BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung"

Transkript

1 Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfsmittel: 0 Minuten 8 (gleich gewichtet) Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Alle Lösungen sind zu begründen. Keine separaten Notizblätter verwenden! 0 doppelseitig (handbeschriebene) Blätter A4 (40 Seiten), Taschenrechner. Die Assistenten dürfen keine Hilfen geben. Lösen Sie die Aufgaben auf den vorbereiteten Blättern in diesem Aufgabenheft. Weitere Blätter sind bei den Assistenten erhältlich.

2 Aufgaben Aufgabe : Wir betrachten das im folgenden Signalflussbild dargestellte dynamische System. u 5 y a) Stellen Sie für dieses System ein Zustandsraummodell auf. b) Ist das System asymptotisch stabil, grenzstabil oder instabil? Aufgabe : Ein Ingenieur hat für eine Regelstrecke mit dem Zustandsraummodell x x x (), t 4x x ( t) 0.5u() t yt () x einen PD-Regler ausgelegt. Er hat leider die berechneten Reglerparameter vergessen. Er weiss nur, dass die berechneten Pole des Regelsystems ± j betragen. a) Welche Reglerparameter hatte er für den PD-Regler berechnet? b) Er ist mit dem Reglerentwurf gemäss a) nicht zufrieden und möchte für das Regelsystem das Führungsverhalten mit der Übertragungsfunktion Ts () k s 0 erzielen. Mit welchen Reglerparametern kann er dieses Ziel erreichen und wie gross darf er k wählen? c) Wie würden Sie als sein Vorgesetzter seinen Reglerentwurf gemäss b) beurteilen?

3 Aufgabe : Wir betrachten das folgende Regelsystem: r Regel- strecke e Regler u y Die Regelstrecke wird durch eine Serieschaltung von zwei Teilsystemen mit den folgenden Übertragungsfunktionen modelliert: 400 Σ () s und Σ. s 0. () s s 4s 400 Die Übertragungsfunktion des Reglers lautet: Cs () s s a) Skizzieren Sie im vorbereiteten Bode-Diagramm (Seite ) den Frequenzgang (Amplitudenund Phasengang) der Kreisverstärkung des Regelkreises. b) Bestimmen Sie graphisch die Durchtrittsfrequenz und die Phasenreserve des Regelsystems. c) Bestimmen Sie den stationären Nachlauffehler für eine konstante Führungsgrösse. Aufgabe 4: Eine Rampe mit variabler Neigung α() x soll durch ein Fahrzeug mit konstanter Schnelligkeit befahren werden (Siehe Abbildung!). y Ft () m vt () α( xt ()) x xt () mg Die Bewegung des Fahrzeugs (Massenpunktbewegung) kann allgemein durch die folgenden nichtlinearen Differentialgleichungen beschrieben werden: mv Ft () c v mg sinα( xt ()) x vt () cosα( xt ()),

4 wobei die Neigung der Rampe wie folgt in Funktion von x(t) angegeben ist: xt () cosα( xt ()) und sinα( xt ()) cos α( xt ()) -- 6x x. Wählen Sie als Zustandsgrössen: x vt (): die Schnelligkeit, x xt (): die Lagekoordinate in x-richtung und als Steuergrösse die Kraft: ut () Ft (). Gemessen wird nur die Schnelligkeit v() t. Die Anfangsbedingungen sind: v0 ( ) und x( 0) 0. a) Zeigen Sie, dass die Nominaltrajektorie der Bewegung des Fahrzeugs auf der Rampe mit konstanter Schnelligkeit durch die folgenden Gleichungen beschrieben werden kann: x, v x, e -- t u c mg e ---- t b) Linearisieren Sie die Bewegungsgleichungen um die Nominaltrajektorien. Aufgabe 5: Wir betrachten ein System dritter Ordnung, das durch die drei skalaren Differentialgleichungen x x x x x ut () 5x ut () x ut () und durch die Ausgangsgleichung yt () x x x beschrieben wird. Berechnen Sie die transiente Antwort des Systems für den Fall x0 ( ), ut () 0 für t 0.

5 Aufgabe 6: Für eine Regelstrecke mit der Übertragungsfunktion: Ps () e s s -- soll ein PD-Regler entworfen werden. Ermitteln Sie die Parameter des Reglers mit dem Verfahren nach Ziegler/Nichols. Aufgabe : Ist die folgende regelungstechnische Problemstellung lösbar? Begründen Sie Ihre Antwort und geben Sie alle Argumente an. d r e Cs () u Ps () y Die zu regelnde Strecke ist durch ihre Übertragungsfunktion Ps () gegeben: ( s ) ( s 0) Ps () ( s ) ( s s ) Die auszuregelnden Störungen haben die Form n dt () cos( ω i t), 0 rad/s ω i 0 rad/s. i Der zu findende Regler Cs ()(nicht Teil dieser Aufgabe) soll für den geschlossenen Regelkreis Ts () eine Anstiegszeit t 90 von 0. s realisieren und alle Störungen um mindestens 0 db reduzieren. 4

6 Aufgabe 8: Wir betrachten das folgende lineare zeitinvariante dynamische System dritter Ordnung: u x x x y a) Ist das System vollständig steuerbar? b) Ist es vollständig beobachtbar? c) Welche Ordnung hätte ein Zustandsraummodell minimaler Ordnung mit dem gleichen Input-Output-Verhalten wie das obige System? d) Geben Sie ein Zustandsraummodell minimaler Ordnung an. 5

7 Lösungen Aufgabe : a) u 5 y x x x [ x x ] 5u() t 6x x 5u() t x [ x x ] x 4x yt () x x A 6 5, B, C, D b) s 6 det( si A) det ( s 6) ( s 4) 9 s s 5 s 4 det( si A) 0 ( s 5) ( s ) 0 s 5, s instabil, da s > 0 ist. 6

8 Aufgabe : a) A 0 0, B, C 0, C Ps () s s 4 Mit Cs () k d s k p Ts () Cs ()Ps C()Ps s 0.5( k d s k p ) s ( 0.5k d )s ( 0.5k d 4) Charakteristisches Poly: s ( 0.5k d )s ( 0.5k d 4) Charakteristisches Poly, damit die Pole ( s j) ( s j) s 4s 98 ± j resultieren: Koeffizientenvergleich: 0.5k d 4 k d 0.5k p 4 98 k p b) im Zähler von Ts () ausklammern: Ts () k d 0.5k d ( s k p k d ) s ( 0.5k d )s ( 0.5k d 4) Für Ts () k ( s 0) muss Pol-Nullstellen-Kürzung vorliegen, d. h. das charakteristische Poly muss folgende Fakorsierung aufweisen: s ( 0.5k d )s ( 0.5k d 4) ( s 0) ( s k p k d ) Koeffizientenvergleich führt auf die folgenden zwei Bestimmungsgleichungen für und : (I) 0.5k d 0 k p k d (II) 0.5k p 4 0k p k d Die Lösung lautet: k p 8 und k d. k d Die zweite Lösung k p und k d macht keinen Sinn, da T v ---- < 0 wird. Nach der Kürzung erhalten wir für k: k 0.5k d. c) k p k p k d

9 Aufgabe : BodeDiagramm db db : Σ ( jω) : Σ ( jω) : P( jω) Σ ( jω)σ ( jω) : C( jω) : L( jω) P( jω)c( jω) 0 db db 4dB 0 Phasengang [Grad] Amplitudengang [db] ω c rad/s 4dB 40 db/dek 0 db/dek 60 db/dek Phasenreserve: Frequenz [rad/s] 8

10 a) Σ ( 0) log( Σ 0. ( 0) ) 0log( 0) 0 [db] Resonanzüberhöhung : Σ δω 0 4 0δ δ 0. Σ max Σ max 4 db δ δ db b) Durchtrittsfrequenz und Phasenreserve: rad/s und ϕ 40. ω c c) L0 () db 40 db L0 ( ) 00 stationärer Nachlauffehler: SNF % L( 0) 0 Aufgabe 4: a) Die nichtlinearen Differentialgleichungen lauten für x vt () und x xt (): c x f ( x, x, u) --- u() t --- x m m () t g -- 6x x () t x f ( x, x, u) x --x yt () g( x, x, u) x Nominaltrajektorie: x, v -- t d ; x, e x dt, e -- t x, -- t --x, v * -- x, e e -- t q.e.d. x, d 0 u dt t () c mg -- 6x, x, c mg -- x, () x, t c -- t mg e t e ---- t c mg e q.e.d. 9

11 b) Linearisierung der Bewegungsgleichungen um die Nominaltrajektorien: System-Matritzen des linearisierten Systems: At () f f x x f f x x c -----x m, --x, t () g x, x, x, --x, t () x, v und x, e -- t eingesetzt, erhalten wir: At () Ct () -- t c g 6e f m u -- t ; Bt () --- ; e m f t u e -- g g g ;. x x 0 Dt () u Aufgabe 5: Für ut () 0 können die zweite und die dritte DGL entkoppelt von der ersten DGL gelöst werden: x x () 0 e 5t e 5t und x x () 0 e t e t x e 5t kann für die erste Differentialgleichun als Eingangsgrösse aufgefasst werden mit X () s Die Laplace-Transformation der ersten Differentialgleichung lautet: s 5 sx () s x ( 0) X () s X () s X () s Parzialbruchzerlegung: X s () s s s s 5 s s s 5 A B mit s s A und B s 5 s s s 5 -- x -- e t -- e 5t e t t e t yt () x x x e 0

12 0k P e s und des kritischen Verstärkungs- Aufgabe 6: Kreisverstärkung mit einem P-Regler: L P () s k P Ps () L P () s wird für die Bestimmung der kritischen Frequenz ω * * fators k P verwendet: s -- L P ( jω * ) * 0k P und arg { L P ( jω * )} { 0k P * π ω arg } arg{e } * π ω * jω * jω * ω * π π T * * ω s und k * P T * Die Einstellwerte nach Ziegler / Nichols für einen PD-Regler lauten: π * k P 0.55k P π 0.055π und T 0 d 0.5T * 0. s Aufgabe : Die Regelungsaufgabe ist nicht lösbar. Die folgenden Widersprüche verunmnöglichen das:. Die Anstiegszeit 0. s verlangt eine Durchtrittsfrequenz ω c rad/s. Die nichtminimalphasige Nullstelle der Strecke bei ζ 0 rad/s beschränkt aber die erreichbare Durchtrittsfrequenz bei etwa ζ 5 rad/s.. Die Störungen haben eine Maximalfrequenz von 0 rad/s. Da aber die Durchtritsfrequenz auf maximal ζ 5 rad/s beschränkt ist, muss die Sensitivität S() s bei 0 rad/s etwa den Betrag haben, d.h. die Störungen können ab einer Frequenz ω d ζ 0 rad/s nicht mehr um den geforderten Betrag reduziert werden. Beachte: Die nichtminimalphhasige Nullstelle ζ 0 rad/s und der instabile Pol rad/s sind kompatibel und stellen keine unüberwindbaren Probleme dar. π Aufgabe 8: System-Matritzen: t 90 A , B 0, C 0, D a) Steuerbarkeit: 0 0 Steuerbarkeitsmatrix: U B AB A B Die Steuerbarkeitsmatrix U hat aufgrund ihrer Dreiecksform vollen Rang. Das System ist somit vollständig steuerbar.

13 b) Beobachtbarkeit: C 0 Beobachtbarkeitsmatrix: V CA 5. CA 5 Die zweite Zeile plus die dritte Zeile ist gleich 0 mal der ersten Zeile. Daher ist der Rang der Beobachtbarkeitsmatrix gleich und somit ist das System nicht vollständig beobachtbar. c) Ein Zustandsraummodell minimaler Ordnung hätte Ordnung, da das obige Zustandsraummodell vollständig steuerbar ist, aber die Beobachtbarkeitsmatrix bloss Rang hat. d) Grundsätzliche Vorgehensweise (vgl. Musterlösung Frühling 004!):. Für das vorliegende Zustandsraummodell die Übertragungsmatrix Gs () CsI [ A] B berechnen.. Alle Pol-Nullstellen-Aufhebungen wegkürzen.. Für die nun teilerfremd angeschriebene Übertragungsfunktion ein geeignetes Zustandsraummodell minimaler Ordnung anschreiben. Im vorliegenden Fall ist es aus dem Blockschaltbild ersichtlich, dass das System als Serieschaltung der beiden folgenden Teilsysteme aufgefasst werden kann: Σ () s und Σ () s s 8 s 5 s s s 5 s Σ() s Σ () s Σ () s s 8 s 5 Durch die Pol-Nullstellen-Kürzung erhalten wir: s s ( s 4) ( s ) s 5 Σ() s s ( s 4) ( s ) s s s 0 Zustandsraum minimaler Ordnung (steuerbare Standardform): x x 0 0 x x 0 ut () yt () 0 x x. ES /. März 005

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 5.2.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Einführung Regelungstechnik: Lehre von der gezielten Beeinflussung dynamischer

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Kugel auf Rad. Praktikum Mess- und Regeltechnik. Anleitung zum Versuch. Institut für Mess- und Regeltechnik L. Guzzella, R. d Andrea.

Kugel auf Rad. Praktikum Mess- und Regeltechnik. Anleitung zum Versuch. Institut für Mess- und Regeltechnik L. Guzzella, R. d Andrea. Institut für Mess- und Regeltechnik L. Guzzella, R. d Andrea Praktikum Mess- und Regeltechnik Anleitung zum Versuch Kugel auf Rad Autoren: Florian Volken Florian Zurbriggen Daniel Ambühl September 2008

Mehr

Theorie der Regelungstechnik

Theorie der Regelungstechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. H. Gassmann Theorie der Regelungstechnik Eine Einführung Verlag Harri

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme -

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme - Einführung in die Regelungstechnik II - - Torsten Kröger Technische Universität - 1/64 - Braunschweig - 2/64 - Wiederholung - Einführung in die Regelungstechnik I Blockschema eines Regelkreises Kontinuierliche

Mehr

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf Prüfung SS 28 Mechatronik Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit lesbarem Namen werden korrigiert. Keine rote Farbe verwenden. Zu jeder Lösung

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

Formelsammlung für Automatisierungstechnik 1 & 2

Formelsammlung für Automatisierungstechnik 1 & 2 Formelsammlung für Automatisierungstechnik & 2 Aus Gründen der Vereinheitlichung, der gleichen Chancen bw. um etwaigen Diskussionen vorubeugen, sind als Prüfungsunterlagen für die Vorlesungsklausuren aus

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Lageregelung eines Magnetschwebekörpers

Lageregelung eines Magnetschwebekörpers Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Digitale Signalverabeitung Praktikum Regelungstechnik 1

Mehr

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Regelungstechnik 1 Praktikum Versuch 1.1 1 nterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Die Aufgabe der Regelungstechnik besteht im weitesten Sinne darin, einen bestimmten

Mehr

Formelsammlung für Regelungstechnik 1

Formelsammlung für Regelungstechnik 1 Formelsammlung für Regelungstechnik 1 Hochschule Heilbronn Wintersemester 2005/2006 Mechatronik und Mikrosystemtechnik Verfasser: Manuel Kühner (MM5) erstellt mit L A TEX Inhaltsverzeichnis 1 Griechische

Mehr

Moderne Methoden der Regelungstechnik. Moderne Methoden der Regelungstechnik

Moderne Methoden der Regelungstechnik. Moderne Methoden der Regelungstechnik Vorlesung: Dozenten: Professor Ferdinand Svaricek,, PD PD Gunther Reißig ig Ort: Ort: 33/2301 Zeit: Zeit: Di Di 9.45 9.45 11.15 11.15 Uhr Uhr Seminarübungen: Dozent: PD PD Gunther Reißig ig Ort: Ort: 036

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Regelungstechnik 1 Praktikum Versuch 2.1

Regelungstechnik 1 Praktikum Versuch 2.1 Regelungstechnik 1 Praktikum Versuch 2.1 1 Prozeßidentifikation Besteht die Aufgabe, einen Prozeß (Regelstrecke, Übertragungssystem,... zu regeln oder zu steuern, wird man versuchen, so viele Informationen

Mehr

Untersuchung des mathematischen Pendels

Untersuchung des mathematischen Pendels Untersuchung des mathematischen Pendels Thomas Bächler, Markus Lange-Hegermann, Marcel Wallraff Aachen, 7. Mai 7 Einführung Im folgenden Abschnitt wird eine kurze Voruntersuchung des mathematischen Pendel

Mehr

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 19. 06.

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 19. 06. Kybernetik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 9. 06. 202 Was ist Regelung? Regelung ist eine gezielte Beeinflussung dynamischer Systeme,

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen Otto-von-Guericke Universität Magdeburg Fakultät für Elektrotechnik Institut für Automatisierungstechnik Versuch Zweipunktregelung Versuchsziel: Kennenlernen typischer Eigenschaften und Berechnungsmethoden

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Helmut Bode MATLAB-SIMULINK. Analyse und Simulation dynamischer Systeme

Helmut Bode MATLAB-SIMULINK. Analyse und Simulation dynamischer Systeme Helmut Bode MATLAB-SIMULINK Analyse und Simulation dynamischer Systeme Helmut Bode MATLAB-SIMULINK Analyse und Simulation dynamischer Systeme 2., vollstandig uberarbeitete Auflage Mit 119 Abbildungen,

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12.

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. Einführung in die Robotik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. 2012 The human is perhaps the most intelligent control system

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung w-transformation Die w-transformationbildet das Innere des Einheitskreises der z-ebene in die linke w-ebene ab. z 1 w= z+1, bzw. z= 1+w 1 w Nach Anwendung der w-transformationist

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

A1.1: Einfache Filterfunktionen

A1.1: Einfache Filterfunktionen A1.1: Einfache Filterfunktionen Man bezeichnet ein Filter mit dem Frequenzgang als Tiefpass erster Ordnung. Daraus lässt sich ein Hochpass erster Ordnung nach folgender Vorschrift gestalten: In beiden

Mehr

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Automatische Parametrierung der Regelkreise von Servoreglern über systematische Auswertung einer Frequenzanalyse

Automatische Parametrierung der Regelkreise von Servoreglern über systematische Auswertung einer Frequenzanalyse Automatische arametrierung der Regelkreise von Servoreglern über systematische Auswertung einer Frequenzanalyse Dipl.Ing. Heiko Schmirgel Danaher Motion GmbH, Wacholderstr. 44, 4476 Düsseldorf rof. Dr.Ing.

Mehr

BACHELORARBEIT. ausgeführt an der. Fachhochschule Kärnten. Studiengang: Systems Engineering Vertiefungsrichtung: Mechatronics

BACHELORARBEIT. ausgeführt an der. Fachhochschule Kärnten. Studiengang: Systems Engineering Vertiefungsrichtung: Mechatronics BACHELORARBEIT Modellierung und Regelung der Aktorik für einen RoboCup Rescue Roboter ausgeführt an der Fachhochschule Kärnten Studiengang: Systems Engineering Vertiefungsrichtung: Mechatronics Zur Erlangung

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

BA 1 Blockschaltbild Algebra

BA 1 Blockschaltbild Algebra BA 1 Blockschaltbild Algebra Blockschaltbild Algebra Ein Übertragungs System besteht i.a. aus mehreren Teilsystemen, die mit Hilfe von Blöcken dargestellt werden können als Ketten Schaltung Parallel Schaltung

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

Prozessautomatisierung 2. Praktikum

Prozessautomatisierung 2. Praktikum Johannes Kepler Universität Linz Institut für Regelungstechnik und Prozessautomatisierung Prozessautomatisierung 2 Praktikum ẋ = Ax+Bu v u y y = Cx+Du ẇ = Âw+ ˆB u u+ ˆB y y ˆx = Ĉw+ ˆD u u+ ˆD y y K ˆx

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit.

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. FELJC Optimierung_Theorie.odt Optimierung. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. Hierzu gibt es unterschiedliche

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT TECHNISCHE UNIVERSITÄT ILMENAU Institut für Automatisierungs- und Systemtechnik Fachgebiet Simulation und Optimale Prozesse Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Bernhard P. Lampe Universität Rostock Institut für Automatisierungstechnik Rostock, 22. Januar 2010 B.P. Lampe (IAT, Uni Rostock) Grundlagen der Regelungstechnik Rostock,

Mehr

Aufgabe 1: Diskrete und kontin. Signale

Aufgabe 1: Diskrete und kontin. Signale AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2009 Aufgabe : Diskrete und kontin. Signale 25 Pkt. Aufgabe : Diskrete und kontin. Signale 25 Pkt.. Gegeben sei das als Summierer

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

Zusammenfassung Regelungstechnik I

Zusammenfassung Regelungstechnik I Zusammenfassung Regelungstechnik I Morgenegg, Moy, Habermacher auf Basis Schoch Definitionen. Blockschaltbil Regler C Strecke P Vorsteuerung F Führungsgrösse r Regelfehler e Stellgrösse u Ausgangsgrösse

Mehr

Ingenieurmathematik für Maschinenbau, Blatt 1

Ingenieurmathematik für Maschinenbau, Blatt 1 Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau

Mehr

RT-E: Entwurf der Drehzahlregelung eines Gebläsemotors

RT-E: Entwurf der Drehzahlregelung eines Gebläsemotors RT-E: Entwurf der Drehzahlregelung eines Gebläsemotors Quelle: http://de.wikipedia.org/w/index.php?title=datei:radialventilator- Wellringrad.jpg&filetimestamp=20061128101719 (Stand: 26.09.2012) Martin

Mehr

Grundlagen der Elektro-Proportionaltechnik

Grundlagen der Elektro-Proportionaltechnik Grundlagen der Elektro-Proportionaltechnik Totband Ventilverstärkung Hysterese Linearität Wiederholbarkeit Auflösung Sprungantwort Frequenzantwort - Bode Analyse Der Arbeitsbereich, in dem innerhalb von

Mehr

1 Einführung und Überblick

1 Einführung und Überblick RCP Zusammenfassung aus dem SS 2012 1 Version: 22. Juni 2014 1 Einführung und Überblick Vorteile des Einsatzes von Rapid Control Prototyping: schnelle, einfache und kostengünstige Erprobung unterschiedlicher

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 1 (Modul) Termin: Februar

Mehr

Kybernetik Laplace Transformation

Kybernetik Laplace Transformation Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist

Mehr

2. Eigenschaften dynamischer Systeme

2. Eigenschaften dynamischer Systeme 2. Eigenschaften dynamischer Systeme 2.1 Allgemeine Systemeigenschaften 2.1.1 Signale 2.1.2 Systeme Definition: System Ein System ist ein natürliches oder künstliches Gebilde. Es kann Eingangs-Signale

Mehr

Effekte einer negativen Rückführung

Effekte einer negativen Rückführung Effekte einer negativen Rückführung Reduziert den Effekt von Störungen und Parameteränderungen. Reduziert den Einfluß von Nichtlinearitäten. Sorgt für eine konstante Verstärkung. Verändert die Systemeigenschaften.

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

Gefesselte Masse. Jörg J. Buchholz 23. März 2014

Gefesselte Masse. Jörg J. Buchholz 23. März 2014 Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Das Drei-Komponenten-Modell

Das Drei-Komponenten-Modell Control signal ycc Input signal yi H. Gerisch / W. Wolf Institut für Informationstechnik 1 Fakultät für Elektrotechnik und Informationstechnik Organisationsstruktur in der Forschung Universität der Bundeswehr

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Prüfung WS 2007-2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf

Prüfung WS 2007-2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf Prüfung WS 7-8 Mechatronik Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit lesbarem Namen werden korrigiert. Keine rote Farbe verwenden. Zu jeder Lösung Aufgabennummer angeben.

Mehr

Kybernetik Übertragungsfunktion

Kybernetik Übertragungsfunktion Kybernetik Übertragungsfunktion Mohamed Oubbati Institut für Neuroinformatik Tel.: (49) 731 / 50 24153 mohamed.oubbati@uniulm.de 15. 05. 2012 Übertragungsfunktion Wie reagiert ein LTI System auf ein beliebiges

Mehr

Allgemeine Beschreibung von Blockcodes

Allgemeine Beschreibung von Blockcodes Allgemeine Beschreibung von Blockcodes Bei Blockcodierung wird jeweils eine Sequenz von m q binären Quellensymbolen (M q = 2) durch einen Block von m c Codesymbolen mit dem Symbolumfang M c dargestellt.

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Kleine Formelsammlung zu Elektronik und Schaltungstechnik

Kleine Formelsammlung zu Elektronik und Schaltungstechnik Kleine Formelsammlung zu Elektronik und Schaltungstechnik Florian Franzmann 21. September 2004 Inhaltsverzeichnis 1 Stromrichtung 4 2 Kondensator 4 2.1 Plattenkondensator...............................

Mehr

MATLAB. Control System Toolbox

MATLAB. Control System Toolbox MATLAB Control System Toolbox Dipl.-Ing. U. Wohlfarth 1 Umfang Beschreibung linearer, zeitinvarianter Systeme (LTI): zeitkontinuierlich und zeitdiskret Single Input/Single Output (SISO) und Multiple Input/Multiple

Mehr

Prüfungsvorbereitung für die industriellen Elektroberufe

Prüfungsvorbereitung für die industriellen Elektroberufe Markus Asmuth, Udo Fischer, Thomas Kramer, Markus Schindzielorz Prüfungsvorbereitung für die industriellen Elektroberufe Abschlussprüfung Teil 2 3. Auflage Bestellnummer 44005 service@bv-1.de www.bildungsverlag1.de

Mehr

Übung zur theoretischen Mechanik (Bachelor) Blatt 1

Übung zur theoretischen Mechanik (Bachelor) Blatt 1 PD Dr. Gerald Kasner Dr. Volker Becker Übung zur theoretischen Mechanik (Bachelor) Blatt 1 WS 2013 16. 10. 2013 1. Global Positioning System 8 Pkt. Das amerikanische GPS-System findet heutzutage in vielen

Mehr

Steuerungs- und Regelungstechnik

Steuerungs- und Regelungstechnik Lehrplan Steuerungs- und Regelungstechnik Fachschule für Technik Fachrichtung Elektrotechnik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1

Kaufmännische Berufsmatura 2011 Kanton Zürich Serie 1 Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Simulation von Analogschaltungen. Roland Küng, 2011

Simulation von Analogschaltungen. Roland Küng, 2011 Simulation von Analogschaltungen Roland Küng, 2011 1 Wozu Schaltungssimulation? Erlaubt automatische Analyse von Schaltungen aus Literatur Erlaubt vereinfachte Handrechnung beim Design Erlaubt sehr einfach

Mehr

Nulldynamik linearer und nichtlinearer Systeme: Definitionen, Eigenschaften und Anwendungen

Nulldynamik linearer und nichtlinearer Systeme: Definitionen, Eigenschaften und Anwendungen Nulldynamik linearer und nichtlinearer Systeme: Definitionen, Eigenschaften und Anwendungen Zero Dynamics of Linear and Nonlinear Systems: Definitions, Properties and Applications Ferdinand Svaricek Herrn

Mehr

1.) Aufrufen des Programms WinFACT 7 (BORIS)

1.) Aufrufen des Programms WinFACT 7 (BORIS) Dampftemperaturregelung mit WAGO und WinFACT 7 (BORIS) 1.) Aufrufen des Programms WinFACT 7 (BORIS) Über die Start Menüleiste gelangen Sie über Programme, WinFACT 7 und Blockorientierte Simulation BORIS

Mehr

KONZEPTION, AUFBAU UND INBETRIEBNAHME EINES SELBSTSTABILISIERENDEN EINACHSIGEN FAHRZEUGES. Bolorkhuu Dariimaa

KONZEPTION, AUFBAU UND INBETRIEBNAHME EINES SELBSTSTABILISIERENDEN EINACHSIGEN FAHRZEUGES. Bolorkhuu Dariimaa KONZEPTION, AUFBAU UND INBETRIEBNAHME EINES SELBSTSTABILISIERENDEN EINACHSIGEN FAHRZEUGES Bolorkhuu Dariimaa Dresden, 02.10.2014 Gliederung Einführung Modellbildung Reglerentwurf Mechanischer Aufbau und

Mehr

Luenberger-Beobachter und Extended Kalman-Filter: Ein Vergleich

Luenberger-Beobachter und Extended Kalman-Filter: Ein Vergleich Hauptseminar Intelligente Verfahren in der Mechatronik uenberger-beobachter und Extended Kalman-Filter: Ein Vergleich Florian Bauer, Matrikelnummer: ******** 2. anuar 213 Abstract Der uenberger-beobachter

Mehr

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme.

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme. Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz DSS Diskrete Signale und Systeme Teampartner: Praktikum Versuch 1 Laborplatz: Name: Vorname: Studiengang /-richtung

Mehr

Embedded Microsystems

Embedded Microsystems Graduiertenkolleg 1103 Embedded Microsystems Albert-Ludwigs-Universität Freiburg Energieeffiziente Automatisierung in verteilten Systemen Statusbericht Peter Hilgers Betreuer: Prof. Dr.-Ing. Christoph

Mehr

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung HS oblenz FB ngenieurwesen Prof. Dr. röber Seite von 7 Versuch 4: Hydraulische Positionsregelung. Versuchsaufbau.. mfang des Versuches m Versuch werden folgende Themenkreise behandelt: - Aufbau eines Prüfstandes

Mehr

Übertragungsglieder mit harmonischer Erregung

Übertragungsglieder mit harmonischer Erregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 2 Übertragungsglieder mit harmonischer Erregung Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt:

Mehr

Numerische Integration

Numerische Integration Numerische Integration Die einfachste Anwendung des Integrals ist wohl die Beantwortung der Frage nach der Fläche zwischen dem Graphen einer Funktion und der Achse über einem gegebenen Intervall ('Quadraturaufgabe').

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr