11 Spezielle Funktionen und ihre Eigenschaften

Größe: px
Ab Seite anzeigen:

Download "11 Spezielle Funktionen und ihre Eigenschaften"

Transkript

1 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen zusammenstellen. I) Die Exponentialfunktion zur Basis a Definition 11.1 Für eine positive reelle Zahl 1 a (0, ) definieren wir die Exponentialfunktion zur Basis a als Wir schreiben dann auch exp a : (, ) (0, ) : x exp(x ln(a)) = e x ln(a). a x := exp a (x). Bemerkung 11. Die Exponentialfunktion zur Basis e ist damit die altbekannte Exponentialfunktion, d.h. exp e (x) = exp(x), wenn e die Eulersche Zahl ist. Die im folgenden aufgelisteten Eigenschaften der Exponentialfunktion zur Basis a gelten damit insbesondere für die altbekannte Exponentialfunktion. Graph(exp) Graph(ln) Abbildung 15. Die Graphen der Exponentialfunktion und des Logarithmus zur Basis e Für natürliche und rationale Zahlen x haben wir bereits eine Definition für den Ausdruck a x kennen gelernt. Die neue Definition liefert dabei dasselbe Ergebnis. Satz 11.3 (Eigenschaften der Exponentialfunktionen) Die Exponentialfunktion zur Basis a ist differenzierbar auf R und für a > 1 ist sie streng monoton wachsend, für a < 1 ist sie streng monoton fallend.

2 11. SPEZIELLE FUNKTIONEN UND IHRE EIGENSCHAFTEN 79 Ferner gelten die folgenden Gesetzmäßigkeiten und Regeln: lim exp a(x) = x, für a > 1, 0, für a < 1. lim exp a(x) = x 0, für a > 1,, für a < 1. exp a(x) = ln(a) exp a (x) a x+y = a x a y y exp a (x) dx = 1 ln(a) exp a(y) a x y = (a x ) y (a b) x = a x b x a x = 1 a x II) Der Logarithmus zur Basis a Definition 11.4 Die Umkehrfunktion zur Exponentialfunktion exp a, die nach dem Satz über die Umkehrfunktion 8.19 existiert, wird Logarithmus zur Basis a genannt: log a : (0, ) (, ). Bemerkung 11.5 Der Logarithmus zur zur Basis e ist damit der Logarithmus naturalis, d.h. log e (x) = ln(x), wenn e die Eulersche Zahl ist. Die im folgenden aufgelisteten Eigenschaften des Logarithmus zur Basis a gelten damit insbesondere für den Logarithmus naturalis. Satz 11.6 (Eigenschaften des Logarithmus) Der Logarithmus zur Basis a ist differenzierbar auf (0, ) und für a > 1 ist sie streng monoton wachsend, für a < 1 ist sie streng monoton fallend. Ferner gelten die folgenden Gesetzmäßigkeiten und Regeln: lim log a(x) = x, für a > 1,, für a < 1. log a(x) = 1 ln(a) x lim log a(x) = x 0, für a > 1,, für a < 1. log a (x) = ln(x) ln(a) log a (x z ) = z log a (x) log a (x y) = log a (x)+log a (y) log a ( x y ) = log a(x) log a (y)

3 80 II. ANALYSIS III) Trigonometrische Funktionen Satz 11.7 (Eigenschaften des Sinus und Cosinus) Der Sinus und der Cosinus sind differenzierbar auf ganz R. Der Sinus sin : R [ 1,1] : x ( 1) k x k+1 (k+1)! ist streng monoton wachsend auf [, ]. Der Cosinus cos : R [ 1,1] : x ( 1) k x k (k)! ist streng monoton fallend auf [0, ]. cos k=0 k=0 3 sin 3 Abbildung 16. Die Graphen des Sinus und des Cosinus In der folgenden Tabelle sind einige spezielle Funktionswerte festgehalten: x sin(x) cos(x) Darüberhinaus gelten die folgenden Gesetzmäßigkeiten und Rechenregeln: Ableitungen sin (x) = cos(x), cos (x) = sin(x) Stammfunktionen y sin(x) dx = cos(y), y cos(x) dx = sin(y) Additionstheorem des Cosinus Additionstheorm des Sinus Cosinus ist eine gerade Funktion Sinus ist eine ungerade Funktion cos(x + y) = cos(x) cos(y) sin(x) sin(y) sin(x+y) = cos(x) sin(y)+sin(x) cos(y) cos(x) = cos( x) sin(x) = sin( x) Satz des Pythagoras cos(x) +sin(x) = 1

4 11. SPEZIELLE FUNKTIONEN UND IHRE EIGENSCHAFTEN 81 Nullstellen des Cosinus..., 5, 3,,, 3, 5,... Nullstellen des Sinus..., 3,,,0,,,3,... Cosinus und Sinus sind -periodisch cos(x+) = cos(x), sin(x+) = sin(x) Periodenverschiebung um sin ( x+ ) = cos(x), cos ( x ) = sin(x) Definition 11.8 (Tangens und Cotangens) Die Funktion { } tan : R\ +k k Z heißt Tangens und die Funktion heißt Cotangens. R : x sin(x) cos(x) cot : R\{k k Z} R : x cos(x) sin(x) Satz 11.9 Der Tangens ist auf dem Intervall [, ] differenzierbar und streng monoton wachsend, der Cotangens ist auf dem Intervall [0, ] differenzierbar und streng monoton fallend. Die Graphen beider Funktionen sind punktsymmetrisch zu den Nullstellen. cot tan 3 3 Abbildung 17. Tangens und Cotangens Darüberhinaus gelten die folgenden Gesetzmäßigkeiten und Rechenregeln: Ableitungen tan (x) = 1 cos (x),

5 8 II. ANALYSIS cot (x) = 1 sin (x) Tangens und Cotangens sind ungerade Funktionen tan(x) = tan( x) cot(x) = cot( x) Nullstellen des Tangens..., 3,,,0,,,3,... Nullstellen des Cotanges..., 5, 3,,, 3, 5,... Tangens und Cotangens sind -periodisch tan(x + ) = tan(x) cot(x+) = cot(x) Satz (Arcusfunktionen) a. Die Funktion sin : [, ] [ 1,1] besitzt eine differenzierbare, streng monoton wachsende Umkehrabbildung, die wir Arcussinus nennen, arcsin : [ 1,1] [, b. Die Funktion cos : [0,] [ 1,1] besitzt eine differenzierbare, streng monoton fallende Umkehrabbildung, die wir Arcuscosinus nennen, arccos : [ 1,1] [0,]. c. Die Funktion tan : (, ) R besitzt eine differenzierbare, streng monoton wachsende Umkehrabbildung, die wir Arcustangens nennen, ( arctan : R, ). d. Die Funktion cot : (0,) R besitzt eine differenzierbare, streng monoton fallende Umkehrabbildung, die wir Arcuscotangens nennen, arccot : R (0,). Für die Ableitungen der Funktionen gelten die folgenden Regeln: ]. arctan (x) = 1 1+x arccot (x) = 1 1+x arcsin (x) = 1 1 x arccos (x) = 1 1 x Aufgabe Zeige, die folgenden Gleichungen für den Sinus und Cosinus: sin(x+) = sin(x) und cos(x+) = cos(x).

6 11. SPEZIELLE FUNKTIONEN UND IHRE EIGENSCHAFTEN 83 Aufgabe 11.1 Rechne möglichst viele der in diesem Abschnitt angegebenen Eigenschaften der Exponentialfunktionen, des Logarithmus sowie der trigonometrischen Funktionen nach. Dabei dürfen neben ihren Definitionen auch die Ergebnisse früherer Kapitel sowie früherer Aufgaben verwendet werden. Aufgabe Sei f : R R stetig mit f(x+y) = f(x) f(y) für alle x,y R und f(1) = a > 0. Zeige, dann ist f = exp a. Aufgabe (Additionstheoreme für Tangens und Arcustangens) a. Zeige das folgende Additionstheorem für den Tangens: tan(x+y) = tan(x)+tan(y) 1 tan(x) tan(y), wobei x,y,x+y (, ) gelten soll. b. Folgere daraus das folgende Additionstheorem für den Arcustangens: ( ) x+y arctan(x) + arctan(y) = arctan. 1 xy c. Zeige die Gleichung 4 arctan ( ) ( ) 1 1 arctan =

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

Die trigonometrischen Funktionen

Die trigonometrischen Funktionen Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,

Mehr

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis

Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Mathematik 3 für Informatik im Februar/März 2016 Teil 1: Analysis Funktionen, Stetigkeit Dierentialrechnung Funktionen mit mehreren Variablen Integralrechnung Dierentialgleichungen Teil 2: Wahrscheinlichkeitsrechnung

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Vorkurs Mathematik Teil II. Analysis

Vorkurs Mathematik Teil II. Analysis Vorkurs Mathematik Teil II. Analysis Inhalt 1. Konvergenz 2. Grundlegendes über Funktionen, Stetigkeit, Ableitung und Integral 3. Der Hauptsatz der Differential- und Integralrechnung 4. Elementare Funktionen

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist:

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 15 y 10 5 5 x 10 15 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 98 Sei f : R R eine Funktion. Ist x 0 D(f) eine reelle

Mehr

Rationale Funktionen

Rationale Funktionen Rationale Funktionen Eine Funktion f heißt rational, wenn sich die Funktion f als Quotient zweier Polynome schreiben lässt, d.h. wenn f(x) = P (x) Q(x) gilt. Hierbei bildet die Funktion Elemente aus ihrem

Mehr

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen:

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: für alle x [0,2000]. Das Intervall [0,2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maximalauslastung bei 2000 produzierten Waschmaschinen liegt. Folgende Eigenschaft beschreibt eine

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion

Mehr

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Die Exponentialfunktion und ihre Anwendung in der Biologie

Die Exponentialfunktion und ihre Anwendung in der Biologie Die Exponentialfunktion und ihre Anwendung in der Biologie Escheria coli (kurz E. coli) sind Bakterien, die im Darm von Säugetieren und Menschen leben. Ein junges E. coli Bakterium wächst mit einer konstanten

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018 HM I Tutorium 8 Lucas Kunz. Dezember 08 Inhaltsverzeichnis Theorie. Stetigkeit und Grenzwerte............................ Sinus und Cosinus.................................3 Tangens und Cotangens............................

Mehr

7. Einige Typen von speziellen Funktionen [Kö 8]

7. Einige Typen von speziellen Funktionen [Kö 8] 39 7. Einige Typen von speziellen Funktionen [Kö 8] 7. Analytische Funktionen [Kö 7.3, 4.] Definition. Es sei D C, f : D C und z 0 D ein Häufungspunkt von D. Die Funktion f heißt im Punkt z 0 analytisch,

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen

Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen Übung 6 Funktionen Potenz- / Wurzel- / Trigonom. / Arkus- / Exponential- / Log.-Funktionen PUZZLE Themen 1 Potenz- / Wurzelfunktionen 2 Trigonometrische Funktionen / Arkusfunktionen 3 Exponential- / Logarithmusfunktionen

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017 HM I Tutorium 9 Lucas Kunz. Dezember 017 Inhaltsverzeichnis 1 Theorie 1.1 Exponentialfunktion.............................. 1. Sinus und Cosinus................................ 1.3 Tangens und Cotangens............................

Mehr

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen

Kapitel 3. Funktionen. Grundbegriffe. Grenzwerte bei Funktionen. Stetigkeit. Die elementaren Funktionen. Anwendungen Kapitel 3 Funktionen Grundbegriffe Grenzwerte bei Funktionen Stetigkeit Die elementaren Funktionen Anwendungen Funktionen Grundbegriffe Funktionen und ihre Darstellung Unter einer Abbildung von einer Menge

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Vorkurs Analysis und lineare Algebra. Teil 4

Vorkurs Analysis und lineare Algebra. Teil 4 Vorkurs Analysis und lineare Algebra Teil 4 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil 1 Teil 2 Teil 3 Teil 4 Abbildungen & Funktionen Potenz, Wurzel, Exponential

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D 8 Spezielle Funktionen werden in diesem Abschnitt definiert, also insbesondere Exponentialfunktion, Logarithmusfunktion, die trigonometrischen Funktionen sowie weitere wichtige Funktionen, die mit exp,

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS05 09.0.05 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 6 4... Polynome

Mehr

Mathematischer Vorkurs (2017)

Mathematischer Vorkurs (2017) Mathematischer Vorkurs (2017) Skript für die Natur- und Ingenieurwissenschaften Mathematischer Vorkurs TU Dortmund (2017) Seite 1 / 142 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund (2017)

Mehr

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ;

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ; Einige Graphen spezieller Funktionen Lineare Funktion: f = a C b. Der Graph ist eine Gerade (Linie), der Koeffizient a bei gibt die Steigung der Geraden (den Tangens des Winkels, den die Gerade mit der

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

f(y) f(x) = lim y x y x = 0.

f(y) f(x) = lim y x y x = 0. Analysis, Woche Differentialrechnung II. Mittelwertsatz und Folgen Satz. (Rolle) Sei a, b R mit a < b und f : [a, b] R eine Funktion. Nehmen wir an, dass f stetig ist, dass f (a,b) : (a, b) R differenzierbar

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler Tutorium: Analysis und lineare Algebra Differentialrechnung Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Differenzenquotient Der Di erenzenquotient ist de niert als f(x) x f(x) f(x 0)

Mehr

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017 Inhalt 1 Motivation Einführung in die Mathematik für Wirtschaftswissenschaften Vorlesung im Wintersemester 2017 Kurt Frischmuth Institut für Mathematik, Universität Rostock WS 2017 2 Grundlagen Begriffe

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Kapitel 15: Stetigkeit

Kapitel 15: Stetigkeit Kapitel 15: Stetigkeit 15.1 Der Stetigkeitsbegriff 15.2 Eigenschaften stetiger Funktionen 15.3 Stetigkeit bei Funktionenfolgen und Potenzreihen 15.4 Exponential- und Logarithmusfunktionen 15.5 Trigonometrische

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Funktionen. Kapitel 3

Funktionen. Kapitel 3 Kapitel 3 Funktionen Mit Funktionen werden Zusammenhänge zwischen (zwei oder mehr) Größen beschrieben. Beispielsweise hängen die Herstellungskosten eines Produktes von der Produktmenge ab, oder der Gewinn

Mehr

Mathematischer Vorkurs (2018)

Mathematischer Vorkurs (2018) Mathematischer Vorkurs (2018) Skript für die Natur- und Ingenieurwissenschaften Mathematischer Vorkurs TU Dortmund (2018) Seite 1 / 141 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund (2018)

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS06 30.09.06 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 5 4... Polynome

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Ferienurs Analysis 1 Potenzreihen, Exponentialfuntion, Stetigeit, Konvergenz, Grenzwert Henri Thoma 1.03.014 Inhaltsverzeichnis 1. Potenzreihen:... 1. Exponentialfuntion...

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 8/9) Kapitel 3:Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 8) Abbildungen / Funktionen Definition 3. Eine

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Einführung in die Mathematik für Wirtschaftswissenschaften.

Einführung in die Mathematik für Wirtschaftswissenschaften. Einführung in die Mathematik für Wirtschaftswissenschaften. Mathias Sawall Institut für Mathematik, Universität Rostock WS 2018/2019 Mathias Sawall Einführung in die Mathematik für Wirtschaftswissenschaften

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Vorlesung Mathematik für Ingenieure I (Wintersemester 007/08) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. November 007) Abbildungen / Funktionen Definition

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung.

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung. Kapitel 8: Potenzreihen un elementare Funktionen 8.3 Elementare Funktionen Die Exponentialfunktion ist für z C efiniert urch expz) := k! zk, hat Konvergenzraius r =, un aher ist expz) für alle z C stetig.

Mehr

Abbildung 14: Winkel im Bogenmaß

Abbildung 14: Winkel im Bogenmaß Mathematik für Naturwissenschaftler I. (7) Trigonometrische Funktionen (in R): Trigonometrische Funktionen wie sin x und cos x stehen üblicherweise in Zusammenhang mit Winkeln. Während im Alltag Winkel

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 08 Vorlesung MINT Mathekurs SS 08 / 49 Vorlesung 5 (Lecture 5) Reelle Funktionen einer reellen Veränderlichen

Mehr

E. AUSBAU DER INFINITESIMALRECHNUNG

E. AUSBAU DER INFINITESIMALRECHNUNG 151 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr