Multinomiale logistische Regression

Größe: px
Ab Seite anzeigen:

Download "Multinomiale logistische Regression"

Transkript

1 Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable mehr als zwei Ausprägungen (Gruppen) betrachtet werden. Beispiel Eine Parteienforscherin will Einflussfaktoren auf die Wahlentscheidung bei der letzten Bundestagswahl untersuchen. Hierfür hat sie eine Stichprobe von Wählern mit folgenden Variablen 7 : beabsichtigte Wahlentscheidung (0: SPD, 1: CDU/CSU, 3: sonstige Parteien), Alter, Geschlecht, monatliches Bruttoeinkommen und die politische Selbsteinschätzung (auf einer Skala von 1: eher links orientiert bis 5: eher rechts orientiert ). Die Daten haben folgendes Aussehen: Da die abhängige Variable in diesem Fall mehr als zwei Kategorien hat, entschließt sie sich, eine multinomiale logistische Regression durchzuführen. 7 Die Daten stammen aus der allgemeinen Bevölkerungsumfrage der Sozialwissenschaften (ALLBUS) 2004 und sind für ihre Zwecke umgeformt worden. 56

2 Die abhängige Variable kann im multinomialen logistischen Regressionsmodell J nominalskalierte Werte annehmen, wobei diese Werte der abhängigen Variable gleich 1, 2,..., j,..., J sein können. Diesen Zusammenhang kann man dann wie folgt darstellen: P (y i = j) =π ij, (43) mit π ij als Wahrscheinlichkeit für das Auswählen der Kategorie j von Individuum i. Für jedes Individuum gibt es also J mögliche Wahrscheinlichkeiten. Insgesamt gesehen ist eine Kategorie - willkürlich wählbar, hier allerdings die J-te Kategorie - redundant, denn deren Wahrscheinlichkeit kann wie folgt ermittelt werden: π ij =1 (π i1 + π i π ij π i(j 1) ). (44) Da das binäre logistische Regressionsmodell ein Spezialfall des multinomialen logistischen Regressionsmodells ist, kann zunächst auf diese Darstellung zurückgegriffen werden: P (y i =1)=π i = F (z) = ez 1+e = eβ1+β2x2i+...+βkxki+...+βkxki z 1+e β 1+β 2. (45) x 2i +...+β k x ki +...+β K x Ki Die Verallgemeinerung dieses Zusammenhangs kann dann wie folgt dargestellt werden: P (y i = j) =π ij = (46) e β 1j+β 2j x 2i +...+β kj x ki +...+β Kj x Ki 1+e β 11+β 21 x 2i +...+β k1 x ki +...+β K1 x Ki e β 1(J 1) +β 2(J 1) x 2i +...+β k(j 1) x ki +...+β K(J 1) x Ki = e β 1j+β 2j x 2i +...+β kj x ki +...+β Kj x Ki 1+Σ J 1. r=1 e β 1r+β 2r x 2i +...+β kr x ki +...+β Kr x Ki Bei der Betrachtung eines multinomialen logistischen Regressionsmodells bedarf es also der Berücksichtigung einer Referenzkategorie, wobei diese will- 57

3 kürlich gewählt werden kann. Die Wahrscheinlichkeitsaussagen aus Basis dieses Regressionsmodells müssen also vor dem Hintergrund einer Referenzkategorie gemacht werden. Die Schätzung der Koeffizienten wird über die Maximum-Likelihood-Methode vorgenommen. Es gilt also folgende Funktion zu maximieren: max β1,...,β J 1 L(β 1,...,β J 1 ; y 1,...,y J,x 2i,...,x Ki ), (47) Die Likelihoodfunktion kann als Produkt der Einzelwahrscheinlichkeiten P (y i = j) =π ij geschrieben werden: J n L = (π ij ) d ij =(π i1 ) d i1 (π i2 ) d i2... (π ij ) d ij... (π ij ) d ij, (48) j=1 i=1 mit d ij als binär kodiertem Wert, der das Vorhandensein einer Auswahl der j-ten Kategorie widerspiegelt: d ij nimmt den Wert eins an, wenn von Individuum i die j-te Kategorie gewählt wurde (y i = j), sonst ist der Wert gleich null. Die Maximierung der Likelihoodfunktion erfolgt wie im Fall der binären logistischen Regression iterativ und kann z. B. über das Fisher-Scoring-Verfahren erfolgen 8. Die unabhängigen Variablen im multinomialen logistischen Regressionsmodell müssen die gleichen Anforderungen erfüllen wie im binären logistischen Regressionsmodell und somit auch wie im multiplen linearen Regressionsmodell. Die Interpretation der geschätzten Koeffizienten erfolgt so wie im binären logistischen Regressionsmodell, hier allerdings stets vor dem Hintergrund der Referenzkategorie der abhängigen Variable, d. h. also der Referenzkategorie J. 8 Vgl. Fahrmeir et al. (1996) Multivariate statistische Verfahren. 58

4 Güte des multinomialen logistischen Regressionsmodells Zur Beurteilung der Güte eines multinomialen logistischen Regressionsmodells zählen wie im binären logistischen Regressionsmodell besonders 1. verschiedene Bestimmtheitsmaße, 2. das Akaike-Informationskriterium, 3. verschiedene Tests und 4. die Klassifizierungstabelle. Bestimmtheitsmaße Bestimmtheitsmaß nach Cox & Snell und nach Nagelkerke Die Berechnung und Interpretation des Bestimmheitsmaßes nach Cox & Snell und nach Nagelkerke erfolgt wie im binären logistischen Regressionsmodell. Bestimmtheitsmaß nach McFadden Das Bestimmtheitsmaß nach McFadden wird berechnet über RMcF 2 =1 (lnl V ), (49) lnl 0 mit lnl 0 als Log-Likelihood, die auf der Schätzung des Nullmodells basiert und lnl V ist die Log-Likelihood, die sich aus der Schätzung des untersuchten (vollen) Modells ergibt. Der Wertebereich des Bestimmtheitsmaßes nach McFadden ist auf den Bereich zwischen null und unter eins beschränkt. Problematisch bei diesem Gütemaß ist, dass es nur größer werden kann, je mehr unabhängige Variablen in das Modell aufgenommen werden. Um diese Problematik zu umgehen, verwendet man das korrigierte Bestimmtheitsmaß nach McFadden: RMcFk 2 =1 (lnl V K ),mit (50) lnl 0 59

5 K als Anzahl der Koeffizienten, die es im multinomialen logistischen Regressionsmodell zu schätzen gilt. Es gibt also einen Tradeoff zwischen Log- Likelhood und Anzahl der Koeffizienten im Modell; die Erhöhung der Anzahl der Koeffizienten bzw. der unabhängigen Variablen kann mit der korrigierten Version also bestraft werden. Akaike-Informationskriterium Auch bei dem Akaike-Informationskriterium (AIC) verhält es sich so, dass die Zunahme weiterer unabhängiger Variablen in das Modell bestraft werden kann. Es kann nämlich gezeigt werden, dass die Likelihood stets größer wird, je mehr unabhängige Variablen in das Modell aufgenommen werden. Das AIC wird berechnet über: AIC = 2 lnl V +2 P, mit (51) P als Anzahl der zu schätzenden Koeffizienten. Auch in diesem Fall gibt es einen Tradeoff, da sich der erste Teil ( 2 lnl V ) dem zweiten Teil (2 P ) entgegengesetzt verhält 9. Schließlich gilt, dass das AIC möglichst klein sein sollte, um ein gutes Regressionsmodell zu haben. Tests Test der Nullhypothese H 0 : β kj =0 Dieser Test in der multinomialen logistischen Regressionsanalyse ist vergleichbar mit dem Wald-Test in der binären logistischen Regressionsanalyse. Äquivalent hierzu kann also getestet werden, ob einzelne unabhängige Variablen x ki in der j-ten Gleichung signifikant zur Trennung der beiden betrachteten Gruppen beitragen. Es wird bei diesem Test jeweils eine der J 1 Gleichungen separat betrachtet. Die Teststatistik W wird berechnet über 9 Vgl. z. B. Winkelmann et al. (2006) Analysis of Microdata. 60

6 ˆβ k W =( Var( ˆ ˆβ ) 2 (52) k ) und ist asymptotisch χ 2 -verteilt mit einem Freiheitsgrad. H 0 wird dann abgelehnt, wenn W>χ 2 1,1 α. Die Berechnung der Teststatistik erfolgt demnach so wie im binären logistischen Regressionsmodell. Test der Nullhypothese H 0 : β k1 =...= β kj =...= β k(j 1) =0 Dieser Test überprüft, ob die Koeffizienten β k1 =... = β kj =... = β k(j 1), die zu einer unabhängigen Variablen x ki gehören, in allen J 1 Gleichungen gleich null sind. Die Teststatistik LR wird berechnet über LR = 2 logl R ( 2 logl V ), (53) mit logl R als Log-Likelihood, die sich aus dem reduzierten Regressionsmodell ohne die Variable x ki - aber mit allen übrigen betrachteten Variablen - ergibt. Die Teststatistik ist χ 2 -verteilt mit J 1 Freiheitsgraden. H 0 wird dann abgelehnt, wenn LR > χ 2 (J 1),1 α. Mit diesem Test kann auch überprüft werden, ob mehr als eine unabhängige Variable signifikant zur Trennung der Gruppen beiträgt. Test der globalen Nullhypothese H 0 : β k1 =... = β kj =...= β k(j 1) =0 für j =1,...,(J 1) Dieser Test überprüft, ob die Koeffizienten β k1 =... = β kj =... = β k(j 1), die zu allen unabhängigen Variablen x ki gehören, in allen J 1 Gleichungen gleich null sind. Die Teststatistik LR wird berechnet über LR = 2 logl 0 ( 2 logl V ), (54) mit logl 0 als Log-Likelihood, die sich aus dem Null-Regressionsmodell ohne die Variablen x ki,k =2,...,K ergibt, d. h. die Log-Likelihood des Null- Regressionsmodells wird inklusive des Absolutgliedes geschätzt. Die Teststa- 61

7 tistik ist χ 2 -verteilt mit 2 (K 1) Freiheitsgraden. H 0 wird dann abgelehnt, wenn LR > χ 2 (2 (K 1)),1 α. Test der IIA-Annahme Die IIA-Annahme (independence of irrelevant alternatives, also die Unabhängigkeit von irrelevanten Alternativen) wird bei der Schätzung eines multinomialen logistischen Regressionsmodells implizit angenommen und kann mit dem Hausman-McFadden-Test überprüft werden. Diese Annahme besagt, dass die Aussagen bezüglich der Wahrscheinlichkeiten bzw. der Wahrscheinlichkeitsverhältnisse (odds) derj Kategorien der abhängigen Variable unabhängig gemacht werden können von weiteren Kategorien (z. B. J +1) bzw. von weggelassenen Kategorien (z.b. J 1). Die Nullhypothese dieses Tests lautet H 0 : IAA gilt. Die Teststatistik wird beispielsweise über folgenden Ansatz berechnet: 1. Schätzung aller Koeffizienten des vollen Modells: ˆβ V. 2. Schätzung eines reduzierten Modells mit Ausschluss einer Alternative hinsichtlich der abhängigen Variable: ˆβ R. 3. Seien nun ˆβ V Koeffizientenschätzer des vollen Modells, wobei die unter Schritt zwei ausgelassene Kategorie in ˆβ V nicht mehr berücksichtigt sei. Die für diesen Test relevante Teststatistik H wird dann über folgenden Ansatz berechnet: H =(ˆβ R ˆβ V ) { Var( ˆ ˆβ R ) Var( ˆ ˆβ V )} 1 ( ˆβ R ˆβ V ). (55) Diese Teststatistik ist χ 2 -verteilt mit der Anzahl an geschätzten Koeffizienten in ˆβ R (H) als Anzahl der Freiheitsgrade. H 0 wird dann abgelehnt, wenn H>χ 2 H,1 α.wirdh 0 also abgelehnt, so muss von einer Verletzung der IIA-Annahme ausgegangen werden. 62

8 Klassifizierungstabelle Die Klassifizierungstabelle gibt absolute und relative Häufigkeiten der richtig durch das Modell klassifizierten Beobachtungen wider. Sie vergleicht also die empirisch gegebene Konstellation vor der Schätzung des multinomialen logistischen Regressionsmodells mit der sich durch die Modellprognose ergebende Situation für die betrachteten Objekte nach der Schätzung des Regressionsmodells. Im Vergleich zur binären logistischen Regression wird hier aber nicht eine Vier-Felder -Beurteilung unternommen, sondern eine Beurteilung höherer Ordnung: Für drei Merkmalsausprägungen der abhängigen Variable ergäbe sich z. B. eine Neun-Felder -Beurteilung. Beispiel (fortgesetzt) Die Parteienforscherin möchte ihr geschätztes multinomiales logistisches Regressionsmodell genauer beleuchten. Hierzu betrachtet sie zunächst die Modellanpassung: Mit den angezeigten Werten kann sie die globale Nullhypothese H 0 : β k1 =... = β kj =... = β k(j 1) =0für j =1,...,(J 1) überprüfen. Ihre Teststatistik LR ergibt sich als Differenz von 2 logl 0 ( 2 logl V ) und beträgt hier 2929, , 783 = 312, 574. Zu jedem vorgegebenen 63

9 Signifikanzniveau α wird diese Nullhypothese abgelehnt, so dass sie bezüglich dieses Gütekriteriums von einem gut spezifizierten Modell ausgehen kann. Desweiteren interessieren sie aber noch andere Gütekriterien. Die Bestimmtheitsmaße weisen ihrer Meinung nach angemessene Werte aus. Zudem möchte sie überprüfen, wie es sich mit der Nullhypothese H 0 : β k1 =... = β kj =... = β k(j 1) = 0 verhält. Sie möchte also überprüfen, ob die einzelnen unabhängigen Variablen Alter, Geschlecht, monatliches Bruttoeinkommen und die politische Selbsteinschätzung signifikant zur Trennung der Auswahlkategorien beitragen. 64

10 Zu einem Signifikanzniveau von α = 0, 05 bereitet ihr lediglich die Variable Geschlecht sorgen, so dass sie in Erwägung zieht, eine multinomiale logistische Regression ohne diese unabhängige Variable zu schätzen. Betrachtet werden in allen Fällen jeweils folgende Teststatistiken: LR = 2 logl R ( 2 logl V ). Für die unabhängige Variable Alter ergibt sich also die Teststatistik LR als 2635, , 783 = 18, 937. Auf dieser Basis wird H 0 demnach abgelehnt und sie kann davon ausgehen, dass die Variable Alter signifikant zur Trennung der Auswahlkategorien (beabsichtigte Wahlentscheidung) beiträgt. Schließlich möchte sie noch wissen, ob die Variable Geschlecht separat betrachtet ebenfalls problematisch ist. Sie testet also die Nullhypothese H 0 : β kj = 0 in beiden Gleichungen. 65

11 Auch bei dieser Betrachtung erweist sich diese Variable als problematisch. In der obigen Schätzung ist es beispielsweise so, dass dort die relevante Nullhypothese abgelehnt wird, da die Teststatistik W gleich ( 0,092 0,156 )2 =0, 346 ist und auf dieser Basis die Nullhypothese zu einem Signifikanzniveau von α =0, 05 nicht abgelehnt werden kann. Mit der Klassifikationstabelle ist sie nicht gänzlich zufrieden, da lediglich 55, 9% aller befragten Personen richtig durch das Modell klassifiziert wurden. 66

12 Besonders erstaunt sie die große Variation der richtig Klassifizierten bei den unterschiedlichen Parteien: Bezüglich der SPD wurden 13, 1%, der CDU/CSU 87, 4% und bezüglich der sonstigen Parteien 43, 0% richtig klassifiziert. Schließlich möchte sie noch wissen, wie hoch die einzelnen Wahrscheinlichkeiten für die befragten Personen waren, eine der drei Auswahlkategorien zu wählen, also die durch das Regressionsmodell geschätzten Wahrscheinlichkeiten für die beabsichtigte Wahl. 67

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen Modelle mit Interationsvariablen I Modelle mit Interationsvariablen II In der beim White-Test verwendeten Regressionsfuntion y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 1 + β 4 x 2 2 + β 5 x 1 x 2, ist anders

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Multivariate Analyseverfahren

Multivariate Analyseverfahren Multivariate Analyseverfahren Logistische Regression Prof. Dr. Stein 14.01.2014 & 20.01.2014 1 / 62 Inhaltsverzeichnis 1 Grundidee 2 3 4 5 2 / 62 Der Erklärungsgegenstand Soziale Forschungsgegenstände

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Logistische Regression

Logistische Regression TU Chemnitz SoSe 2012 Seminar: Multivariate Analysemethoden 26.06.2012 Dozent: Dr. Thomas Schäfer Logistische Regression Ein Verfahren zum Schätzen von Wahrscheinlichkeiten Referentinnen: B. Sc. Psych.

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Abschlussklausur (60 Minuten), 15. Juli 2014

Abschlussklausur (60 Minuten), 15. Juli 2014 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 9B a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Man kann erwarten, dass der Absatz mit steigendem Preis abnimmt, mit höherer Anzahl der Außendienstmitarbeiter sowie mit erhöhten

Mehr

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen Analyse von Querschnittsdaten Regression mit Dummy-Variablen Warum geht es in den folgenden Sitzungen? Datum Vorlesung 9.0.05 Einführung 26.0.05 Beispiele 02..05 Forschungsdesigns & Datenstrukturen 09..05

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

Analyse von Tabellen und kategorialen Daten

Analyse von Tabellen und kategorialen Daten Hans-Jürgen Andreß Jacques A. Hagenaars Steffen Kühnel Analyse von Tabellen und kategorialen Daten Log-lineare Modelle, latente Klassenanalyse, logistische Regression und GSK-Ansatz Mit 32 Abbildungen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Klausur Sommersemester 2010

Klausur Sommersemester 2010 Klausur Sommersemester 2010 Lehrstuhl: Wirtschaftspolitik Prüfungsfach: Empirische Wirtschaftsforschung Prüfer: Prof. Dr. K. Kraft Datum: 04.08.2010 Hilfsmittel: Nicht-programmierbarer Taschenrechner Klausurdauer:

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) :

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) : Prof. Dr. E. Mammen SEMINAR FÜR STATISTIK Prof. Dr. H. Stenger UNIVERSITÄT MANNHEIM Vierstündige Klausur in statistischer Methodenlehre 9. Juli 003; 8:30 - :30 Zulässige Hilfsmittel: keine, insbesondere

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation Einführung in die Logistische Regression Fortbildung zur 9.Informationstagung Tumordokumentation Bernd Schicke, Tumorzentrum Berlin FB Bayreuth, 29.März 20 Gliederung Einleitung Schätzen von Maßzahlen

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Mehrgleichungsmodelle

Mehrgleichungsmodelle Mehrgleichungsmodelle Stichwörter: Typen von Mehrgleichungsmodellen multivariates Regressionsmodell seemingly unrelated Modell interdependentes Modell Schätzen der Parameter Bestimmtheitsmass Spezifikationstests

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

DOE am Beispiel Laserpointer

DOE am Beispiel Laserpointer DOE am Beispiel Laserpointer Swen Günther Ein wesentliches Ziel im Rahmen der Neuproduktentwicklung ist die aus Kundesicht bestmögliche, d.h. nutzenmaximale Konzeption des Produktes zu bestimmen (vgl.

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil Name, Vorname Matrikelnr. Studiengang E-Mail-Adresse Unterschrift

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression I

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression I Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression I Programm Ergänzung zu letzter Sitzung: Interpretation nichtlinearer Effekte Anwendungsbereich der logistischen Regression Entwicklung

Mehr

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns 2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

6.2 Regressionsanalyse

6.2 Regressionsanalyse c-kennzahlensystem (ROCI) 6. Regressionsanalyse Die Regressionsanalyse zählt zu den wichtigsten Analysemethoden des Kommunikationscontrollings und hat ihre tiefen Wurzeln in der Statistik. Im Rahmen des

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Übungen zur Veranstaltung Statistik 2 mit SPSS

Übungen zur Veranstaltung Statistik 2 mit SPSS Raum 22, Tel. 39 4 Aufgabe 5. Wird der neue Film MatchPoint von Woody Allen von weiblichen und männlichen Zuschauern gleich bewertet? Eine Umfrage unter 00 Kinobesuchern ergab folgende Daten: Altersgruppe

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1)

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1) Klausur: Einführung in die Ökonometrie Prüfer: Prof. Dr. Karl-Heinz Paqué Dr.Ludwigv.Auer Semester: WS 1999/00 Als Hilfsmittel sind zugelassen: nicht-programmierbarer Taschenrechner Diese Klausur besteht

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

IBM SPSS Regression 22

IBM SPSS Regression 22 IBM SPSS Regression 22 Hinweis Vor Verwendung dieser Informationen und des darin beschriebenen Produkts sollten die Informationen unter Bemerkungen auf Seite 33 gelesen werden. Produktinformation Diese

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0 Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0??? Curt Ronniger 2007 Bei Neueinstieg in das Programm, sollte zunächst die Dokumentation XSelDoE10.pdf gelesen werden.

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr

Statistische Modellierung Merkblatt

Statistische Modellierung Merkblatt Inhaltsverzeichnis Statistische Modellierung Merkblatt Welches Modell nimmt man wann?... 1 Logit:... 2 Probit:... 2 Poisson:...2 Loglinear:... 2 multinomiales Logit:... 2 Ordinales Logit (PROC LOGISTIC

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung

Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung Eine Einführung für Anwender - Marcel Erlinghagen - Gelsenkirchen, Oktober 2003 Gliederung

Mehr

Marktliquidität von Aktien

Marktliquidität von Aktien Marktliquidität von Aktien Inauguraldissertation zur Erlangung der Würde eines Doctor rerum oeconomicarum der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität Bern Lukas Roth Die Fakultät

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Binäre Auswahlmodelle (Logit, Probit,...)

Binäre Auswahlmodelle (Logit, Probit,...) Binäre Auswahlmodelle (Logit, Probit,...) 27. November 204 In diesem Kapitel führen wir eine Klasse von Modellen für binäre Auswahlprobleme ein, deren wichtigste Vertreter das Logit- und das Probit-Modell

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Kap. 9: Regression mit einer binären abhängigen Variablen

Kap. 9: Regression mit einer binären abhängigen Variablen Kap. 9: Regression mit einer binären abhängigen Variablen Motivation Lineares Wahrscheinlichkeitsmodell Probit- und Logit-Regression Maximum Likelihood Empirisches Beispiel: Analyse der HMDA-Daten Ausblick:

Mehr