schnitte und Flüsse

Längen-beschränkte Schnitte und Flüsse Seminarausarbeitung über G. Baiers et al. Abhandlung über: Längen-beschränkte Schnitte und Flüsse (oder: Length-bounded Cuts and Flows) Frank Obermüller 06. Dezember 2009 1 Einleitung Sei G = (V, E) ein

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Streaming Data: Das Modell

Streaming Data: Das Modell Streaming Data: Das Modell Berechnungen, bei fortlaufend einströmenden Daten (x t t 0), sind in Echtzeit zu erbringen. Beispiele sind: - Verkehrsmessungen im Internet, - Datenanalyse in der Abwehr einer

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen Seminar im Sommersemester 2008 Sebastian Bauer, Wei Cheng und David Münch Herausgegeben von Martin Nöllenburg, Ignaz Rutter und Alexander Wolff Institut für Theoretische Informatik

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29 1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau.

Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau. Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau. Dekan: Prof.Dr Zappe Vorsitz: Prof. Lausen Beisitz: Prof. Ottmann Betreuer: Prof.

Mehr

Diskrete Optimierungsverfahren zur Lösung von Sudokus

Diskrete Optimierungsverfahren zur Lösung von Sudokus Diskrete Optimierungsverfahren zur Lösung von Sudokus Seminarvortrag von Daniel Scholz am 6. Dezember 2006 Am Beispiel der Lösung von Sudokurätseln mit Hilfe der linearen Optimierung werden verschiedenen

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Approximations-Algorithmen

Approximations-Algorithmen Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme

Mehr

Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions

Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions Dr. rer. nat. Bastian Katz 0. Juni 009 (Version vom. Juni 009) Von Kreisen, Kugeln und Bällen Definition In einem metrischen

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt;

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt; Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt Referent Matthias Rost 1 Einleitung Definitionen Maximaler Dynamischer Fluss Algorithmus von Ford-Fulkerson Techniken zur

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Seminararbeit im Rahmen des Seminars Algorithmentechnik vorgelegt von Leonie Sautter Leiter des Seminars: Juniorprof. Dr. Henning Meyerhenke

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Skript zum Seminar Flüsse in Netzwerken WS 2008/09 David Meier Inhaltsverzeichnis 1 Einführende Definitionen und Beispiele 3 2 Schnitte in Flussnetzwerken 12 2.1 Maximaler s t Fluss..........................

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen) Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17)

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17) Vorlesung Kombinatorische Optimierung (Wintersemester 06/7) Kapitel : Flüsse und Zirkulationen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Oktober 06) Definition. Ein Netzwerk

Mehr