Einführung in die theoretische Physik 1

Größe: px
Ab Seite anzeigen:

Download "Einführung in die theoretische Physik 1"

Transkript

1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: Jungius 9, Hörs 2 1

2 Mathey Einführung in ie theor. Physik 1 2 Arbeit un Existenz eines Potenzials Wir betrachten ie Newtonsche Bewegungsgleichung m ~r(t) = ~ F (~r(t), ~r(t), t) Wir integrieren m ~r(t) ~r(t) = ~ F (~r(t), ~r(t), t) ~r(t) über t. Linke Seite: Z t t m ~r(t ) ~r(t ) = t Z t t t t m 2 ~r(t ) 2 = T (t) T (t ) wobei T = m 2 ~r 2 ie kinetische Energie ist.

3 Mathey Einführung in ie theor. Physik 1 3 Rechte Seite: Z t t t ~ F (~r(t), ~r(t), t) ~r(t ) = W W ist ie Arbeit, ie von er Kraft an em Teilchen verrichtet wure. Wenn zusätzlich gilt F ~ (~r(t), ~r(t), t) = F ~ (~r(t)), kann man schreiben W = Z t t t ~ F (~r(t), ~r(t), t) ~r(t )= ~F (~r ) ~r W C (~r,~r) Die Arbeit W C (~r,~r) ist unabhängig vom zeitlichen Verlauf er Bewegung, aber abhängig von ~r un ~r un em Weg C. Ein Integral er Form ~F (~r ) ~r über ein beliebiges Vektorfel, heißt Weg-, oer Linien- oer Kurvenintegral.

4 Mathey Einführung in ie theor. Physik 1 4 Zur Berechnung eines Wegintegrals kann man folgenermaßen vorgehen. 1) Parametrisierung es Wegs C, also ~r = ~r( ), mit ~r( )=~r un ~r( 1 )=~r 1, un 2 [, 1]. 2) Man berechne ~F (~r ) ~r =,C ~F (~r( )) ~r Dies ist ein gewöhnliches Integral. Es ist unabhängig von er gewählten Parametrisierung. Beispiel. Sei F ~ (~r) = ( y, x, ) = (,, ) (x, y, z) = ~e z ~r. Der Weg C 1 sei ie geralinige Verbinung von ~r =(,, ) nach ~r =(1, 1, ). Wir parametrisieren ~r =(,, ) + (1, 1, ). Darum: ~r( ) =(1, 1, ).

5 Mathey Einführung in ie theor. Physik 1 5 Dann gilt ~F (~r ) ~r = =,C ~F (~r( )) ~r (,, ) (1, 1, ) = Beispiel. Der Weg C 2 gehe von ~r =(,, ) nach ~r =(1, 1, ), entlang er Parabel y = x 2. Wir parametrisieren ~r =(, 2, ). =(1, 2, ). Dann gilt Dann: ~r( ) ~F (~r ) ~r = = ( ( 2,, ) (1, 2, ) ) = = /3 Also ist as Wegintegral i.a. abhängig vom Weg C, nicht nur von en Enpunkten.

6 Mathey Einführung in ie theor. Physik 1 6 Eigenschaften es Wegintegrals. Linearität: ( 1 ~ F1 (~r )+ 2 ~ F2 (~r )) ~r = 1 ~F 1 (~r ) ~r + 2 ~F 2 (~r ) ~r Aitivität: 2 1 +C 2 ~ F (~r ) ~r = Wegintegrale sin gerichtet: 1 1 ~ F (~r ) ~r + 2 ~r 1,C 2 ~ F (~r ) ~r 1 ~F (~r ) ~r = ~r 1, C ~F (~r ) ~r

7 Mathey Einführung in ie theor. Physik 1 7 Wegintegral entlang einer geschlossenen Kurve, also ~r 1 = ~r. I ~F (~r ) ~r = ~F (~r ) ~r C (unabhängig von ~r ) Beispiel. F ~ (~r) = ( y, x, ). C sei ein Kreis um ~, mit Raius R, un positiv orientiert. Parametrisierung ~r( ) = R(cos, sin, ). Wir wählen als Anfangspunkt er Parametrisierung ~r( = ) = (R,, ). Dann ist ~r =( R sin, R cos, ). Also: I C ~F (~r ) ~r = = Z 2 Z 2 ~F (~r( )) ~r = 2 R 2 6= ( R sin, R cos, ) ( R sin, R cos, )

8 Mathey Einführung in ie theor. Physik 1 8 Arbeit eines konservativen Kraftfeles Für ie an einem Teilchen verrichtete Arbeit W C (~r,~r) = ~F (~r ) ~r gilt: W C (~r,~r) =T (t 1 ) T (t ),.h. ie Arbeit entspricht er Di erenz er kinetischen Energie. Wir nehmen nun an, ass ~ F (~r) konservativ ist,.h. es existiert ein skalares Fel V (~r), so ass ~F (~r) = rv (~r). Dann gilt für jeen Weg C: = W C (~r,~r) = ~F (~r ) ~r = rv (~r( )) ~r( ) = ~F (~r( )) ~r( ) V (~r( )) = V (~r ) V (~r 1 )

9 Mathey Einführung in ie theor. Physik 1 9 Also gilt für eine konservative Kraft, ass ie verrichtete Arbeit wegunabhängig ist, W C (~r 1,~r )= W (~r 1,~r )=V (~r ) V (~r 1 ) Weil auch gilt W (~r 1,~r )=T (~r 1 ) T (~r ), ist E = T (t)+v (~r(t)) eine Erhaltungsgröße. Beispiel. Die Gravitationskraft er Sonne ist konservativ. Daher ist ie von er Gravitationskraft verrichtete Arbeit für jeen geschlossenen Weg null. Existenz eines Potenzials. Wie urch ie Definition gegeben, beeutet, ass wenn ~ F (~r) konservativ ist, ass ein Potenzial existiert, essen Graient ~ F ist. Wie oben gezeigt, folgt araus, ass jees Wegintegral nur von en Enpunkten abhängt, un nicht vom Weg. Wir zeigen jetzt ie Umkehrung: Wenn jees Wegintegral R C ~ F (~r)~r wegunabhängig ist, ann ist ~ F (~r) konservativ.

10 Mathey Einführung in ie theor. Physik 1 1 Beweis. Wir wählen einen Ursprung ~r un efinieren V (~r) = ~r ~ F (~r ) ~r Diese Definition is wohlefiniert, a as Wegintegral nach Definition nicht vom Weg C abhängt. Jetzt ist zu zeigen, ass rv (~r) = ~ F (~r). (~r) = lim x! = lim x! 1x 1 + ~r F ~ (~r ) ~r x ~r + ~r ~r ~F (~r ) ~r F ~ (~r ) ~r ~r wobei ~r =( x,, ).

11 Mathey Einführung in ie theor. Physik 1 11 Wir parametrisieren en Weg: ~r( )=~r + ~r, mitapple apple 1. Mit ~r =( x,, ) (~r) = lim x! = lim x! 1 x ~F (~r + ~r) ( x,, ) F x (~r + ~r) = F x (~r) = F x (~r) Dasselbe (~r) gezeigt weren. qe. Damit haben wir jetzt ein Kriterium für ie Existenz eines Potenzials: Jees Wegintegral hängt nur von en Enpunkten ab. Dieses Kriterium ist aber im allgemeinen umstänlich anzuwenen. Als nächstes geben wir ein Kriterium an, as nur auf Di erentiation es Feles beruht.

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 5 29. April 2010 Kapitel 7. Integralrechnung in mehreren Veränderlichen (Fortsetzung) Kurvenintegral über geschlossene Kurven Abschließend sei noch

Mehr

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei

Mehr

und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion abhängig,

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9 Prof. Rolan Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 9 Aufgabe 1: Eine Isometrie eines metrischen Raums X ist eine Abbilung f :

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Linien- oder Kurvenintegrale

Linien- oder Kurvenintegrale Linien- oder Kurvenintegrale 1-E Einführendes Beispiel Abb. 1-1: Zum Begriff der Arbeit einer konstanten Kraft Wir führen den Begriff eines Linien- oder Kurvenintegrals am Beispiel der physikalischen Arbeit

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014 Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 24 Dr. Sebastian ieel 2. Juli 24 Klausur Mathematik II für Wirtschaftswissenschaftler Name:.......................................

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Gegeben ein physikalisches System, das sich idealisieren läßt als. Massenpunkt + darauf wirkende (resultierende) Kraft.

Gegeben ein physikalisches System, das sich idealisieren läßt als. Massenpunkt + darauf wirkende (resultierende) Kraft. Das Ergebnis er bisherigen Überlegungen zu Mechanik sieht wie folgt aus: Gegeben ein physikalisches Syste, as sich iealisieren läßt als Massenpunkt + arauf wirkene (resultierene) Kraft. Für ein solches

Mehr

Linien- oder Kurvenintegrale: Aufgaben

Linien- oder Kurvenintegrale: Aufgaben Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: 23.10.12 Jungius 9, Hörs 2 1 Organisatorisches Vorlesung am 1.11.: wird dankenswerterweise

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen).

Dem Wettstreit zwischen beiden Bestrebungen trägt die Freie Energie Rechnung (bei konstanter Temperatur und konstantem Volumen). Jees ystem strebt zwei Zielen entgegen:.) Minimum er Energie.) Maximum er Entropie Minimum er pot. Energie Maximum er Entropie atsächliche erteilung: Minimum er reien Energie Dem Wettstreit zwischen beien

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MVT/D-MTL nalysis II FS 8 Dr. nreas Steiger Lösung - Serie MC-ufgaben (Online-bgabe). Es sei ie Einheitskugel um en Ursprung. Für welches er Vektorfeler (x, y, z) v(x, y, z) arf er Divergenzsatz für

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

Musterlösung Analysis 3 - Funktionentheorie

Musterlösung Analysis 3 - Funktionentheorie Musterlösung Analysis 3 - Funktionentheorie 3. Mär Aufgabe : Zum Aufwärmen (i) Betrachte ie Lauranterlegung von f : C C, f() = sin un eige mit Hilfe er Zerlegung, ass ie Singularität bei = hebbar ist.

Mehr

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3 H. van Hees Sommersemester 218 Übungen zur Theoretischen Physik 2 für as Lehramt L3 Blatt 3 Aufgabe 1: Vektorproukt Im Manuskript haben wir as Vektorproukt zweier Vektoren a un b geometrisch efiniert.

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

Übungen zum Mathematischen Vorkurs

Übungen zum Mathematischen Vorkurs Übungen Sommersemester 4 - Übungsblatt Aufgabe. Vereinfachen Sie folgene reelle Funktionen un Ausrücke un zeichnen Sie iese: Überlegen Sie sich, ob sie abei en Definitionsbereich veränern. a) cos(φ) tan(φ)

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,

Mehr

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Prof. Dr. Schön un Dr. Eschrig Wintersemester 004/005 Aufgabe 38 6 Punkte Für ϕ = 0 gilt: e ϑ = e x cos ϑ e z sin ϑ un e r = e x sin ϑ + e z cos

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

Mathematik 1. Klausur am 12. Februar 2018

Mathematik 1. Klausur am 12. Februar 2018 Mathematik 1 Klausur am 12. Februar 218 Aufgabe 1 (13 Punkte. Entscheien Sie, ob folgene Aussagen wahr oer falsch sin. Achtung: Für jee richtige Antwort erhalten Sie einen Punkt, für jee falsche Antwort

Mehr

Theorie B: Klassische Mechanik

Theorie B: Klassische Mechanik Theorie B: Klassische Mechanik Kirill Melnikov TTP KIT Einführung Alle Informationen zu dieser Veranstaltung finden Sie auf http://www.ttp.kit.edu/courses/ss018/theob/start Vorlesungen: Freitags, 9.45-11.15

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Potential. Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1

Potential. Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1 Potential Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1 Potential Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Für ein solches Gradientenfeld

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1 Prof.. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physi 2 Lösungen zu Blatt 1 Aufgabe 1: Differentialoperatoren der Vetoranalysis (a) Aus der Definition des Nabla-Operators folgt

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt

Übungen zur Ingenieur-Mathematik III WS 2017/2018 Blatt Übungen zur Ingenieur-Mahemaik III WS 7/8 Bla 7..7 Aufgabe 9: Berechnen Sie ie Länge zweier Kurven auf er Eroberfläche (im Kugelmoell, ie S. Peersburg ( N, O mi Anchorage in Alaska ( N, 5 W verbinen. Lösung:

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Algorithmen für Planare Graphen Übung am

Algorithmen für Planare Graphen Übung am Algorithmen für Planare Graphen Übung am 02.05.2017 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität es Lanes Baen-Württemberg un Algorithmen nationales Forschungszentrum

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1.

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1. Florian Niederreiter Karolina Stoiber Ferienkurs Analysis für Physiker SS 15 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

1. Haupttest (16. Dezember 2011) Gruppe bunt (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet

1. Haupttest (16. Dezember 2011) Gruppe bunt (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet Institut für Analysis und Scientific Computing WS / O. Koch P R A K T I S C H E M A T H E M A T I K I F Ü R T P H. Haupttest (6. Dezember ) Gruppe bunt (mit Lösung ) FAMILIENNAME Vorname Studium / MatrNr

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

9 Konvexe Funktionen, Stütz- und Distanzfunktion

9 Konvexe Funktionen, Stütz- und Distanzfunktion U BREHM: Konvexgeometrie 9-9 Konvexe Funktionen, Stütz- un Distanzfunktion Definition: Sei K IR, f : K IR eine Abbilung f heißt konvex, wenn K konvex ist un für alle x, y K un alle, gilt f( x( ) y) f(

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

n a k (a 1 1) a k a k a 1 (mod n) gilt, erhalten wir für jeden Index i = 1,..., k 1

n a k (a 1 1) a k a k a 1 (mod n) gilt, erhalten wir für jeden Index i = 1,..., k 1 Aufgabe 1 Es seien n un k positive ganze Zahlen mit k 2. Ferner seien a 1,...,a k paarweise verschieene ganze Zahlen aus er Menge {1,..., n} erart, ass n ie Zahl a i (a i+1 1) für jees i = 1,...,k 1 teilt.

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 4 08.11.01 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nena Balanesković Die Lagrange Methoe zweiter Art, Symmetrien un Erhaltungsgrößen 1. y r x Gegeben sei

Mehr

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze U BREHM: Konvegeoetrie 3-1 3 Trennungs- un Stützeigenschaften, sowie eleentare Hilfssätze Zunächst einige Hilfssätze, in enen Begriffe aus er Konveität it topologischen Eigenschaften zusaengebracht weren

Mehr

A: Präsenzaufgaben am 4. Dezember Taylorreihen. Wahr oder falsch: Die Taylorreihe einer beliebigen Polynomfunktion R! R, x 7! p an,...

A: Präsenzaufgaben am 4. Dezember Taylorreihen. Wahr oder falsch: Die Taylorreihe einer beliebigen Polynomfunktion R! R, x 7! p an,... Übungen zu 65-84: Mathematik I für Stuierene er Holzwirtschaft un Geowissenschaften (Elementare Analysis), Universität Hamburg, Wintersemester 25, Übung 7 Fachbereich Mathematik, Dr. Peter Heinig A: Präsenzaufgaben

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://www-m5.ma.tum.de/allgemeines/ma923 216S Sommersem. 216 Lösungsblatt 3 (29.4.216)

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

7 Anwendungen der Linearen Algebra

7 Anwendungen der Linearen Algebra 7 Anwenungen er Linearen Algebra 7.1 Extremwertaufgaben mit Nebenbeingungen Bemerkung 7.1. Wir behaneln as Problem: Gegeben ist eine zweimal stetig ifferenzierbare Funktion f : R n R un ein stetig ifferenzierbares

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Theorie A (WS2005/06) Musterlösung Übungsblatt

Theorie A (WS2005/06) Musterlösung Übungsblatt Theorie A (WS2005/06) Musterlösung Übungsblatt 3 0.02.06. Stammfunktionen: dx sin(x) = cos(x), dx x = 2(x) 3/2, 2. Partielle Integration: dxu(x) v (x) = u(x) v(x) dx cos(x) = sin(x), dxx n = n + x(n+)

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

da U E d W. Stark; Berufliche Oberschule Freising W12 U12

da U E d W. Stark; Berufliche Oberschule Freising  W12 U12 .4 Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators n ie positive Platte eins Konensators, er mit einer Stromquelle er Spannung verbunen ist, wir ein zunächst elektrisch neutrales

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie 38 KAPITEL. DYNAMIK EINES MASSENPUNKTES.3 Arbeit und Energie Wenn sich ein Massenpunkt in einem Kraftfeld bewegt so wird er entweder beschleunigt oder abgebremst. Man sagt auch an ihm wird vom Kraftfeld

Mehr

Technisches Lemma aus der Linearen Algebra

Technisches Lemma aus der Linearen Algebra echnisches Lemma aus er Linearen Algebra Lemma. Sei t A(t) Mat(n, n) eine glatte, matrixwertige Funktion auf em Intervall ( ε,ε), welche A(t) = I erfülle. Dann gilt: t et(a(t)) t=0 = trace(ȧ(0)). Beispiel.

Mehr

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden.

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden. Vektoranalysis Begriffe Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte 2D) verwenden. Ein Skalarfeld f = fx, y, z) ist

Mehr

14 Erhaltungssätze und das Variationsprinzip

14 Erhaltungssätze und das Variationsprinzip 14 Erhaltungssätze un as Variationsprinzip 14.1 Globale Erhaltungssätze Bisher haben wir nur Variationen es Wirkungsintegrals betrachtet, ie ie Werte er Freiheitsgrae (r, v, φ, A) an en Enpunkten es Zeitintegrals

Mehr

2. Schulaufgabe aus der Mathematik 12WC

2. Schulaufgabe aus der Mathematik 12WC M. Knobel. Schulaufgabe aus er Mathematik WC 3..07 S_A7_WC_A703.mc.0 Gegeben ist ie Funktionenschar f : x--> f k k ( x) mit f k ( x) = x 4 k + k mit k R. Berechnen Sie f k ( x) f k ( x) un folgern Sie

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

Stabile periodische Bewegungen (Grenzzyklen)

Stabile periodische Bewegungen (Grenzzyklen) Stabile periodische Bewegungen (Grenzzyklen) 1. Nichtlineare Systeme mit zwei Gleichungen Prinzipiell neu: Alle Systeme mit mindestens 2 unabhängigen DGL können als Lösungen geschlossene Kurven im Phasenraum

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr