Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Institut für Biometrie und klinische Forschung. WiSe 2012/2013"

Transkript

1 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate Verfahren Analyse der Verteilung eines Merkmals (eindimensional) Bivariate Verfahren Analyse des Zusammenhangs zweier Merkmale zwei qualitative Merkmale: Kontingenztafel zwei quantitative Merkmale: Regressions- und Korrelationsanalyse 4 Überblick. Deskriptive Statistik I. Deskriptive Statistik II - Kontingenztafeln - Korrelation und Regression - Analyse von Überlebenszeiten 3. Wahrscheinlichkeitsrechnung und Zufallsvariablen 4. Induktive Statistik

2 Zusammenhang qualitativer Merkmale Beispiel: Rauchen mehr Frauen als Männer? WiSe /3 Umfrage: Frauen, Männer 7 Raucher, 39 Nichtraucher Raucher Nichtraucher männlich 8 weiblich Deskriptive Statistik II Kontingenztafeln Zeilenprozente Raucher Nichtraucher männlich 8 3% 77% % weiblich 4 49% % % Deskriptive Statistik II Kontingenztafeln 7 Spaltenprozente Raucher Nichtraucher männlich 33% 8 % weiblich 7% 4 39% 7 % 39 %. Deskriptive Statistik II Kontingenztafeln 8

3 Kenngrößen in Kontingenztafeln männlich weiblich Raucher (h =3%) (h =49%) Nichtraucher Risikodifferenz: h h = 49% 3% = %punkte (!) Relatives Risiko: h / h = 49% / 3% =.3, d.h. Steigerung des Risikos zu rauchen um 3% h h 49% 3% Odds Ratio: 3. h h 49% 3% 8 4 WiSe /3. Deskriptive Statistik II Kontingenztafeln 9 Überblick. Deskriptive Statistik I. Deskriptive Statistik II - Kontingenztafeln - Korrelation und Regression - Analyse von Überlebenszeiten 3. Wahrscheinlichkeitsrechnung und Zufallsvariablen 4. Induktive Statistik Linearer Zusammenhang stetiger Merkmale Beispiel: Medikamentendosis und Blutdrucksenkung Dosis RR- Zielgröße, Blutdrucksenkung 3 Senkung abhängige Variable Medikamentendosis 8 Einflussgröße, unabhängige Variable Regressionsgerade

4 Kenngrößen Blutdrucksenkung 3 WiSe /3 Stärke des Einflusses Schätzung der Regressionsgerade y = + x Der Regressionskoeffizient =.9 gibt an, dass bei einer Dosissteigerung um Einheit die Blutdrucksenkung im Mittel um ca. 3 mmhg zunimmt (Steigung der Regressionsgeraden). Stärke ˆ des xy Zusammenhangs i i Korrelationskoeffizient sxx xi nx Methode der Kleinsten Quadrate s x y nxy ˆ y ˆ x Medikamentendosis 3 Beispiel Medikamentendosis (x i ) und Blutdrucksenkung (y i ) Regressionsgerade: RR-Senkung =,73 +,9 Dosis Aus der Regressionsgeraden geht hervor, daß die Blutdrucksenkung pro zusätzlicher Dosiseinheit um durchschnittlich,9 mmhg zunimmt. x i =. y i =,73 +,9, = 7, Bei einer Dosis von, Einheiten wird eine Blutdrucksenkung um 7, mmhg erwartet. x i = y i =,73 +,9 = 4,3?! Extrapolation über den Beobachtungsbereich hinaus ist nicht erlaubt! 4

5 Korrelation Der Korrelationskoeffizient ist ein Maß für die Stärke des linearen Zusammenhangs zwischen zwei Merkmalen. Der Korrelationskoeffizient nimmt Werte zwischen - und + an. r xy > : positiver linearer Zusammenhang r xy < : negativer linearer Zusammenhang r xy = : kein linearer Zusammenhang Für r xy = + liegen die Meßwerte genau auf einer Geraden mit positiver Steigung und für r xy = - auf einer Geraden mit negativer Steigung. Ein hoher Korrelationskoeffizient muss auf keinen ursächlichen Zusammenhang hindeuten. WiSe /3 JUMBO Java-Applet 3.7 Korrelation Java-Applet 3.8 Raten von Korrelationen 7 Korrelation Der Korrelationskoeffizient ist ein Maß für die Stärke des linearen Zusammenhangs zwischen zwei Merkmalen. Der Korrelationskoeffizient nimmt Werte zwischen - und + an. r xy > : positiver linearer Zusammenhang r xy < : negativer linearer Zusammenhang r xy = : kein linearer Zusammenhang Für r xy = + liegen die Meßwerte genau auf einer Geraden mit positiver Steigung und für r xy = - auf einer Geraden mit negativer Steigung. Ein hoher Korrelationskoeffizient muss auf keinen ursächlichen Zusammenhang hindeuten. 8

6 Scheinkorrelation und Confounder WiSe /3 Blutdrucksenkung 3 4 Medikamentendosis 9 Scheinkorrelation und Confounder Männer Frauen 3 4 Medikamentendosis Scheinkorrelation und Confounder Blutdrucksenkung Blutdrucksenkung Männer Frauen Der Einfluss der Medikamentendosis auf die Blutdrucksenkung wurde überschätzt. Die beobachteten Unterschiede in der Blutdrucksenkung sind in Wirklichkeit gar nicht auf die Medikamentendosis zurück zu führen, 3 4 sondern auf einen Geschlechtseffekt. Medikamentendosis Das Geschlecht wird in diesem Fall als Confounder bezeichnet.

7 Bestimmtheitsmaß B r, r gibt den Anteil der Varianz in den y-werten an, der sich durch die x-werte erklären lässt. -> Erklärungswert der x-variable: Inwiefern ist die y-variable durch die x-variable vorhersagbar? Korrelationskoeffizient r = % Faustregel: Werte r >. sind gut, d.h. r > r = 8% r = WiSe / Die y-variable ist zu % durch die x- Variable vorhersagbar. Y ist zu 8% vorhersagbar. Y ist nicht vorhersagbar, Die restlichen % sind sondern zu % zufällig. nicht vorhersagbar, sondern zufällig. Zusammenfassung Linearer Zusammenhang zweier stetiger Merkmale Regressionskoeffizient Wertebereich Bezeichnung β (-, ) Richtung des Zusammenhangs am Vorzeichen erkennbar? ja Interpretation Steigung der Regressionsgeraden: Wie stark ist der Einfluss von x auf y? Korrelationskoeffizient r [-,] ja Streuung der Punktewolke um die Regressionsgerade: Wie stark ist der Zusammenhang zwischen x und y? Bestimmtheitsmaß R [,] nein Vorhersagbarkeit bzw. prozentualer Informationsgehalt der y-variable, der in der x-variable enthalten ist Überblick. Deskriptive Statistik I. Deskriptive Statistik II - Kontingenztafeln - Korrelation und Regression - Analyse von Überlebenszeiten 3. Wahrscheinlichkeitsrechnung und Zufallsvariablen 4. Induktive Statistik 7

8 Zensierte Ereigniszeiten. Patient. Patient 3. Patient 4. Patient. Patient Rekrutierungsphase Zeit Ende der Nachbeobachtung WiSe /3. Deskriptive Statistik II Analyse von Überlebenszeiten 8 Kaplan-Meier-Schätzung. Deskriptive Statistik II Analyse von Überlebenszeiten 3 Kaplan-Meier-Schätzung Survtimes:, 3,, Anteil lebender % Patienten -% 7% -% % -% % -% % Lebensdauer (Jahre). Deskriptive Statistik II Analyse von Überlebenszeiten 3

9 Kaplan-Meier-Schätzung Survtimes:, 3+,, Anteil lebender % Patienten -% 7% % % - (% +.%) % (% +.%) Lebensdauer (Jahre) WiSe /3. Deskriptive Statistik II Analyse von Überlebenszeiten 33 Aufgabe Gegeben ist die folgende Kontingenztafel, in der die Inzidenz einer bestimmten Krankheit in einem Kollektiv von 3 Personen getrennt nach Geschlecht dargestellt ist. Um welchen Faktor ist die relative Häufigkeit einer Erkrankung bei Männern höher als diejenige der Frauen? krank gesund gesamt männlich 9 weiblich % % % % % Aufgabe Schätzen Sie den Regressionskoeffizienten b der im Scatterplot dargestellten Merkmale b = -. b = 3. b = 4. b = 3. b = -3 b = - % % % % % b = b = b = 3 3 b = -3

10 Aufgabe 3 Schätzen Sie den Korrelationskoeffizienten r der im Scatterplot dargestellten Merkmale r = -.9. r = r = 4. r =.. r =.9 r = -.9 % % % % % r = -. r = r =. 3 r =.9 WiSe /3 Aufgabe 4 Überlebensrate,,8,,4 In einer Studie wurden zwei Therapien A und B miteinander verglichen. In einer graphischen Darstellung der Überlebenskurven zeigen sich folgende Überlebenswahrscheinlichkeiten in Abhängigkeit der Zeit (in Tagen). Welche Schlussfolgerung kann man aus der Graphik ableiten?,, t B A. Therapie B hat einen günstigeren Verlauf als Therapie A.. Die mediane Überlebenszeit von Patienten unter Therapie A ist länger als unter Therapie B. 3. Nach ca. Tagen ist weniger als die Hälfte aller Patienten unter Therapie A gestorben. 4. Nach ca. Tagen sind alle Patienten unter Therapie B gestorben.. Nach ca. Tagen sind etwa % der Patienten unter Therapie B gestorben.. % % % % % Aufgabe In einer klinischen Studie wurden in 3 Therapiegruppen A, B und C die Überlebenszeiten von jeweils Patienten ermittelt. Tage nach Studienbeginn wurde die Studie beendet und es wurden folgende Kaplan-Meier-Kurven erstellt. Was bezeichnen die folgenden Kennzahlen? Überlebenswahrscheinlichkeit,,8,,4 A B, C, Überlebenszeit in Tagen Therapie A B C? 8. Schätzer der mittleren Überlebenszeit. Schätzer der medianen Überlebenszeit 3. Anzahl der zensierten Daten 4. Anzahl der Ereignisse. Anzahl der verbliebenen Patienten zum Ende der Studie. % % % % %

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Übung 3 im Fach "Biometrie / Q1"

Übung 3 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen.

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. 1 Einleitung...1 1.1 Die Bedeutung der Statistik für die Medizin...1 1.2 Die medizinische

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

5. Übung Zusammenhänge zweier Merkmale

5. Übung Zusammenhänge zweier Merkmale Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig. Übung Zusammenhänge zweier Merkmale

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Epidemiologie / Biometrie

Epidemiologie / Biometrie Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert hochstrat@web.de

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Lernziele Intensivblock I2 Advanced! Epidemiologie und Gesundheitsversorgung. Advanced! I2. Tag 4 Tag 5 Tag 6

Lernziele Intensivblock I2 Advanced! Epidemiologie und Gesundheitsversorgung. Advanced! I2. Tag 4 Tag 5 Tag 6 Lernziele Intensivblock I2 Advanced! Epidemiologie und Gesundheitsversorgung Stand: März 2017 Advanced! I2 Tag 4 Tag 5 Tag 6 Med. Informatik Elekt. Dokumentation & Informationssysteme Risiko & Prognose

Mehr

Diagnose und Prognose: Kurzfassung 4

Diagnose und Prognose: Kurzfassung 4 Diagnose und Prognose: Kurzfassung 4 Ziele der 4. Vorlesung Inhaltliche Verbindung zwischen inhaltlicher Statistisches Konzept / Problemstellung Problemstellung und statistischem statistische Methode Konzept/Methode

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Tabelle 1: Altersverteilung der Patienten (n = 42) in Jahren

Tabelle 1: Altersverteilung der Patienten (n = 42) in Jahren 3. Ergebnisse Die 42 Patienten (w= 16, m= 26) hatten ein Durchschnittsalter von 53,5 Jahren mit einem Minimum von und einem Maximum von 79 Jahren. Die 3 Patientengruppen zeigten hinsichtlich Alters- und

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur WS 2002/2003 Aufgabe 1: Man gehe davon aus,

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Cox-Regression. Ausgangspunkt Ansätze zur Modellierung von Einflussgrößen Das Cox-Modell Eigenschaften des Cox-Modells

Cox-Regression. Ausgangspunkt Ansätze zur Modellierung von Einflussgrößen Das Cox-Modell Eigenschaften des Cox-Modells Cox-Regression Ausgangspunkt Ansätze zur Modellierung von Einflussgrößen Das Cox-Modell Eigenschaften des Cox-Modells In vielen Fällen interessiert, wie die Survivalfunktion durch Einflussgrößen beeinflusst

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2014 Mehrdimensionale Datensätze: Multivariate Statistik Multivariate Statistik Mehrdimensionale Datensätze:

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle

Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle Wahrscheinlichkeitsrechnung mathematische Statistik und statistische Qualitätskontrolle von Dipl.-Math. Regina Storm Mit 66 Bildern Zweite, überarbeitete und erweiterte Auflage VEB FACHBUCHVERLAG LEIPZIG

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen

Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen 5.1 Darstellung der Verteilung zweidimensionaler Merkmale 5.2 Maßzahlen für den Zusammenhang zweier nominaler Merkmale 5.3 Maßzahlen

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Graphische Repräsentation von Kontingenztabellen Beispiel Autounfälle Verletzung leicht

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Grundlagen der Statistik

Grundlagen der Statistik www.nwb.de NWB Studium Betriebswirtschaft Grundlagen der Statistik Band 1: Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 12., vollständig überarbeitete Auflage nwb STUDIUM Inhaltsverzeichnis

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen Lineare Regression und Matrizen. Einführendes Beispiel Der im Kapitel Skalarprodukt gewählte Lösungsweg für das Problem der linearen Regression kann auch mit Matrizen formuliert werden. Die Idee wird zunächst

Mehr

Inhaltsverzeichnis Einführung und deskriptive Statistik Grundlagen der Inferenzstatistik 1: Zufallsvariablen

Inhaltsverzeichnis Einführung und deskriptive Statistik Grundlagen der Inferenzstatistik 1: Zufallsvariablen Inhaltsverzeichnis 1 Einführung und deskriptive Statistik... 1 1.1 Wichtige mathematische Schreibweisen... 1 1.1.1 Das Summenzeichen... 1 1.1.2 Mengentheoretische Schreibweisen... 3 1.1.3 Variablentransformationen...

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Biomathematik für Mediziner, Klausur SS 2000 Seite 1

Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,

Mehr

SigmaStat Nina Becker, Christoph. Rothenwöhrer. Copyright 2004 Systat Software, Inc.

SigmaStat Nina Becker, Christoph. Rothenwöhrer. Copyright 2004 Systat Software, Inc. SigmaStat 3.11 Copyright 2004 Systat Software, Inc. http://www.systat.com Nina Becker, Christoph Rothenwöhrer Die Aufgabe der Statistik ist die Zusammenfassung von Daten, deren Darstellung, Analyse und

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage Statistik Einführung in die com putergestützte Daten an alyse von Prof. Dr. Karlheinz Zwerenz 4., überarbeitete Auflage B 366740 Oldenbourg Verlag München Inhalt Vorwort XI Hinweise zu EXCEL und SPSS XII

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Statistik für Dummies

Statistik für Dummies Bearbeitet von Deborah Rumsey, Reinhard Engel 3. aktualisierte Auflage 2015. Buch. 368 S. Softcover ISBN 978 3 527 71156 7 Format (B x L): 17,6 x 24 cm Wirtschaft > Betriebswirtschaft: Theorie & Allgemeines

Mehr

Analyse von Ereignisdaten Univ.-Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation

Analyse von Ereignisdaten Univ.-Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation Analyse von Ereignisdaten Univ.-Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation Analyse von Ereigniszeiten Lebensdauer = Zeit zwischen einem Startpunkt (Anfangsdatum)

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

10. Medizinische Statistik

10. Medizinische Statistik 10. Medizinische Statistik Projektplanung Deskriptive Statistik Inferenz-Statistik Literatur: Hüsler, J. und Zimmermann, H.: Statistische Prinzipien für medizinische Projekte, Verlag Hans Huber, 1993.

Mehr

Inhaltsverzeichnis. 0 Einleitung 1

Inhaltsverzeichnis. 0 Einleitung 1 Inhaltsverzeichnis 0 Einleitung 1 1 Univariate Statistik 3 1.1 Begriffsdefinitionen... 3 1.1.1 Beobachtungseinheit, Merkmal... 3 1.1.2 Merkmalstypen... 3 1.1.3 Skalenniveaus... 4 1.1.4 Häufigkeiten...

Mehr

F r a g e n k a t a l o g

F r a g e n k a t a l o g F r a g e n k a t a l o g 1. Was ist eine Konstante? 2. Was ist eine Variable? 3. Was ist ein Datum? 4. Welche Werte haben Variablen? 5. Was sind qualitative Variablen? 6. Was sind quantitative Variablen?

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Beschreibende Statistik Zweidimensionale (bivariate) Daten

Beschreibende Statistik Zweidimensionale (bivariate) Daten Mathematik II für Biologen Beschreibende Statistik Zweidimensionale (bivariate) Daten 26. April 2013 Prolog Lineare Regression Transformationen Produktmomenten-Korrelation Rangkorrelation Warnung Artensterben

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 27. Juni 2009 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: (6 Punkte) a) Wie viel Prozent der Beobachtungen liegen beim Box-Plot außerhalb der

Mehr

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Aufgabe 1: Prüfe, welche der folgenden Merkmale qualitativ sind: (a) Blutgruppe (b) Pulsfrequenz (c) Erkrankung an Scharlach (d) Teilnahme an einem

Mehr

Coole Biometrie Eiskalt erwischt!

Coole Biometrie Eiskalt erwischt! Coole Biometrie Eiskalt erwischt! Magst Du immer nur aus Büchern lernen? Nein, lass uns selbst ein Experiment machen! Das coole Experiment Wie lange kann man die Hand in Eiswasser halten? Versuch in 2

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Deskriptive Statistik

Deskriptive Statistik Helge Toutenburg Christian Heumann Deskriptive Statistik Eine Einführung in Methoden und Anwendungen mit R und SPSS Siebte, aktualisierte und erweiterte Auflage Mit Beiträgen von Michael Schomaker 4ü Springer

Mehr

Über den Autor 7. Einführung 21

Über den Autor 7. Einführung 21 Inhaltsverzeichnis Über den Autor 7 Einführung 21 Über dieses Buch oder:» für Dummies«verpflichtet! 21 Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil

Mehr

Statistische Messdatenauswertung

Statistische Messdatenauswertung Roland Looser Statistische Messdatenauswertung Praktische Einführung in die Auswertung von Messdaten mit Excel und spezifischer Statistik-Software für naturwissenschaftlich und technisch orientierte Anwender

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY23) Herbstsemester 207 Olaf Steinkamp 36-J-05 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 120 Minuten netto Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort gibt 2 Punkte. Pro falsche

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur...

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur... Inhaltsverzeichnis 1 EINLEITUNG... 1 1.1 Allgemeines... 1 1.2 Kapitelübersicht... 2 1.3 Gebrauch dieses Buches... 3 1.4 Verwenden zusätzlicher Literatur... 4 DESKRIPTIVE STATISTIK 2 GRUNDLAGEN... 5 2.1

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15 Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2

Mehr

7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17

7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 1. Aufgabe: a) Grundgesamtheit sind alle Reifen aus der Produktion von Langstone aus dem Monat März der entsprechenden Reifentypen.

Mehr

Deskriptive Statistik

Deskriptive Statistik Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische

Mehr

Kontingenztabelle: Führerschein Ja Nein Ja Nein Auto. Wie viel Prozent der Studierenden besitzen kein Auto?

Kontingenztabelle: Führerschein Ja Nein Ja Nein Auto. Wie viel Prozent der Studierenden besitzen kein Auto? Aufgabe 1: Eine (nicht repräsentative) Umfrage unter 200 Studierenden auf dem Campus der Ruhr-Universität ergab: 130 Studierende besitzen ein Auto, 160 einen Führerschein und 128 sowohl Auto als auch Führerschein.

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Die Regressionsanalyse

Die Regressionsanalyse Die Regressionsanalyse Zielsetzung: Untersuchung und Quantifizierung funktionaler Abhängigkeiten zwischen metrisch skalierten Variablen eine unabhängige Variable Einfachregression mehr als eine unabhängige

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Glossar und Formelsammlung. Hazard Rate. Hazard Ratio =

Glossar und Formelsammlung. Hazard Rate. Hazard Ratio = Glossar und Formelsammlung Hazard Rate Die Hazard Rate steht für das Risiko, genau zum Zeitpunkt t ein Ereignis bei Überlebenszeitanalysen den Tod zu erleiden. Es handelt sich demnach um eine vom Zeitpunkt

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

1 GRUNDLAGEN Grundbegriffe Skalen...15

1 GRUNDLAGEN Grundbegriffe Skalen...15 Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Deskriptive Statistik Peter Frentrup Humboldt-Universität zu Berlin 7. November 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November 2017 1 / 27 Übersicht

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten: Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

5 Assoziationsmessung in Kontingenztafeln

5 Assoziationsmessung in Kontingenztafeln 5 Assoziationsmessung in Kontingenztafeln 51 Multivariate Merkmale 51 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt zur Beschreibung

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr