kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

Größe: px
Ab Seite anzeigen:

Download "kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform."

Transkript

1 kurze Wiederholung der letzten Stunde: Neuronale Netze (0721) Labor Wissensrepräsentation

2 Übersicht Neuronale Netze Motivation Perzeptron Grundlagen für praktische Übungen Aufgaben der letzten Stunde 2

3 NEURONALE NETZE 3

4 Motivation menschliches Gehirn und PC-Rechner komplementär in ihren Stärken und Schwächen Rechner sollen Vorteile des menschlichen Gehirns ebenfalls nutzen hohe Parallelisierung Robustheit etc. Gehirn besteht aus einzelnen Gehirnzellen (Neuronen), die durch Vernetzung erst Macht gewinnen 4

5 Aufbau Perzeptron einzelne künstliche Nervenzelle verarbeitet Eingabesignale zu einzelnem Ausgabesignal Aufbau: x Eingabevektor t Target (Soll-Ausgabe) x 0 =1 x 1 x 2 x n... w 2 w 1 w n w 0 Σ o = { 1 1 n i=1 Bias Trick x 0 =1 w ix i θ sonst w 0 = θ w Gewichtsvektor o Output (Ist-Ausgabe) 5

6 Perzeptron verstehen geometrische Interpretation: Trennhyperebene (in R 2 : Gerade) Gewichte definieren genaue Lage der Ebene (Gewichte = Normale der Ebene) Gewichtete Summe = Skalarprodukt aus Eingaben und Gewichtsvektor p 1 Gewichtsvektor > 0 p 2 Gewichtsvektor > 0 n 1 Gewichtsvektor < 0 n 2 Gewichtsvektor < 0 6

7 Lernen - Geometrische Interpretation Hilfsmenge { } N = x x = x, x N Neues Lernproblem xw > 0, x N P Im Beispiel: alle x i aus P

8 Perzeptron Lernalgorithmus Start: Gegeben Lerndatenmenge P N Der Gewichtsvektor w(0) wird zufällig generiert. Setze t:=0. Testen: Ein Punkt x in P N wird zufällig gewählt. Falls x P und w(t) x > 0 gehe zu Testen Falls x P und w(t) x 0 gehe zu Addieren Falls x N und w(t) x < 0 gehe zu Testen Falls x N und w(t) x 0 gehe zu Subtrahieren Addieren: Setze w(t+1) = w(t)+x. Setze t:= t+1. Gehe zu Testen. Subtrahieren: Setze w(t+1) = w(t)-x. Setze t:=t+1. Gehe zu Testen.

9 AUFGABEN AUS LETZTER STUNDE 9

10 Aufgabe 1: Einrichtung Einrichtung der Library für die weitere Verwendung Download Entpacken in Visual C++ geeignet einbinden von allen erfolgreich beendet? 10

11 Aufgabe 2: Perzeptronen (1) a) Verwende die Klasse Perceptron der Flood-Library, um von Hand einen logischen AND-Operator zu programmieren (2 Eingänge, 1 Ausgang, 1&1=1, 1&0=0, 0&1=0, 0&0=0). von allen erfolgreich beendet? mögliche Lösung: AndOp = new FL::Perceptron(2); FL::Vector<double> weights(2); AndOp.set_activation_function(FL::Perceptron::Threshold); AndOp->set_bias(-0.75); weights[0] = 0.5; weights[1] = 0.5; AndOp->set_synaptic_weights(weights); FL::Vector<double> inputs(2); inputs[0] = INPUT1; inputs[1] = INPUT2; double outputsignal = AndOp->calculate_output(inputs); 11

12 Aufgabe 2: Perzeptronen (2) Wie kommt man zu den Parametern? Ausprobieren Grafisch überlegen (Gewichtsvektor = Normalenvektor) Gleichungssystem aufstellen: 1 w 1 +1 w 2 = w 1 + w 2 > θ 0 w 1 +1 w 2 = w 2 < θ 1 w 1 +0 w 2 = w 1 < θ 12

13 Aufgabe 2: Perzeptronen (3) b) Erweitere die Lösung von Teilaufgabe a), so dass der Benutzer die Anzahl der Eingaben auswählen kann und neben dem AND-Operator auch ein OR-Operator realisiert wird. alle erfolgreich? mögliche Lösung für AND: AndOp = new FL::Perceptron(numberOfInputSignals); FL::Vector<double> weights(numberofinputsignals); double andinputweight = 1.0 / numberofinputsignals; double andthreshold = 1.0 (andinputweight / 2.0); AndOp->set_bias(-andThreshold); for (int i=0; i<numberofinputsignals; i++){ weights[i] = andinputweight; } AndOp->set_synaptic_weights(weights); 13

14 Aufgabe 2: Perzeptronen (4) mögliche Lösung für AND: AndOp = new FL::Perceptron(numberOfInputSignals); FL::Vector<double> weights(numberofinputsignals); double andinputweight = 1.0 / numberofinputsignals; double andthreshold = 1.0 (andinputweight / 2.0); AndOp->set_bias(-andThreshold); for (int i=0; i<numberofinputsignals; i++){ weights[i] = andinputweight; } AndOp->set_synaptic_weights(weights); mögliche Lösung für OR: double orinputweight = 1.0 / numberofinputsignals; double orthreshold = orinputweight / 2.0); OrOp->set_bias(-orThreshold); for (int i=0; i<numberofinputsignals; i++){ weights[i] = orinputweight; } OrOp->set_synaptic_weights(weights); 14

15 XOR-Aufgabe (Aufgabe 2: Perzeptronen) c) Für den Fall von genau 2 Eingängen: Realisiere einen XOR-Operator unter Einsatz mehrerer Perzeptronen. Lösung: Mind. 2 Perzeptronen zur Erkennung von Teillösungen, mind. 1 Perzeptron zur Kombination der Teillösungen. 15

16 Aufgabe 2: Perzeptronen (5) c) Für den Fall von genau 2 Eingängen: Realisiere einen XOR-Operator unter Einsatz mehrerer Perzeptronen. alle erfolgreich? mögliche Lösung: FL::Perceptron xorul(2), xorlr(2), xorout(2); double bias = -0.25; FL::Vector<double> xulweights(2), xlrweights(2), xoroutweights(2); xulweights[0] = -0.5; xulweights[1] = 0.5; xlrweights[0] = 0.5; xlrweights[1] = -0.5; xoroutweights[0] = 0.5; xoroutweights[1] = 0.5; 16

17 Aufgabe 3: Netz von Perzeptronen Die Verknüpfung mehrerer Perzeptronen zu einem Netz erlaubt die Lösung auch komplexerer Probleme als nur die linear separierbaren. Löse mit Hilfe eines Netzes von mehreren Perzeptronen das dargestellte Klassifikationsproblem (2 diskrete Eingänge, mögliche Werte: {0, 1, 2, 3}). Aufbau der Lösung: 2 Eingaben, das eigentliche Netz von Perzeptronen, pro zu erkennender Klasse je ein x 1 Ausgabe-Perzeptron. x 2 Aufgabe 17

18 Fragen? Labor Wissensrepräsentation 18

19 Literatur Tom Mitchell: Machine Learning. McGraw-Hill, New York, M. Berthold, D.J. Hand: Intelligent Data Analysis. P. Rojas: Theorie der Neuronalen Netze Eine systematische Einführung. Springer Verlag, C. Bishop: Neural Networks for Pattern Recognition. Oxford University Press, Vorlesung Neuronale Netze 2006 : siehe auch Skriptum Ein kleiner Überblick über Neuronale Netze :

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Neuronale Netze Aufgaben

Neuronale Netze Aufgaben Neuronale Netze Aufgaben martin.loesch@kit.edu (0721) 608 45944 C++-Library Flood Open Source Neural Networks Library in C++ verfügbar unter http://www.cimne.com/flood/download.asp Bietet Perzeptronen

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Lösungen zur letzten Stunde & Vorbereitung

Lösungen zur letzten Stunde & Vorbereitung Wiederholung und Vorbereitung: Lösungen zur letzten Stunde & Vorbereitung martin.loesch@kit.edu (0721) 608 45944 Besprechung XOR-Aufgabe Übersicht Besprechung 3-Klassen-Aufgabe Framework für Perzeptron-Lernen

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Neuronale Netze Aufgaben 2

Neuronale Netze Aufgaben 2 Neuronale Netze Aufgaben 2 martin.loesch@kit.edu (0721) 608 45944 Aufgabe 3: Netz von Perzeptronen Die Verknüpfung mehrerer Perzeptronen zu einem Netz erlaubt die Lösung auch komplexerer Probleme als nur

Mehr

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Klassifikation linear separierbarer Probleme

Klassifikation linear separierbarer Probleme Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear

Mehr

Proseminar Neuronale Netze Frühjahr 2004

Proseminar Neuronale Netze Frühjahr 2004 Proseminar Neuronale Netze Frühjahr 2004 Titel: Perzeptron Autor: Julia Grebneva, jg7@informatik.uni-ulm.de Einleitung In vielen Gebieten der Wirtschaft und Forschung, stellen sich oftmals Probleme, die

Mehr

Adaptive Resonance Theory

Adaptive Resonance Theory Adaptive Resonance Theory Jonas Jacobi, Felix J. Oppermann C.v.O. Universität Oldenburg Adaptive Resonance Theory p.1/27 Gliederung 1. Neuronale Netze 2. Stabilität - Plastizität 3. ART-1 4. ART-2 5. ARTMAP

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Adaptive Systeme. Neuronale Netze: Neuronen, Perzeptron und Adaline. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Neuronale Netze: Neuronen, Perzeptron und Adaline. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Neuronale Netze: Neuronen, Perzeptron und Adaline Prof. Dr. rer. nat. Nikolaus Wulff Neuronale Netze Das (menschliche) Gehirn ist ein Musterbeispiel für ein adaptives System, dass sich

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze Vorlesung Künstliche Intelligenz Wintersemester 2008/09 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Eine kleine Einführung in neuronale Netze

Eine kleine Einführung in neuronale Netze Eine kleine Einführung in neuronale Netze Tobias Knuth November 2013 1.2 Mensch und Maschine 1 Inhaltsverzeichnis 1 Grundlagen neuronaler Netze 1 1.1 Kopieren vom biologischen Vorbild...... 1 1.2 Mensch

Mehr

Analyse komplexer Szenen mit Hilfe von Convolutional Neural Networks

Analyse komplexer Szenen mit Hilfe von Convolutional Neural Networks Analyse komplexer Szenen mit Hilfe von Convolutional Anwendungen 1 Vitalij Stepanov HAW-Hamburg 24 November 2011 2 Inhalt Motivation Alternativen Problemstellung Anforderungen Lösungsansätze Zielsetzung

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

Image: (CC-0) Künstliche Intelligenz & Bildung Nicht nur für ExpertInnen

Image:   (CC-0) Künstliche Intelligenz & Bildung Nicht nur für ExpertInnen Image: https://pixabay.com/de/netz-netzwerk-programmierung-3706562/ (CC-0) Künstliche Intelligenz & Bildung Nicht nur für ExpertInnen Künstliche Intelligenz Was ist das überhaupt? Was kann sie (nicht)?

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Das Perzeptron. Volker Tresp

Das Perzeptron. Volker Tresp Das Perzeptron Volker Tresp 1 Einführung Das Perzeptron war eines der ersten ernstzunehmenden Lernmaschinen Die wichtigsten Elemente Sammlung und Vorverarbeitung der Trainingsdaten Wahl einer Klasse von

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze Vorlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der

Mehr

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Mehrere Neuronen, Assoziative Speicher und Mustererkennung Prof. Dr. rer. nat. Nikolaus Wulff Modell eines Neuron x x 2 x 3. y y= k = n w k x k x n Die n binären Eingangssignale x k {,}

Mehr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr Statistische und neuronale Lernverfahren Martin Stetter WS 03/04, 2 SWS VL: Dienstags 8:30-0 Uhr PD Dr. Martin Stetter, Siemens AG Statistische und neuronale Lernverfahren Behandelte Themen 0. Motivation

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze. Was sind künstliche Neuronale Netze?

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze. Was sind künstliche Neuronale Netze? Was sind künstliche Neuronale Netze? Vorlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Künstliche Neuronale Netze sind massiv parallel

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 13. Juli 2011 Ziel der Vorlesung Vermittlung von Grundkenntnissen der Statistik, Simulationstechnik und numerischen Methoden (Algorithmen) Aufgabe:

Mehr

Ein selbstmodellierendes System für die Wasserwirtschaft

Ein selbstmodellierendes System für die Wasserwirtschaft Ein selbstmodellierendes System für die Wasserwirtschaft Dipl.-Ing. Dr. ANDRADE-LEAL Wien, im Juli 2001 1 Einleitung, Motivation und Voraussetzungen Künstliche Intelligenz Neuronale Netze Experte Systeme

Mehr

7. Vorlesung Neuronale Netze

7. Vorlesung Neuronale Netze Soft Control (AT 3, RMA) 7. Vorlesung Neuronale Netze Grundlagen 7. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

KNN für XOR-Funktion. 6. April 2009

KNN für XOR-Funktion. 6. April 2009 KNN für XOR-Funktion G.Döben-Henisch Fachbereich Informatik und Ingenieurswissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de

Mehr

Statistical Learning

Statistical Learning Statistical Learning M. Gruber KW 42 Rev.1 1 Neuronale Netze Wir folgen [1], Lec 10. Beginnen wir mit einem Beispiel. Beispiel 1 Wir konstruieren einen Klassifikator auf der Menge, dessen Wirkung man in

Mehr

Kapitel LF: IV. IV. Neuronale Netze

Kapitel LF: IV. IV. Neuronale Netze Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas LF: IV-39 Machine Learning c

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Proseminar Ausgewählte Themen über Agentensysteme 11.07.2017 Institut für Informatik Selbstorganisierende Karten 1 Übersicht Motivation Selbstorganisierende Karten Aufbau &

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Computational Intelligence I Künstliche Neuronale Netze

Computational Intelligence I Künstliche Neuronale Netze Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund lars.hildebrand@uni-dortmund.de Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien in der Seminar Literaturarbeit und Präsentation 17.01.2019 in der Was können leisten und was nicht? Entschlüsseln von Texten??? Bilderkennung??? in der in der Quelle: justetf.com Quelle: zeit.de Spracherkennung???

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation

Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation Hochdimensionaler Eingaberaum {0,1} Z S quadratisch aufgemalt (zwecks besserer Visualisierung) als Retina bestehend

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Einführungsveranstaltung

INTELLIGENTE DATENANALYSE IN MATLAB. Einführungsveranstaltung INTELLIGENTE DATENANALYSE IN MATLAB Einführungsveranstaltung Überblick Organisation. Literatur. Inhalt und Ziele der Vorlesung. Beispiele aus der Praxis. 2 Organisation Vorlesung/Übung + Projektarbeit.

Mehr

Grundlagen neuronaler Netzwerke

Grundlagen neuronaler Netzwerke AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann enrico@cs.tu-berlin.de) WS 00/03 Timo Glaser timog@cs.tu-berlin.de) 0.. 003 Marco Kunze makunze@cs.tu-berlin.de) Sebastian Nowozin nowozin@cs.tu-berlin.de)

Mehr

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120 Radiale-Basisfunktionen-Netze Rudolf Kruse Neuronale Netze 2 Radiale-Basisfunktionen-Netze Eigenschaften von Radiale-Basisfunktionen-Netzen (RBF-Netzen) RBF-Netze sind streng geschichtete, vorwärtsbetriebene

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Ausarbeitung zum Hauptseminar Machine Learning

Ausarbeitung zum Hauptseminar Machine Learning Ausarbeitung zum Hauptseminar Machine Learning Matthias Seidl 8. Januar 2004 Zusammenfassung single-layer networks, linear separability, least-squares techniques Inhaltsverzeichnis 1 Einführung 2 1.1 Anwendungen

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Einführungsveranstaltung Überblick Organisation Literatur Inhalt und Ziele der Vorlesung Beispiele aus der Praxis 2 Organisation Vorlesung/Übung + Projektarbeit. 4 Semesterwochenstunden.

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Inhalt 1. Warum auf einmal doch? 2. Welche Einsatzgebiete gibt es? 3. Was sind neuronale Netze und wie funktionieren sie? 4. Wie lernen neuronale

Mehr

Artificial Intelligence. Deep Learning Neuronale Netze

Artificial Intelligence. Deep Learning Neuronale Netze Artificial Intelligence Deep Learning Neuronale Netze REVOLUTION Lernende Maschinen Mit lernenden Maschinen/Deep Learning erleben wir aktuell eine Revolution in der Informationsverarbeitung. Neue Methoden

Mehr

Adaptive Systeme. Einführung. Grundlagen. Modellierung. Prof. Rüdiger Brause WS Organisation. Einführung in adaptive Systeme B-AS-1, M-AS-1

Adaptive Systeme. Einführung. Grundlagen. Modellierung. Prof. Rüdiger Brause WS Organisation. Einführung in adaptive Systeme B-AS-1, M-AS-1 Adaptive Systeme Prof. Rüdiger Brause WS 2013 Organisation Einführung in adaptive Systeme B-AS-1, M-AS-1 Vorlesung Dienstags 10-12 Uhr, SR11 Übungen Donnerstags 12-13 Uhr, SR 9 Adaptive Systeme M-AS-2

Mehr

Mustererkennung und Klassifikation

Mustererkennung und Klassifikation Mustererkennung und Klassifikation WS 2007/2008 Fakultät Informatik Technische Informatik Prof. Dr. Matthias Franz mfranz@htwg-konstanz.de www-home.htwg-konstanz.de/~mfranz/heim.html Grundlagen Überblick

Mehr

Intelligente Systeme. Einführung. Christian Moewes

Intelligente Systeme. Einführung. Christian Moewes Intelligente Systeme Einführung Prof. Dr. Rudolf Kruse Christian Moewes Georg Ruß {kruse,russ,cmoewes}@iws.cs.uni-magdeburg.de Arbeitsgruppe Computational Intelligence Institut für Wissens- und Sprachverarbeitung

Mehr

Automatische Spracherkennung

Automatische Spracherkennung Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.

Mehr

Klausur Modellbildung und Simulation (Prof. Bungartz) SS 2007 Seite 1/7

Klausur Modellbildung und Simulation (Prof. Bungartz) SS 2007 Seite 1/7 Klausur Modellbildung und Simulation (Prof. Bungartz) SS 2007 Seite /7 Matrikelnummer: Systeme gewöhnlicher Differentialgleichungen (3 + 3 = 6 Pkt.) Die Abbildung zeigt die Richtungsfelder von drei Differentialgleichungssystemen

Mehr

Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze

Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze Prüfer: Prof.Dr.Johann Boos Datum: 29.08.2001 Dauer: 30min Note: 1.0 So Sie wollten uns was über zweischichtige neuronale Feed-Forward

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Digitale Systeme und Schaltungen

Digitale Systeme und Schaltungen Zusammenfassung meines Vortrages vom 26. Jänner 2017 Digitale Systeme und Schaltungen Andreas Grimmer Pro Scientia Linz Johannes Kepler Universität Linz, Austria andreas.grimmer@jku.at In dieser Zusammenfassung

Mehr

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik.

Personenerkennung. Harald Hauptseminarpräsentation. Harald Kirschenmann. Department Informatik. Department Informatik. Harald Hauptseminarpräsentation Kirschenmann Personenerkennung 1 Inhaltsübersicht Motivation Grundlagen Benchmark Eigene Gesichtserkennung 2 Motivation Baustein einer Microservice Architektur Personenerkennung

Mehr

Konvergenz von Hopfield-Netzen

Konvergenz von Hopfield-Netzen Matthias Jauernig 1. August 2006 Zusammenfassung Die nachfolgende Betrachtung bezieht sich auf das diskrete Hopfield-Netz und hat das Ziel, die Konvergenz des Verfahrens zu zeigen. Leider wird dieser Beweis

Mehr

5. Aufgabenblatt mit Lösungsvorschlag

5. Aufgabenblatt mit Lösungsvorschlag Einführung in Computer Microsystems Sommersemester 2010 Wolfgang Heenes 5. Aufgabenblatt mit Lösungsvorschlag 19.05.2010 Aufgabe 1: Logik, Latch, Register Geben Sie für alle folgen reg-variablen an, ob

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Vorlesung Künstliche Intelligenz Wintersemester 2009/10

Vorlesung Künstliche Intelligenz Wintersemester 2009/10 Vorlesung Künstliche Intelligenz Wintersemester 2009/10 Prof. Dr. Gerd Stumme Dipl.-Inform. Björn-Elmar Macek Vorlesung Dienstag, 10:15 11:45 Uhr, Raum 0443 Beginn: 20.10.2009 Vorlesung Mittwoch 14:00

Mehr

Das Modell von McCulloch und Pitts

Das Modell von McCulloch und Pitts Humboldt Universität Berlin Institut für Informatik Dr. Kock Seminar Künstliche Neuronale Netze Das Modell von McCulloch und Pitts Alexandra Rostin 24..25 SE Künstliche Neuronale Netze Das Modell von McCulloch

Mehr

Strukturiertes Programmieren

Strukturiertes Programmieren Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Informatik Prof. Dr. E.-G. Schukat-Talamazzini http://www.minet.uni-jena.de/fakultaet/schukat/ Prof. Dr. P. Dittrich

Mehr

Kapitel MK:II. II. Wissensrepräsentation

Kapitel MK:II. II. Wissensrepräsentation Kapitel MK:II II. Wissensrepräsentation Wissensrepräsentation in der Klassifikation Symbolisch versus subsymbolisch Problemlösungswissen Kennzeichen von Problemlösungswissen Prinzipien wissensbasierter

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

% ' ' & w 1. x 1 M $ # w = x n. w n.,l,x n. x T = (x 1. x i. w i. Treppenfunktion H (Heavisidefunktion) als Aktivierungsfunktion

% ' ' & w 1. x 1 M $ # w = x n. w n.,l,x n. x T = (x 1. x i. w i. Treppenfunktion H (Heavisidefunktion) als Aktivierungsfunktion Perzeptron (mit Gewichten w 1,..., w n und Schwellwert θ, an dessen Eingänge Werte x 1,...,x n angelegt worden sind) x 1 w 1 θ x n w n Eingabewerte x 1,...,x n (reelle Zahlen, oft zwischen 0 und 1, manchmal

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Seminar K nowledge Engineering und L ernen in Spielen

Seminar K nowledge Engineering und L ernen in Spielen K nowledge Engineering und Lernen in Spielen Neural Networks Seminar K nowledge Engineering und L ernen in Spielen Stefan Heinje 1 Inhalt Neuronale Netze im Gehirn Umsetzung Lernen durch Backpropagation

Mehr

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06 Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas 39 Multilayer-Perzeptrons und

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Bearbeitet von Uwe Lämmel, Jürgen Cleve 4., aktualisierte Auflage 2012. Buch. 336 S. ISBN 978 3 446 42758 7 Format (B x L): 18 x 24,5 cm Gewicht: 717 g Weitere Fachgebiete > EDV,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

Inhaltsverzeichnis. Einführung

Inhaltsverzeichnis. Einführung Inhaltsverzeichnis Einführung 1 Das biologische Paradigma 3 1.1 Neuronale Netze als Berechnungsmodell 3 1.1.1 Natürliche und künstliche neuronale Netze 3 1.1.2 Entstehung der Berechenbarkeitsmodelle 5

Mehr