Grundlagen der Rechnerarchitektur

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Rechnerarchitektur"

Transkript

1 Grundlagen der Rechnerarchitektur Prozessor

2 Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2

3 Datenpfad einer einfachen MIPS CPU Grundlagen der Rechnerarchitektur Prozessor 3

4 Ziel Konstruktion des Datenpfads einer einfachen MIPS CPU als Blockschaltbild. Die CPU hat 32 Register und soll folgende MIPS Instruktionen realisieren: Instruktionen für Speicherzugriff: lw,, sw lw $s1, 4($s2) # $s1 = Memory[$s2+4] sw $s1, 4($s2) # Memory[$s2+4] = $s1 Arithmetisch logische Instruktionen: add, sub, and, or, slt add $s0, $s1, $s2 # $s0 = $s1 + $s2 slt $s0, $s1, $s2 # $s0 = ($s1<$s2)? 1 : 0 Branch Instruktion: beq beq $s1, $s2, 4096 # $pc = $pc <<2, wenn $s1=$s2 Grundlagen der Rechnerarchitektur Prozessor 4

5 Datenpfad einer einfachen MIPS CPU Erster Abschnitt des Datenpfades fd Grundlagen der Rechnerarchitektur Prozessor 5

6 Benötigte Bausteine Speicherbaustein in dem die abzuarbeitenden Instruktionen stehen. Instruction Address ist 32 Bit groß. Wenn an den Leitungen Instruction Address eine Adresse anliegt, liegt im nächsten Taktzyklus eine 32 Bit lange Instruktion auf den Instruction Leitungen. Register in dem der Programm Counter steht. Hier steht die Adresse der nächsten abzuarbeitenden Instruktion. Eine ALU, die fest auf die Funktion Addieren verdrahtet ist. Mit dieser ALU wird der Program Counter in 4er Schritten erhöht, um auf die nächste folgende Instruktion zu zeigen. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Logik und Arithmetik 6

7 Erster Schritt der Instruktionsausführung Mit dem neuen Clock Signal passiert folgendes: Instruction Fetch: Lag der Program Counter Wert seit dem letzten Clock Signal am Instruction Memory an, erscheint mit dem nächsten Clock Signal die nächste auszuführende Instruktion an der Instruction Leitung. Program Counter erhöhen: Damit der Speicher schon mit dem Bereitstellen der nächsten Instruktion beginnen kann, wird der Program Counter direkt zu Beginn der Instruktionsabarbeitung auf die nächste abzuarbeitende Instruktion gesetzt. Grundlagen der Rechnerarchitektur Prozessor 7

8 Das Blockschaltbild dazu Grundlagen der Rechnerarchitektur Prozessor 8

9 Datenpfad einer einfachen MIPS CPU Arithmetische Logische h h Operationen Grundlagen der Rechnerarchitektur Prozessor 9

10 Betrachten zunächst R Typ Instruktionen Erinnerung, Instruktionen vom R Typ Format: opcode src1 src2 dest shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ (Register Typ) Solche Instruktionen machen immer folgendes: Lese zwei Register (src1 und src2) Führe eine ALU Operation darauf aus Schreibe Ergebnis zurück in ein Register (dest) Alle hier zu realisierenden arithmetisch logischen Instruktionen (d.h. add,, sub,, and,, or,, slt) ) sind R Typ Instruktionen. Zum Speichern der Registerinhalte und zur Durchführung der Rechenoperationen benötigen wir zwei weitere Bausteine. Grundlagen der Rechnerarchitektur Prozessor 10

11 Register File und ALU Auf den Read Data Leitungen liegen die 32 Bit Inhalte der Die ALU rechnet auf 32 Register, die den 5 Bit Read Register Inputs entsprechen. Bit Werten. Die ALU Ein Register File Fileistwesentlichist schneller als der Speicher. Operation wirdüber die Daten liegen in einem Instruktionszyklus unmittelbar auf 4 Bit ALU Operationden Read Data Leitungen vor. In einem Taktzyklus Leitungen gewählt; überschriebener Registerinhalt ist erst im darauf hierzu später mehr. Die folgenden auf den Read Data Leitungen sichtbar. Zero Leitung ist 0, wenn Zum Schreiben in ein Register müssen die Daten auf den das ALU Ergebnis 0 Write Data Leitungen vorliegen und die RegWrite Leitung ergab. muss aktiv sein. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 11

12 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 12

13 Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13

14 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format: opcode reg1 reg2 Offset 6 Bit 5 Bit 5 Bit 16 Bit I Typ (Immediate Typ) beq Instruktion macht immer folgendes: Ziehe zwei Register voneinander ab (reg1 und reg2) Wenn das Ergebnis ungleich 0: nächste Instruktion ist bei PC+4 Wenn das Ergebnis gleich 0 : Sign Extension von 16 Bit Offset auf 32 Bit Zahl x x = 4*x (lässt sich durch ein Links Shift von 2 erreichen) nächste Instruktion ist bei PC+4+x Berechnung reg1 reg2 ist durch den Datenpfad schon realisiert. Für den Rest brauchen wir noch zwei neue Bausteine: Grundlagen der Rechnerarchitektur Prozessor 14

15 Sign Extend und Shift Left 2 k Sign Extend n Shift Left 2 Vorzeichenbehaftetes Ausweiten von k auf n Leitungen (z.b. 16 auf 32). Links oder Rechts Shift von Leitungen (z.b. Shift Left 2) Grundlagen der Rechnerarchitektur Logik und Arithmetik 15

16 Wir müssen außerdem eine Auswahl treffen Wenn die aktuelle Instruktion ein beq ist, dann berechne den PC nach vorhin beschriebener Vorschrift. Wenn die Instruktion kein beq ist, dann bestimme den PC wie bisher gehabt; also PC=PC+4. Zum Treffen von Auswahlen brauchen wir eine weiteren Bausteintyp: t Grundlagen der Rechnerarchitektur Prozessor 16

17 Multiplexer A B A B A 1 A 2 A 3 A 4 Select 0 Mux 1 Select 0 Mux 1 Select Mux 32 C Für ein Bit C Für n Bit (z.b. 32 Bit) C Für n Bit Select (z.b. 2 Bit) C = A, wenn Sl Select = 0 C = A 0, wenn Select = 00 C = B, wenn Select = 1 C = A 1, wenn Select = 01 C = A 2 2, wenn Select = 10 C = A 3, wenn Select = 11 Grundlagen der Rechnerarchitektur Logik und Arithmetik 17

18 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 18

19 Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19

20 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format: opcode reg1 reg2 Offset 6 Bit 5 Bit 5 Bit 16 Bit I Typ (Immediate Typ) Die Adresse des Speicherzugriffs berechnet sich wie folgt: Sign Extension von 16 Bit Offset auf 32 Bit Zahl x Adressse ist Inhalt von reg1 + x Hierzu werden wir vorhandene ALU und Sign Extend mitbenutzen Der Speicherinhalt wird dann bei lw in Register reg2 geschrieben bei sw mit Registerinhalt von reg2 überschrieben Zur Vereinfachung trennen wir im Folgenden den Speicher der Instruktionen vom Speicher der Daten. Letzterer ist wie folgt: Grundlagen der Rechnerarchitektur Prozessor 20

21 Datenspeicher Speicherbaustein in dem die Daten liegen. Address, Write Data und Read Data sind 32 Bit groß. In keinem Taktzyklus wird gleichzeitig gelesen und geschrieben. Schreiben oder lesen wird über Signale an MemWrite und MemRead durchgeführt. Der Grund für ein MemRead ist, dass sicher gestellt sein muss, dass die anliegende Adresse gültig ist (mehr dazu im Kapitel Speicher). Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 21

22 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 22

23 Eine Übung zum Abschluss Wie lässt sich das Blockschaltbild des Datenpfads erweitern, sodass auch die MIPS Instruktion j unterstützt wird? Zur rerinnerung: ng j 4096 # $pc = 4096<<2 + oberste vier # Bit von $pc Grundlagen der Rechnerarchitektur Prozessor 23

24 Control einer einfachen MIPS CPU Grundlagen der Rechnerarchitektur Prozessor 24

25 Ziel Bisher hb haben wir ldilihd lediglich den Dt Datenpfad fdeiner einfachen MIPS CPU entworfen. Die Steuerleitungen der einzelnen Bausteine zeigen noch ins Leere. Jetzt wollen wir festlegen, wann zur Abarbeitung unsere Instruktionen (d.h. lw, sw,add, sub, and, or, slt,beq ) welche Steuerleitung an oder aus sein sollen. Den Baustein der das macht, nennt man Control Control. Wir trennen die Control in zwei Teile: ALU Control: Legt für jeden Befehl die die ALU Operation fest. Main Unit Contol: Legt für jeden Befehl die übrigen Stuerleitung fest Wir verwenden auf den nächsten Folien die folgende Terminologie: Steuerleitung an: asserted Steuerleitung aus: deasserted Grundlagen der Rechnerarchitektur Prozessor 25

26 Control einer einfachen MIPS CPU ALU Control Grundlagen der Rechnerarchitektur Prozessor 26

27 Vorüberlegung: Die passenden ALU Funktionen Control Eingänge der betrachteten ALU Für Load und Store Instruktionen lw, sw brauchen wir die ALU Funktion add. Für die arithmetisch logischen Instruktionen add, sub, and, or, slt brauchen wir die entsprechende passende ALU Funktion. Für die Branch Instruktion beq brauchen wir die ALU Funktion sub. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 27

28 Vorüberlegung: die Instruktionsformate (I-type) (I-type) Wenn der Wert von Bit31bis 26in der gefetchten Instruktion gleich 0: arithmetisch logische Instruktion (d.h. add,sub,and,or,slt). Die Funktion ist mit dem Wert von Bit 5 bis 0 festgelegt. 35 oder 43: Load bzw. Store Instruktion (d.h. lw, sw). 4: Branch Instruktion (d.h. beq). ) Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 28

29 Eingabe ALUOp in Abhängigkeit des Instruktionstyps 5 Bit Funct Field der Instruktion ALU Control ALU Control Ausgabe Belegung der ALU Steuerleitungen, so dass die ALU die richtigen ALU Operation ausführt. Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 29

30 In einer Wahrheitstabelle zusammengefasst 0 0 Eingabe Ausgabe Daraus lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem ALU Control Symbol abstrakt darstellen. ALUOp Instruction[5:0] (also das Funct Field Field der Instruktion) ALU Control ALU Operation Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 30

31 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 31

32 Control einer einfachen MIPS CPU Main Unit Control Grundlagen der Rechnerarchitektur Prozessor 32

33 Opcode bestimmt Steuerleitungsbelegungen Eingabe: Instruction [31 26] Ausgabe Instruction RegDst ALUSrc R format (0) lw (35) sw (43) beq (4) Memto Reg Reg Write Mem Read Mem Write Branch ALU Op1 ALU Op0 Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 33

34 Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also: das Opcode Field der Instruktion) Control RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite Grundlagen der Rechnerarchitektur Prozessor 34

35 Erweiterung des Blockschaltbilds Grundlagen der Rechnerarchitektur Prozessor 35

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 4 Prozessor Einzeltaktimplementierung Lothar Thiele Computer Engineering and Networks Laboratory Vorgehensweise 4 2 Prinzipieller Aufbau Datenpfad: Verarbeitung und Transport von

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Datapath. Data Register# Register# PC Address instruction. Register#

Datapath. Data Register# Register# PC Address instruction. Register# Überblick über die Implementation Datapath Um verschiedene Instruktionen, wie MIPS instructions, interger arithmatic-logical instruction und memory-reference instructions zu implementieren muss man für

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74

Data Hazards. Grundlagen der Rechnerarchitektur Prozessor 74 Data Hazards Grundlagen der Rechnerarchitektur Prozessor 74 Motivation Ist die Pipelined Ausführung immer ohne Probleme möglich? Beispiel: sub $2, $1, $3 and $12, $2, $5 or $13, $6, $2 add $14, $2, $2

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Prinzipieller Aufbau und Funktionsweise eines Prozessors

Prinzipieller Aufbau und Funktionsweise eines Prozessors Prinzipieller Aufbau und Funktionsweise eines Prozessors [Technische Informatik Eine Einführung] Univ.- Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Logische Bausteine Addierwerke Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Addition eines einzigen Bits Eingang Ausgang a b CarryIn CarryOut Sum 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1

Mehr

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag. Übung Technische Grundlagen der Informatik II Sommersemester 29 Aufgabe.: MIPS-Kontrollsignale Für die 5 Befehlstypen a) R-Format

Mehr

28. März Name:. Vorname. Matr.-Nr:. Studiengang

28. März Name:. Vorname. Matr.-Nr:. Studiengang Klausur 28. März 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33 Weitere Arithmetik Grundlagen der Rechnerarchitektur Assembler 33 Die speziellen Register lo und hi Erinnerung: ganzzahliges Produkt von zwei n Bit Zahlen benötigt bis zu 2n Bits Eine MIPS Instruktion

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Grundzüge der Informatik II

Grundzüge der Informatik II Grundzüge der Informatik II Kapitel 4: Realisierung von Rechen- und Steuerwerk (2. Teil) Prof. Dr. Oskar von Stryk Fachgebiet Simulation und Systemoptimierung TU Darmstadt Skript: Patterson/Hennessy, Chapter

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Rechnerstrukturen 1: Der Sehr Einfache Computer

Rechnerstrukturen 1: Der Sehr Einfache Computer Inhaltsverzeichnis 1: Der Sehr Einfache Computer 1 Komponenten.................................... 1 Arbeitsweise..................................... 1 Instruktionen....................................

Mehr

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller SS 2004 VAK 18.004 Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller Aufgabenblatt 2.5 Lösung 2.5.1 Befehlszähler (Program Counter, PC) enthält Adresse des nächsten auszuführenden

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Befehlsverarbeitung in einem Prozessor Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Instruktionsformate in 07 Maximaler

Mehr

1 Rechnerstrukturen 1: Der Sehr Einfache Computer

1 Rechnerstrukturen 1: Der Sehr Einfache Computer David Neugebauer, Informationsverarbeitung - Universität zu Köln, Seminar BIT I Inhaltsverzeichnis 1 Rechnerstrukturen 1: Der Sehr Einfache Computer 1 1.1 Komponenten................................. 1

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

H E F B G D. C. DLX Rechnerkern

H E F B G D. C. DLX Rechnerkern C. DLX Rechnerkern C.1. Einordnung DLX Architektur und Konzepte: Einfache "Gesamtzyklus"-DLX Maschine (non-pipelined), Verarbeitungsschritte einer Instruktion, Taktverhalten im Rechner, RISC & CISC...

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 8 Datum: 30. 11. 1. 12. 2017 In dieser Übung soll mit Hilfe des Simulators WinMIPS64 die

Mehr

a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF

a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF ITS Teil 2: Rechnerarchitektur 1. Grundschaltungen der Digitaltechnik a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF b. Zähler (Bsp. 4-Bit Zähler) - Eingang count wird zum Aktivieren

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Mikrocomputertechnik Bernd-Dieter Schaaf Mit Mikrocontrollern der Familie 8051 ISBN 3-446-40017-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40017-6 sowie im Buchhandel

Mehr

ALU / Adder. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

ALU / Adder. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 ALU / Adder Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 ALU / Adder 1/34 2012-02-29 ALU Die Arithmetic-/Logic-Unit ( ALU

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

Aufgabenblatt 7. Es sind keine Abgaben mit mehreren Namen oder Kopien von Abgaben anderer erlaubt

Aufgabenblatt 7. Es sind keine Abgaben mit mehreren Namen oder Kopien von Abgaben anderer erlaubt Aufgabenblatt 7 Wichtige Hinweise: Bitte Namen und Gruppennummer deutlich lesbar rechts oben auf allen Blättern der Abgabe angeben und alle Blätter der Abgabe zusammenheften (1 Zusatzpunkt!) Es sind keine

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

Mikroprozessortechnik Grundlagen 1

Mikroprozessortechnik Grundlagen 1 Grundlagen - Grundbegriffe, Aufbau, Rechnerarchitekturen, Bus, Speicher - Maschinencode, Zahlendarstellung, Datentypen - ATMELmega28 Progammierung in C - Vergleich C und C++ - Anatomie eines µc-programmes

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz.

Hier: Soviele Instruktionen wie möglich sollen in einer Zeiteinheit ausgeführt werden. Durchsatz. Pipelining beim DLX 560 Prozessor Pipelining : Implementierungstechnik Vielfältig angewendet in der Rechnerarchitektur. Pipelining macht CPUs schnell. Pipelining ist wie Fließbandverarbeitung. Hintereinanderausführung

Mehr

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 -

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikrocomputertechnik Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikroprozessor-Achritekturen Folie 2 Mikroprozessor-Achritekturen Klassifizierung anhand Wortbreite CPU-Architektur und Busleitungen

Mehr

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Fachschaft Informatik Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Michael Steinhuber König-Karlmann-Gymnasium Altötting 9. Februar 2017 Folie 1/36 Inhaltsverzeichnis I 1 Komponenten eines PCs

Mehr

Synchronisation. Grundlagen der Rechnerarchitektur Assembler 91

Synchronisation. Grundlagen der Rechnerarchitektur Assembler 91 Synchronisation Grundlagen der Rechnerarchitektur Assembler 91 Data Race Prozessor 1: berechne x = x + 2 lw $t0, 0($s0) # lade x nach $t0 addi $t0, $t0, 2 # $t0 = $t0 + 2 sw $t0, 0($s0) # speichere $t0

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

Microcomputertechnik

Microcomputertechnik Microcomputertechnik mit Mikrocontrollern der Familie 8051 Bearbeitet von Bernd-Dieter Schaaf 2. Auflage 2002. Buch. 230 S. Hardcover ISBN 978 3 446 22089 8 Format (B x L): 16 x 22,7 cm Gewicht: 407 g

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 3 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Rechnerstrukturen Sommersemester 2003

Rechnerstrukturen Sommersemester 2003 9. Übung Ausgabe Abgabe 08.07.03 16.-18.07.03 Bei Fragen und Problemen können Sie uns per E-mail unter den folgenden Adressen erreichen: Mesut Güneş guenes@informatik.rwth-aachen.de Ralf Wienzek wienzek@informatik.rwth-aachen.de

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung : Mikroprozessoren, Pipelining, Cache 183.579, SS01 Übungsgruppen: Do., 10.05. Mi., 1.05.01 Aufgabe 1: Stack Funktionsweise eines Stacks Erläutern Sie die

Mehr

, 2014W Übungsgruppen: Mo., Mi.,

, 2014W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 5: ikroprozessor (icro16) 183.579, 2014W Übungsgruppen: o., 01.12. i., 03.12.2014 Aufgabe 1: Schaltwerksentwicklung Hexapod / Teil 2 a) Befüllen Sie die untenstehende

Mehr

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 14. Okt. 2015 Computeraufbau: nur ein Überblick Genauer: Modul Digitale Systeme (2. Semester) Jetzt: Grundverständnis

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 21. Februar 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Aufgabe 1: Sie haben in der Vorlesung einen hypothetischen Prozessor kennen

Mehr

Technischen Informatik I, WS 2004/05

Technischen Informatik I, WS 2004/05 PHILIPPS-UNIVERSITÄT MARBURG Fachbereich Mathematik und Informatik Prof Dr R Loogen, Dipl-Inform J Beringer D-3532 Marburg Hans-Meerwein-Straße Lahnberge Klausur zur Technischen Informatik I, WS 24/5 3

Mehr

Assembler Integer-Arithmetik

Assembler Integer-Arithmetik Assembler Integer-Arithmetik Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Integer-Arithmetik 1/23 2008-04-01 Arithmetik

Mehr

F Ein einfacher Modellprozessor

F Ein einfacher Modellprozessor F ein einfacher Modellprozessor F Ein einfacher Modellprozessor Einordnung in das Schichtenmodell:. Prozessor 2. Aufbau des Modellprozessors 3. Organisation eines SRAM 4. Beschreibung in RTL 5. Adresspfad

Mehr

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ]

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ] 2.1.2 Behandlung von Unterbrechungen (Interrupts) Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S. 582-585] t 1 : MAR (PC) t 2 : MBR Memory[MAR] PC

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Grundlagen der Rechnerarchitektur. Ein und Ausgabe

Grundlagen der Rechnerarchitektur. Ein und Ausgabe Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr