Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)"

Transkript

1 R.Niketta Multiple Regressionsanalyse Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) Daten: Selbstdarstellung und Kontaktsuche in studi.vz (POK VIII, AG 3) Fragestellung: Inwieweit wird das Motiv der Kontaktsuche über studi.vz (F29_SUCH) durch folgende Prädiktoren beeinflusst: Äußerliche Merkmale auf den Homepages (Items Das Profilfoto ist mir sehr wichtig, Die Fotos, auf denen die Person verlinkt ist, sind mir sehr wichtig ) (V14_FOTO) Aspekte der Offenheit in der Selbstdarstellung (V32_OFF) Statusaspekte in der Selbstdarstellung (V32_STAN) Initiierung von Interaktionen und Beziehungen als soziale Kompetenz (ICQ_1) Nach dem Klicken von Regression und Linear öffnet sich das Fenster rechts. Hier geben Sie Kriteriumsvariable (Abhängige Variable) und die Prädiktorvariablen (Unabhängige) ein:

2 Über Statistiken sollten Sie zusätzlich folgende Statistiken aufrufen: Deskriptive Statistik: Sie erhalten einen Überblick über die Kennwerte der Variablen, die Gesamtzahl der in der Analyse einbezogenen Fälle und die Korrelationsmatrix der Variablen. Teil- und partielle Korrelationen: Sie geben Auskunft über die Überlappungen (Schnittmengen, im Sinne von Venn- Diagrammen) der Variablen. Die teilpartielle Korrelation kann verwendet werden, um die erklärte Varianz eines einzelnen Prädiktors zu berechnen. Kollinearitätsdiagnose: Die Kennwerte (Toleranz, VIF) sind wichtig, um die Multikollinearität der Prädiktoren abzuschätzen. Fallweise Diagnose: Kann für die Entdeckung von Ausreißern und einflussreichen Fällen wichtig sein. Durbin-Watson: Überprüft, ob die Daten unabhängig sind. Dies kann bei hierarchischen Designs (z.b. Schule, Klasse, Schüler) oder bei Messwiederholungsdesigns wichtig sein. Verletzungen dieser Voraussetzungen sind in der Regel schwerwiegend. Von einer Unabhängigkeit der Daten kann aber bei Umfragen ausgegangen werden, so dass der Koeffizient nicht relevant ist. Änderungen in R-Quadrat: Nur wichtig bei sequenziellen Regressionsanalysen.

3 Bei Diagramme sollten Sie zur Überprüfung der Voraussetzungen folgende Diagramme aufrufen: Streudiagramm zwischen dem standardisierten vorausgesagten Kriterium (ZPRED auf der X- Achse) und den standardisierten Residuen (ZRESID auf der Y- Achse). Dieses Diagramm dient der Überprüfung der Linearität und der Varianzhomogenität ( Homoskedastizität ) Histogramm und Normalverteilungsdiagramm dienen der Überprüfung der Normalverteilung. Diese wird an den Residuen überprüft.

4 Zur Überprüfung von Ausreißern und einflussreichen Fällen können folgende Variablen gespeichert werden: Distanzen: Mahalanobis, Cook sche Distanz und Hebelwerte. Mahalanobis ist ein multivariates Distanzmaß. Die Cook sche Distanz gibt den Einfluss eines Wertes auf die Regressionsgleichung an, wenn der jeweilige Fall von der Berechnung ausgeschlossen wird. Hohe Veränderungen werden durch ein hohen Distanz-Wert angezeigt. Die Hebelwerte weisen auf extreme Werte bei den Prädiktoren hin. Einflussstatistiken: Die standardisierten DfBeta-Werte geben den Einfluss eines Falles für jeden Prädiktor getrennt an. Die Werte werden von SPSS berechnet und an das Ende der Datenmatrix eingefügt. Sie stehen dann als neue Variablen zur Verfügung. Unter Optionen kann u.a. auch die Behandlung fehlender Werte bestimmt werden. Die Voreinstellung ist listenweiser Fallausschluss, d.h. ein Fall wird aus den Berechnungen ausgeschlossen, wenn dieser auf einer Variablen einen fehlenden Wert aufweist. Es folgen die Tabellen der SPSS-Ausgabe:

5 Zur Kontrolle: Deskriptivstatistiken aller Variablen. Die Skalen sind in Richtung der Labels gepolt. V29_SUCH, V14_FOTO, V32_OFF, V32_STAN sind 6er-Skalen. ICQ_1 reicht von -3 bis +3. Korrelationsmatrix. Wichtig: Es können die Interkorrelationen der Prädiktoren abgelesen werden. Günstig: Hohe Korrelationen der Prädiktoren mit dem Kriterium, geringe Korrelationen der Prädiktoren untereinander. Die Korrelationen mit dem Kriterium deuten eine nur geringe erklärte Varianz an. Auch scheinen die Prädiktoren unterschiedlich bedeutsam sein. (Die vollständigen Signifikanzwerte wurden weggelassen)

6 R ist die multiple Korrelation des Kriteriums mit allen Prädiktoren. Die multiple Korrelation ist nichts anderes als die einfache Korrelation r der vorhergesagten Werte mit den beobachteten Werten. R-Quadrat ist die erklärte Varianz und eines der wichtigsten Werte in der Regressionsanalyse. Der Wert ist mit.126 nicht gerade sehr gut, d.h. 13 % der Varianz der Kriteriumsvariablen wurden durch die vier Prädiktoren aufgeklärt. 87 % sind unbekannt. Korrigiertes R Quadrat ist eine Korrektur (Schrumpfung), in die die Zahl der Merkmalsträger und Prädiktoren eingehen. Sie dient der besseren Schätzung der Population. Die Qualität dieser Berechnung ist aber umstritten. Das aufgestellte Modell erklärt also 13 % der Varianz. Vorsicht: Man kann R² künstlich durch die Zahl der Prädiktoren erhöhen, da R² nie kleiner werden kann, wenn die Zahl der Prädiktoren steigt. Der Standardfehler wird für die inferenzstatistische Absicherung der Modells benötigt. Die Varianzanalyse berechnet das Verhältnis von erklärter (Regression) zur nicht erklärten (Residuen) Varianz. Der F- Test ist ein Signifikanztest. Der F-Wert ist mit einem p-wert von <.001 statistisch signifikant. Das vorliegende Modell kann also gegen den Zufall abgesichert werden. Das Modell stammt also nicht aus einer Population mit den Regressionskoeffizienten = 0. Vorsicht: Ob ein Modell statistisch signifikant wird, hängt u.a. vom N der Merkmalsträger ab.

7 SPSS gibt alle weiteren Kennwerte in einer einzigen Tabelle aus. Zur besseren Kommentierung wird diese Tabelle in Bereiche aufgeteilt. Die Koeffizienten für die einzelnen Prädiktoren. In der Spalte RegressionskoeffizientB stehen die Regressionskoeffizienten b. Die Regressionsgleichung lautet also: V29_SUCH = * V14_FOTO * V32_OFF * V32_STAN * ICQ_1 Die Standardfehler der Koeffizienten werden zum Signifikanztest benötigt. Über diesen Standardfehler lässt sich das Vertrauensintervall bestimmen (bei 95 % -Sicherheit). Das Intervall hängt u.a. vom Standardfehler ab und somit vom N, das hier 496 beträgt. Beta sind die standardisierten Regressionskoeffizienten. Sie sagen innerhalb des Modells über den jeweiligen Beitrag des Prädiktors zur Varianzaufklärung etwas aus. Äußere Aspekte spielen in diesem Modell die wichtigste Rolle zur Erklärung der Kontaktsuche., gefolgt von der statusorientierten Selbstdarstellung.

8 Die beta-koeffizienten sind also zentral für die Interpretation des Einflusses der jeweiligen Variablen. Die b- Koeffizienten werden zur Vorhersage benötigt, ein Vergleich zwischen den Prädiktoren ist aber wegen der unterschiedlichen Skalenbreiten nicht sinnvoll. Allerdings muss beachtet werden, dass die beta-koeffizienten wegen der relativen Transformation (Standardisierung) von der jeweiligen Stichprobe abhängen; dies ist bei den Regressionskoeffizienten nicht der Fall; diese können zwischen Stichproben verglichen werden. Die t-tests prüfen jeden einzelnen Prädiktor auf statistische Signifikanz. Im vorliegenden Fall können V14_FOTO, v32_stan und ICQ_1 auf dem 5 %-Signifikanzniveau abgesichert werden.

9 Die Korrelationsspalten geben die drei unterschiedlichen Korrelationskoeffizienten wieder: Die Korrelation Nullter Ordnung ist die einfache Korrelation zwischen der einzelnen Prädiktorvariablen und der Kriteriumsvariablen. Die einfache Korrelation zwischen V14_FOTO und V29_SUCH beträgt also Die partielle Korrelation ist die Korrelationen zwischen der einzelnen Prädiktorvariablen und der Kriteriumsvariablen, nachdem die gemeinsamen Varianz (der Überlappungsbereich in einem Venn-Diagramm) herauspartialisiert wurde, also der reine Einfluss des einzelnen Prädiktors unter Kontrolle der anderen Prädiktoren. Die Partialkorrelation wird aber eher im Rahmen einer Korrelationsanalyse und nicht einer Regressionsanalyse interpretiert. Die Teilkorrelation (Semi-Partial-Korrelation) erfasst auch den reinen Einfluss des einzelnen Prädiktors, allerdings wird der gemeinsame Varianzanteil nur aus den anderen Prädiktoren herauspartialisiert. Werden die Semi-Partial-Korrelationen quadriert, erhält man den Anteil des einzelnen Prädiktors an der erklärten Varianz: V14_FOTO = 0.23² = V32_OFF = ² = V32_STAN = 0.162² = ICQ_1 = ² = Die Partialkorrelationen und die beta-koeffizienten sind kleiner als die einfachen Korrelationen. Dies deutet den Überlappungsbereich der gemeinsamen Varianz an. Dieser kann wie folgt berechnet werden (vgl. Warner, 2008, S. 428): Gemeinsamer Bereich = 1 (0.874 [= 1 - r²] =

10 Im Prinzip ist die Regressionsanalyse beendet. Im Folgenden geht es um das Problem, ob Ausreißer oder einflussreiche Fälle das Ergebnis beeinflussen. Weiterhin wird das Vorliegen von Multikollinearität geprüft. Anschließend sollen die Voraussetzungen überprüft werden, die mit den Prüfverteilungen bei der statistischen Absicherung gegeben sind. Die Tabelle der fallweisen Diagnose zeigt drei Fälle mit standardisierten Residuen (= z-werte) über 3.0. Die Differenzen zwischen vorhergesagten und beobachteten Werten sind beachtlich. Dies bedeutet aber noch lange nicht, dass diese drei Fälle das Regressionsergebnis beeinflussen. Werden diese drei Fälle bei einer nochmaligen Regressionsanalyse entfernt, dann sinkt allerdings in diesem Fall r² von auf 0.109! Der ICQ_1-Prädiktor ist dann nicht mehr statistisch signifikant. In der Tabelle der Residuenstatistik interessieren hier nur die letzten drei Spalten. Der Mittelwert der Mahalanobis-Abstände geht in Ordnung, Sorgen macht aber das Maximum von Nach einer Tabelle der kritischen Werte in Stevens (2009, S. 108, auch ältere Auflagen) beträgt der kritische Wert bei einem N = 500, bei 4 Prädiktoren und einem alpha = 5 % Dieser Wert wird überschritten. Ein einflussreicher Fall gemäß der Cook schen Distanz liegt vor, wenn der Wert > 1 ist. Dies ist auf der anderen Seite nicht der Fall. Nach der Daumenregel nach Urban & Mayerl (2006, S. 188) liegt bei dem zentrierten Hebelwert, der extreme Werte bei den Prädiktoren erfasst, der Kriteriumswert bei (3 * Zahl der Prädiktoren)/N. Im vorliegenden Fall beträgt das Kriterium Mit liegt mindestens ein Fall über diesem Kriterium. Ein Inspektion der Daten zeigt, dass 20 Fälle über liegen, also extreme Werte aufweisen. Während die Cook sche Distanz ein globaler Wert ist, geben die DFBETA-Werte die einflussreichen Fälle für jeden Prädiktor gesondert aus, sie werden von SPSS in die Daten-

11 matrix eingefügt, aber nicht gesondert ausgegeben. Der kritische Wert liegt bei > 2 (vgl. Stevens, 2009, S. 110). Eine Inspektion der Werte zeigt aber, dass der maximale Wert bei 0.4 liegt. Einflussreiche Fälle liegen also nicht vor. Die Tabelle gibt auch weiterhin die Kollinearitätsstatistik aus. mit der die Multikollinearität überprüft werden kann. Die besten Prädiktoren sind orthogonal zueinander, d.h. es bestehen keine linearen Korrelationen. Dies ist selten der Fall. Multikollinearität hat aber einen großen Einfluss auf den Standardfehler, der dann unter Umständen sehr anwächst. Die Lösungen werden sehr instabil. Inwieweit lassen sich lineare Abhängigkeiten unter den Prädiktoren tolerieren? Der Toleranzwert ist daher für die Kollinearitätsdiagnose wichtig: (1 - R 2 i ), d.h. 1 - der multiplen Korrelation des jeweiligen Prädiktors mit den anderen Prädiktoren. Eine geringe Toleranz weist auf lineare Abhängigkeiten mit anderen Prädiktoren hin. VIF (variance inflation factor) baut auf TOLERANCE auf. Im Falle der Unabhängigkeit ist er 1, er steigt mit wachsender linearer Abhängigkeit. Hier ist VIF nahe bei 1, d.h. es gibt nur geringe Anzeichen auf Kollinearität. Urban & Mayerl (2006, S. 232) empfehlen als Daumenregel, dass der Toleranzwert nicht unter 0.25 sein sollte, und der VIF-Wert sollte nicht über 5.0 gehen. SPSS gibt noch eine weitere Kollinearitätsstatistik aus, die auf einer Hauptkomponentenanalyse beruht. Die Ergebnisse sind nicht immer eindeutig und lassen sich schwer interpretieren. Auf sie soll daher nicht eingegangen werden.

12 Beide Diagramme überprüfen an den Residuen, ob Normalverteilung vorliegt. Das Histogramm links zeigt nur leichte Abweichungen von der Normalverteilung. Im P-P-Diagramm werden die beobachteten gegen die erwarteten standardisierten Residuen geplottet. Bei Normalverteilung müssten die Werte auf der eingezeichneten Diagonalen liegen. Dies ist der Fall. Eine der Voraussetzungen ist also erfüllt. Im Übrigen sind Abweichungen von der Normalverteilung nicht sehr schwerwiegend. Dieses Diagramm überprüft die Linearitätsannahme und die Homoskedastizität, also die Homogenität der Varianzen. In beiden Fällen müssten die Werte zufällig streuen, es sollte kein Muster erkennbar sein. Während von einer Linearität ausgegangen werden kann, zeigt sich ein nach rechts größer werdender Trichter. Dies deutet eine Verletzung der Varianzhomogenität an: Hohe Werte der Kontaktsuche (X-Achse) können weniger gut vorhergesagt werden als niedrige Werte. Verletzungen dieser Annahme der Varianzhomogenität sind aber nicht schwerwiegend (vgl. Tabachnick & Fidell, 2007, S. 85, 127)

13 Weiterhin kann gefragt werden, in welchem Konfidenzintervall der Determinationskoeffizient R² liegt. Tabachnick & Fidell (2007, S. 150f) weisen auf ein Programm R2 von Steiger & Fouladi hin, das ihrem Buch beiliegt, aber auch über folgende Adresse frei heruntergeladen werden kann: Im vorliegenden Fall liegt R² zwischen und Ein weiteres Problem betrifft die Generalisierung der Ergebnisse, gerade wenn die Prädiktoren eher unsystematisch oder schrittweise ausgesucht worden sind. Dann müssen die Ergebnisse kreuzvalidiert werden. Wenn eine Kreuzvalidierung, d.h. eine Aufteilung der Stichprobe in zwei Hälften nach dem Zufall nicht möglich ist, bietet sich an, einen adjustierten R²-Koeffizienten zu berechnen. Stevens (2009, S. 96) empfiehlt nicht das adjustierte R² nach der Formel von Wherry, das von SPSS ausgegeben wird. Stevens folgt dem Vorschlag von Herzberg, die Formel von Stein zu übernehmen. Ein kleines DOS-Programm HERZBERG berechnet den adjustierten R²-Wert. Dieser beträgt Das von SPSS ausgegebene R² ist Literatur: Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5. Aufl.). New York: Routledge. Tabachnick, B. & Fidell, L. S. (2007). Using multivariate statistics (5. Aufl.). Boston: Pearson Allyn & Bacon. Urban, D. & Mayerl, J. (2006). Regressionsanalyse: Theorie, Technik und Anwendung (2. Aufl.). Wiesbaden: VS Verlag für Sozialwissenschaften. Warner, R. M. (2008). Applied statistics: from bivariate through multivariate techniques. Thousand Oaks, CA: Sage.

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 9B a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Man kann erwarten, dass der Absatz mit steigendem Preis abnimmt, mit höherer Anzahl der Außendienstmitarbeiter sowie mit erhöhten

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller » SCHRITT-FÜR-SCHRITTANLEITUNG«MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Daniela Keller Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Impressum 2016 Statistik und Beratung Dipl.-Math. Daniela

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS:

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: Kreuzvalidierung. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: SPSS erzeugt eine neue Variable Filter_$. Die herausgefilterten Fälle werden im Datenfenster angezeigt

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Fragen und Antworten zu Kapitel 18

Fragen und Antworten zu Kapitel 18 Fragen und Antworten zu Kapitel 18 (1) Nennen Sie verschiedene Zielsetzungen, die man mit der Anwendung der multiplen Regressionsanalyse verfolgt. Die multiple Regressionsanalyse dient der Kontrolle von

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme SPSS bietet die Möglichkeit, verschiedene Arten von Streudiagrammen zu zeichnen. Gehen Sie auf Grafiken Streu-/Punkt-Diagramm und wählen Sie die Option Einfaches

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Institut für Soziologie Benjamin Gedon. Methoden 2. Regressionsanalyse IV: Transformation und Interaktion

Institut für Soziologie Benjamin Gedon. Methoden 2. Regressionsanalyse IV: Transformation und Interaktion Institut für Soziologie Methoden 2 Regressionsanalyse IV: Transformation und Interaktion Inhalt 1. Zusammenfassung letzte Sitzung 2. Weitere Annahmen und Diagnostik 3. Transformationen zur besseren Interpretierbarkeit

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0 Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0??? Curt Ronniger 2007 Bei Neueinstieg in das Programm, sollte zunächst die Dokumentation XSelDoE10.pdf gelesen werden.

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Datenanalyse mit SPSS spezifische Analysen

Datenanalyse mit SPSS spezifische Analysen Datenanalyse mit SPSS spezifische Analysen Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.015 Sprechstunde: Dienstags 15-16 Uhr 25. Mai 2001 2 Auswertung von Häufigkeitsdaten

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Geschlecht + Anfangsgehalt 14000 399 403 7000 12000 335 Anfangsgehalt 10000 8000 6000 4000 2000 N = 28 63 185 291 227 52 215 158 88 284 193

Mehr

Taschenbuch Versuchsplanung

Taschenbuch Versuchsplanung Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Praxisreihe Qualitätswissen Herausgegeben von Franz J. Brunner Carl Hanser Verlag München Wien VII Inhalt 1 Einführung 1 1.1

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Mediatioranalyse & Moderatoranalyse How to do

Mediatioranalyse & Moderatoranalyse How to do Mediatioranalyse & Moderatoranalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Mediatoranalyse bzw. eine Moderatoranalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem

Mehr

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Dorothea E. Dette-Hagenmeyer Was sind dyadische Daten? Dyadische Daten sind Daten von zwei oder mehreren Personen, die etwas miteinander

Mehr

Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen

Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen Seite 1 von 8 Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen Ziel dieser Lektion: Du weißt, wie Du die einzelnen Voraussetzungen für die Signifikanztests und komplexeren Modelle prüfen

Mehr

Kapitel 22 Partielle Korrelationen

Kapitel 22 Partielle Korrelationen Kapitel 22 Partielle Korrelationen Bereits im vorhergehenden Kapitel wurden mit der Prozedur KORRELATION, BIVARIAT Korrelationskoeffizienten berechnet. Korrelationskoeffizienten dienen allgemein dazu,

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

(2) Mittels welcher Methode ist es im ALM möglich kategoriale Variablen als Prädiktoren in eine Regressionsgleichung zu überführen?

(2) Mittels welcher Methode ist es im ALM möglich kategoriale Variablen als Prädiktoren in eine Regressionsgleichung zu überführen? Beispielaufgaben LÖSUNG (1) Grenzen Sie eine einfache lineare Regression von einem Random Intercept Modell mit nur einem Level1-Prädiktor ab! a. Worin unterscheiden sich die Voraussetzungen? - MLM braucht

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION 2. FS Master Rehabilitationspsychologie, SoSe 2012 Faktorenanalyse/ faktorielle Validität 2 Einleitung Allgemeines zu Faktorenanalysen (FA)

Mehr

Kapitel 23 Lineare Regression

Kapitel 23 Lineare Regression Kapitel 23 Lineare Regression Sowohl einfache als auch multiple Regressionsanalysen können Sie mit dem Befehl STATISTIK REGRESSION LINEAR... durchführen. Dabei lassen sich mit Hilfe diverser Optionen zahlreiche

Mehr

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14 VII 1 Einführung... 1 1.1 Warum Versuche?... 1 1.2 Warum Statistik?... 1 1.3 Warum Versuchsplanung?... 4 1.4 Welche Art von Ergebnissen kann man erwarten?... 6 1.5 Versuche oder systematische Beobachtung?...

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Einfache und multiple Regressionsanalyse / Logistische Regressionsanalyse November 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 28. November 2012: Vormittag

Mehr

Erste Schritte mit SPSS - eine Anleitung

Erste Schritte mit SPSS - eine Anleitung Der Internetdienst für Ihre Online-Umfragen Erste Schritte mit SPSS - eine Anleitung -1- Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Taschenbuch Versuchsplanung

Taschenbuch Versuchsplanung Wilhelm Kleppmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Taschenbuch Versuchsplanung Produkte und Prozesse

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000 INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2 MODUL 13 EINFACHE LINEARE REGRESSION Erziehungswissenschaft/Haider

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Inhalt. Vorwort... 1 Einführung... 1. 2 Ausgewählte Begriffe... 11. 3 Vorgehensweise im Überblick... 17

Inhalt. Vorwort... 1 Einführung... 1. 2 Ausgewählte Begriffe... 11. 3 Vorgehensweise im Überblick... 17 Inhalt Vorwort.................................................................. V Inhalt.................................................................... VII 1 Einführung..........................................................

Mehr

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel:

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren ISBN-10: 3-446-41595-5 ISBN-13: 978-3-446-41595-9 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41595-9

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Erstellen von statistischen Auswertungen mit Excel in den Sozialwissenschaften

Erstellen von statistischen Auswertungen mit Excel in den Sozialwissenschaften Erstellen von statistischen Auswertungen mit Excel in den Sozialwissenschaften Dr. Viola Vockrodt-Scholz Telefon: 030/25 29 93 26 Email: vvs@zedat.fu-berlin.de Dr.Viola.Vockrodt-Scholz@t-online.de www.userpage.fu-berlin.de/~vvs

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr