BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung"

Transkript

1 Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfsmittel: 0 Minuten 8 (gleich gewichtet) Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Alle Lösungen sind zu begründen. Keine separaten Notizblätter verwenden! 0 doppelseitig (handbeschriebene) Blätter A4 (40 Seiten), Taschenrechner. Die Assistenten dürfen keine Hilfen geben. Lösen Sie die Aufgaben auf den vorbereiteten Blättern in diesem Aufgabenheft. Weitere Blätter sind bei den Assistenten erhältlich.

2 Aufgaben Aufgabe : Wir betrachten das im folgenden Signalflussbild dargestellte dynamische System. u 5 y a) Stellen Sie für dieses System ein Zustandsraummodell auf. b) Ist das System asymptotisch stabil, grenzstabil oder instabil? Aufgabe : Ein Ingenieur hat für eine Regelstrecke mit dem Zustandsraummodell x x x (), t 4x x ( t) 0.5u() t yt () x einen PD-Regler ausgelegt. Er hat leider die berechneten Reglerparameter vergessen. Er weiss nur, dass die berechneten Pole des Regelsystems ± j betragen. a) Welche Reglerparameter hatte er für den PD-Regler berechnet? b) Er ist mit dem Reglerentwurf gemäss a) nicht zufrieden und möchte für das Regelsystem das Führungsverhalten mit der Übertragungsfunktion Ts () k s 0 erzielen. Mit welchen Reglerparametern kann er dieses Ziel erreichen und wie gross darf er k wählen? c) Wie würden Sie als sein Vorgesetzter seinen Reglerentwurf gemäss b) beurteilen?

3 Aufgabe : Wir betrachten das folgende Regelsystem: r Regel- strecke e Regler u y Die Regelstrecke wird durch eine Serieschaltung von zwei Teilsystemen mit den folgenden Übertragungsfunktionen modelliert: 400 Σ () s und Σ. s 0. () s s 4s 400 Die Übertragungsfunktion des Reglers lautet: Cs () s s a) Skizzieren Sie im vorbereiteten Bode-Diagramm (Seite ) den Frequenzgang (Amplitudenund Phasengang) der Kreisverstärkung des Regelkreises. b) Bestimmen Sie graphisch die Durchtrittsfrequenz und die Phasenreserve des Regelsystems. c) Bestimmen Sie den stationären Nachlauffehler für eine konstante Führungsgrösse. Aufgabe 4: Eine Rampe mit variabler Neigung α() x soll durch ein Fahrzeug mit konstanter Schnelligkeit befahren werden (Siehe Abbildung!). y Ft () m vt () α( xt ()) x xt () mg Die Bewegung des Fahrzeugs (Massenpunktbewegung) kann allgemein durch die folgenden nichtlinearen Differentialgleichungen beschrieben werden: mv Ft () c v mg sinα( xt ()) x vt () cosα( xt ()),

4 wobei die Neigung der Rampe wie folgt in Funktion von x(t) angegeben ist: xt () cosα( xt ()) und sinα( xt ()) cos α( xt ()) -- 6x x. Wählen Sie als Zustandsgrössen: x vt (): die Schnelligkeit, x xt (): die Lagekoordinate in x-richtung und als Steuergrösse die Kraft: ut () Ft (). Gemessen wird nur die Schnelligkeit v() t. Die Anfangsbedingungen sind: v0 ( ) und x( 0) 0. a) Zeigen Sie, dass die Nominaltrajektorie der Bewegung des Fahrzeugs auf der Rampe mit konstanter Schnelligkeit durch die folgenden Gleichungen beschrieben werden kann: x, v x, e -- t u c mg e ---- t b) Linearisieren Sie die Bewegungsgleichungen um die Nominaltrajektorien. Aufgabe 5: Wir betrachten ein System dritter Ordnung, das durch die drei skalaren Differentialgleichungen x x x x x ut () 5x ut () x ut () und durch die Ausgangsgleichung yt () x x x beschrieben wird. Berechnen Sie die transiente Antwort des Systems für den Fall x0 ( ), ut () 0 für t 0.

5 Aufgabe 6: Für eine Regelstrecke mit der Übertragungsfunktion: Ps () e s s -- soll ein PD-Regler entworfen werden. Ermitteln Sie die Parameter des Reglers mit dem Verfahren nach Ziegler/Nichols. Aufgabe : Ist die folgende regelungstechnische Problemstellung lösbar? Begründen Sie Ihre Antwort und geben Sie alle Argumente an. d r e Cs () u Ps () y Die zu regelnde Strecke ist durch ihre Übertragungsfunktion Ps () gegeben: ( s ) ( s 0) Ps () ( s ) ( s s ) Die auszuregelnden Störungen haben die Form n dt () cos( ω i t), 0 rad/s ω i 0 rad/s. i Der zu findende Regler Cs ()(nicht Teil dieser Aufgabe) soll für den geschlossenen Regelkreis Ts () eine Anstiegszeit t 90 von 0. s realisieren und alle Störungen um mindestens 0 db reduzieren. 4

6 Aufgabe 8: Wir betrachten das folgende lineare zeitinvariante dynamische System dritter Ordnung: u x x x y a) Ist das System vollständig steuerbar? b) Ist es vollständig beobachtbar? c) Welche Ordnung hätte ein Zustandsraummodell minimaler Ordnung mit dem gleichen Input-Output-Verhalten wie das obige System? d) Geben Sie ein Zustandsraummodell minimaler Ordnung an. 5

7 Lösungen Aufgabe : a) u 5 y x x x [ x x ] 5u() t 6x x 5u() t x [ x x ] x 4x yt () x x A 6 5, B, C, D b) s 6 det( si A) det ( s 6) ( s 4) 9 s s 5 s 4 det( si A) 0 ( s 5) ( s ) 0 s 5, s instabil, da s > 0 ist. 6

8 Aufgabe : a) A 0 0, B, C 0, C Ps () s s 4 Mit Cs () k d s k p Ts () Cs ()Ps C()Ps s 0.5( k d s k p ) s ( 0.5k d )s ( 0.5k d 4) Charakteristisches Poly: s ( 0.5k d )s ( 0.5k d 4) Charakteristisches Poly, damit die Pole ( s j) ( s j) s 4s 98 ± j resultieren: Koeffizientenvergleich: 0.5k d 4 k d 0.5k p 4 98 k p b) im Zähler von Ts () ausklammern: Ts () k d 0.5k d ( s k p k d ) s ( 0.5k d )s ( 0.5k d 4) Für Ts () k ( s 0) muss Pol-Nullstellen-Kürzung vorliegen, d. h. das charakteristische Poly muss folgende Fakorsierung aufweisen: s ( 0.5k d )s ( 0.5k d 4) ( s 0) ( s k p k d ) Koeffizientenvergleich führt auf die folgenden zwei Bestimmungsgleichungen für und : (I) 0.5k d 0 k p k d (II) 0.5k p 4 0k p k d Die Lösung lautet: k p 8 und k d. k d Die zweite Lösung k p und k d macht keinen Sinn, da T v ---- < 0 wird. Nach der Kürzung erhalten wir für k: k 0.5k d. c) k p k p k d

9 Aufgabe : BodeDiagramm db db : Σ ( jω) : Σ ( jω) : P( jω) Σ ( jω)σ ( jω) : C( jω) : L( jω) P( jω)c( jω) 0 db db 4dB 0 Phasengang [Grad] Amplitudengang [db] ω c rad/s 4dB 40 db/dek 0 db/dek 60 db/dek Phasenreserve: Frequenz [rad/s] 8

10 a) Σ ( 0) log( Σ 0. ( 0) ) 0log( 0) 0 [db] Resonanzüberhöhung : Σ δω 0 4 0δ δ 0. Σ max Σ max 4 db δ δ db b) Durchtrittsfrequenz und Phasenreserve: rad/s und ϕ 40. ω c c) L0 () db 40 db L0 ( ) 00 stationärer Nachlauffehler: SNF % L( 0) 0 Aufgabe 4: a) Die nichtlinearen Differentialgleichungen lauten für x vt () und x xt (): c x f ( x, x, u) --- u() t --- x m m () t g -- 6x x () t x f ( x, x, u) x --x yt () g( x, x, u) x Nominaltrajektorie: x, v -- t d ; x, e x dt, e -- t x, -- t --x, v * -- x, e e -- t q.e.d. x, d 0 u dt t () c mg -- 6x, x, c mg -- x, () x, t c -- t mg e t e ---- t c mg e q.e.d. 9

11 b) Linearisierung der Bewegungsgleichungen um die Nominaltrajektorien: System-Matritzen des linearisierten Systems: At () f f x x f f x x c -----x m, --x, t () g x, x, x, --x, t () x, v und x, e -- t eingesetzt, erhalten wir: At () Ct () -- t c g 6e f m u -- t ; Bt () --- ; e m f t u e -- g g g ;. x x 0 Dt () u Aufgabe 5: Für ut () 0 können die zweite und die dritte DGL entkoppelt von der ersten DGL gelöst werden: x x () 0 e 5t e 5t und x x () 0 e t e t x e 5t kann für die erste Differentialgleichun als Eingangsgrösse aufgefasst werden mit X () s Die Laplace-Transformation der ersten Differentialgleichung lautet: s 5 sx () s x ( 0) X () s X () s X () s Parzialbruchzerlegung: X s () s s s s 5 s s s 5 A B mit s s A und B s 5 s s s 5 -- x -- e t -- e 5t e t t e t yt () x x x e 0

12 0k P e s und des kritischen Verstärkungs- Aufgabe 6: Kreisverstärkung mit einem P-Regler: L P () s k P Ps () L P () s wird für die Bestimmung der kritischen Frequenz ω * * fators k P verwendet: s -- L P ( jω * ) * 0k P und arg { L P ( jω * )} { 0k P * π ω arg } arg{e } * π ω * jω * jω * ω * π π T * * ω s und k * P T * Die Einstellwerte nach Ziegler / Nichols für einen PD-Regler lauten: π * k P 0.55k P π 0.055π und T 0 d 0.5T * 0. s Aufgabe : Die Regelungsaufgabe ist nicht lösbar. Die folgenden Widersprüche verunmnöglichen das:. Die Anstiegszeit 0. s verlangt eine Durchtrittsfrequenz ω c rad/s. Die nichtminimalphasige Nullstelle der Strecke bei ζ 0 rad/s beschränkt aber die erreichbare Durchtrittsfrequenz bei etwa ζ 5 rad/s.. Die Störungen haben eine Maximalfrequenz von 0 rad/s. Da aber die Durchtritsfrequenz auf maximal ζ 5 rad/s beschränkt ist, muss die Sensitivität S() s bei 0 rad/s etwa den Betrag haben, d.h. die Störungen können ab einer Frequenz ω d ζ 0 rad/s nicht mehr um den geforderten Betrag reduziert werden. Beachte: Die nichtminimalphhasige Nullstelle ζ 0 rad/s und der instabile Pol rad/s sind kompatibel und stellen keine unüberwindbaren Probleme dar. π Aufgabe 8: System-Matritzen: t 90 A , B 0, C 0, D a) Steuerbarkeit: 0 0 Steuerbarkeitsmatrix: U B AB A B Die Steuerbarkeitsmatrix U hat aufgrund ihrer Dreiecksform vollen Rang. Das System ist somit vollständig steuerbar.

13 b) Beobachtbarkeit: C 0 Beobachtbarkeitsmatrix: V CA 5. CA 5 Die zweite Zeile plus die dritte Zeile ist gleich 0 mal der ersten Zeile. Daher ist der Rang der Beobachtbarkeitsmatrix gleich und somit ist das System nicht vollständig beobachtbar. c) Ein Zustandsraummodell minimaler Ordnung hätte Ordnung, da das obige Zustandsraummodell vollständig steuerbar ist, aber die Beobachtbarkeitsmatrix bloss Rang hat. d) Grundsätzliche Vorgehensweise (vgl. Musterlösung Frühling 004!):. Für das vorliegende Zustandsraummodell die Übertragungsmatrix Gs () CsI [ A] B berechnen.. Alle Pol-Nullstellen-Aufhebungen wegkürzen.. Für die nun teilerfremd angeschriebene Übertragungsfunktion ein geeignetes Zustandsraummodell minimaler Ordnung anschreiben. Im vorliegenden Fall ist es aus dem Blockschaltbild ersichtlich, dass das System als Serieschaltung der beiden folgenden Teilsysteme aufgefasst werden kann: Σ () s und Σ () s s 8 s 5 s s s 5 s Σ() s Σ () s Σ () s s 8 s 5 Durch die Pol-Nullstellen-Kürzung erhalten wir: s s ( s 4) ( s ) s 5 Σ() s s ( s 4) ( s ) s s s 0 Zustandsraum minimaler Ordnung (steuerbare Standardform): x x 0 0 x x 0 ut () yt () 0 x x. ES /. März 005

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

120 Minuten + 15 Minuten Lesezeit am Anfang! 42 (unterschiedlich gewichtet, total 58 Punkte)

120 Minuten + 15 Minuten Lesezeit am Anfang! 42 (unterschiedlich gewichtet, total 58 Punkte) BSc - Sessionsprüfung 22.8.25 Regelungstechnik I (5-59-) Guzzella, Nüesch, Ochsner Prüfungsbedingungen Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 42 (unterschiedlich

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 29.8.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 26.2.21 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4 erreichbare

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte) Prof. L. Guzzella Prof. R. D Andrea BSc - Sessionsprüfung 5.8.8 Regelungstechnik I (151-591-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 1 Minuten 9 (unterschiedlich

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung.8.2 Regelungstechnik II (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten Prüfungszeit + 5 Minuten Lesezeit 8 (unterschiedlich gewichtet,

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 44 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 44 (unterschiedlich gewichtet, total 60 Punkte) BSc - Sessionsprüfung 9..25 Regelungstechnik I (5-59-) Guzzella, Nüesch, Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 44 (unterschiedlich

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte) BSc - Sessionsprüfung 7.8.23 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet,

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung 6.8.8 Regelungstechnik II (5-59-) Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterschiedlich gewichtet, total 6 Punkte) Um die

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 2.8.22 Regelungstechnik I 5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 unterschiedlich gewichtet,

Mehr

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich Regelsysteme 6. Übung: Reglerentwurf nach Spezifikation im Zeitbereich Damian Frick Institut für Automatik ETH Zürich Herbstsemester 205 Damian Frick Regelsysteme Herbstsemester 205 6. Übung: Reglerentwurf

Mehr

Prüfungsbedingungen. Vorname:... Name:... Leginummer: Minuten + 15 Minuten Lesezeit am Anfang! 36 (unterschiedlich gewichtet, total 47 Punkte)

Prüfungsbedingungen. Vorname:... Name:... Leginummer: Minuten + 15 Minuten Lesezeit am Anfang! 36 (unterschiedlich gewichtet, total 47 Punkte) BSc - Sessionsprüfung 8.8.26 Regelungstechnik I (5-59-) Ochsner Prüfungsbedingungen Vorname:... Name:... Leginummer:... Dauer der Prüfung: Anzahl der Fragen: Bewertung: 2 Minuten + 5 Minuten Lesezeit am

Mehr

Musterlösung. Aufgabe 1 (Regelungstechnik) 6 Punkte. Seite 2 Sessionsprüfung Regelungstechnik I ( )

Musterlösung. Aufgabe 1 (Regelungstechnik) 6 Punkte. Seite 2 Sessionsprüfung Regelungstechnik I ( ) Seite Sessionsprüfung Regelungstechnik I (151-591-) BSc - Sessionsprüfung 1.. 6 Regelungstechnik I (151-591-) () Musterlösung Prof. L. Guzzella Aufgabe 1 (Regelungstechnik) 6 Punkte a) Füllen Sie die Lücken

Mehr

Regelungstechnik I PVK. Nicolas Lanzetti

Regelungstechnik I PVK. Nicolas Lanzetti Regelungstechnik I PVK Nicolas Lanzetti lnicolas@student.ethz.ch 1 Vorwort Dieses Skript wurde unter Verwendung des Buches Analysis and Sythesis of Single-Input-Single- Output Control System von Prof.

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

G S. p = = 1 T. =5 K R,db K R

G S. p = = 1 T. =5 K R,db K R TFH Berlin Regelungstechnik Seite von 0 Aufgabe 2: Gegeben: G R p =5 p 32ms p 32 ms G S p = p 250 ms p 8 ms. Gesucht ist das Bodediagramm von G S, G R und des offenen Regelkreises. 2. Bestimmen Sie Durchtrittsfrequenz

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 3..22 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet,

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte) Prof. Dr. H. P. Geering Prof. Dr. L. Guzzella BSc - Sessionsprüfung 7..8 egelungstechnik II 5-59- Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 unterschiedlich

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Kirchhoff-Hörsaal 1 Donnerstag, den 19. 09. 2013 Beginn: 09.30 Uhr Bearbeitungszeit: 120 Minuten

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Lösungen zur 7. Übung

Lösungen zur 7. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen:

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen: Regelungstechnik Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder Energiespeicher: Zustandsgröße: Kondensator Spannung i c C du Zustands.- und Ausgangsgleichungen: Aus den Knoten:

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 206 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit Prof. Dr.-Ing. Jörg Raisch Dr.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Veranstaltung Mehrgrößenregelsysteme Aufgabe

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Steuer- und Erreichbarkeit zeitdiskreter Systeme Bei zeitdiskreten Systemen sind Steuer-und Erreichbarkeit keine äquivalente Eigenschaften. Die Erfüllung des Kalmankriteriums

Mehr

Steuer- und und Regelungstechnik II

Steuer- und und Regelungstechnik II Steuer- und und Regelungstechnik II II Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: Ort: 33/03 Zeit: Zeit: Mi Mi 8.5 8.5 9.45 9.45 Uhr Uhr Seminarübungen: Dozent: Dr. Dr. Klaus-Dieter Otto Otto

Mehr

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage Heinz JUnbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 3., durchgesehene Auflage Mit 192 Bildern V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

90 Minuten Seite 1. Einlesezeit

90 Minuten Seite 1. Einlesezeit 90 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Systemtheorie und Regelungstechnik Abschlussklausur

Systemtheorie und Regelungstechnik Abschlussklausur Systemtheorie und Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 7. März 5, 9:-:, Freiburg, Georges-Koehler-Allee, HS 6 und HS 6 page

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Control Systems Toolbox K. Taubert WS 01/02. 1 Einführung. X(s) = H(s)U(s) x = Ax + Bu y = Cx + Du,

Control Systems Toolbox K. Taubert WS 01/02. 1 Einführung. X(s) = H(s)U(s) x = Ax + Bu y = Cx + Du, Control Systems Toolbox K. Taubert WS 1/2 Zusammenfassung: Die Control Systems Toolbox ist ein Hilfsmittel für den Entwurf, die Entwicklung und Analyse in der Regelungstechnik. Unterschiedliche Beschreibungen

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine Bewegungssteuerung durch geregelte elektrische Antriebe Übung 1 (WS17/18) Alle Abbildungen und Übungsunterlagen (Einführungsfolien, Übungsblätter, Musterlösungen, MATLAB-Übungen/Lösungen und Formelsammlung)

Mehr

Regelungstechnik Aufgaben

Regelungstechnik Aufgaben Serge Zacher Regelungstechnik Aufgaben Lineare, Zweipunkt- und digitale Regelung 2., überarbeitete und erweiterte Auflage Mit 126 Aufgaben und MATLAB-Simulationen ZACHE VII Inhalt 1. Formelsammlung 1 1.1

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz Regelungstechnik Klausur vom 9.2.23 Zoltán Zomotor Versionsstand: 3. Januar 24, 2:59 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 2007 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 5.2.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Der Mensch als Regler

Der Mensch als Regler Institut für Mess- und Regeltechnik H. P. Geering, L. Guzzella, C. H. Onder Studiengang Maschinenbau und Verfahrenstechnik Praktikum Mess- und Regelungstechnik Anleitung zum Versuch Der Mensch als Regler

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Optimierung von Regelkreisen. mit P-, PI und PID Reglern

Optimierung von Regelkreisen. mit P-, PI und PID Reglern mit P-, PI und PID Reglern Sollwert + - Regler System Istwert Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur Seite 1 Ziegler und Nichols Strecke: Annäherung durch Totzeit- und PT1-Glied

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

6. Übung: Zustandsregler- und beobachter

6. Übung: Zustandsregler- und beobachter 6. Übung: Zustandsregler- und beobachter Aufgabe 6.. Gegeben ist ein lineares zeitinvariantes System der Form 3 6 ẋ = 4 x + u (6.a) 5 y = x. (6.b) Weisen Sie die vollständige Erreichbarkeit und Beobachtbarkeit

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 59 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 59 Punkte) BSc - Sessionsprüfung 0..009 Regelungstechnik II 5-0590-00 Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 0 Minuten 8 unterschiedlich gewichtet, total 59 Punkte Um

Mehr

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am 22.11.2008 Universität des Saarlandes Aufgabe 1.1: Gegeben ist der schematische Aufbau eines Mischers: Auf den Antriebsstrang Antriebsstrang

Mehr

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik 1. Einführung in die Regelungstechnik 1.1 Zielsetzung der Regelungstechnik und Begriffsdefinitionen 1.2 Beispiele

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik Formelsammlung für den Teilbereich Zustandsraumdarstellung der Vorlesung Einführung in die Regelungstechnik Diese Formelsammlung ist ein Auszug aus der Formelsammlung zur Systemtheorie-Vorlesung von Matthias

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Vordiplomprüfung Grundlagen der Elektrotechnik III

Vordiplomprüfung Grundlagen der Elektrotechnik III Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K J. Ackermann Abtastregelung Zweite Auflage Band I: Analyse und Synthese Mit 71 Abbildungen lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K laventa r- h' r O o JJj Sadigebiefei

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

Bestimmung der Reglerparameter aus den Frequenzkennlinien

Bestimmung der Reglerparameter aus den Frequenzkennlinien 1 Kapitel Bestimmung der Reglerparameter aus den Frequenzkennlinien Mit PSPICE lassen sich die Frequenzgänge der Amplitude und der Phase von Regelkreisen simulieren, graphisch darstellen und mit zwei Cursors

Mehr

"Systemdynamik und Regelungstechnik"

Systemdynamik und Regelungstechnik Diplomhauptprüfung / Bachelorprüfung "Systemdynami und Regelungstechni" 20. Juli 205 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen Lösungsblätter

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am..9 Name / Vorname(n): Kennzahl/ Matrikel-Nummer.: erreichbare

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Regelungstechnik für Ingenieure

Regelungstechnik für Ingenieure Manfred Reuter Regelungstechnik für Ingenieure 7., überarbeitete und erweiterte Auflage Mit 322 Bildern Friedr. Vieweg & Sohn Braunschweig/Wiesbaden Inhaltsverzeichnis Formelzeichen 1 Einführung 1 1.1

Mehr

Entwurf durch Polvorgabe

Entwurf durch Polvorgabe Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine

Mehr