Praktikumsbericht über das studienbegleitende. fachdidaktische Praktikum

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Praktikumsbericht über das studienbegleitende. fachdidaktische Praktikum"

Transkript

1 Universität Bayreuth Sommersemester 2004 Praktikantin: Nicole Weiß Kulmbacher Str Heinersreuth Studiengang: Lehramt Hauptschule, 4. Semester Praktikumsbericht über das studienbegleitende fachdidaktische Praktikum Anschrift der Schule: Verbandsschule Robert- Kragler- Volksschule Am hohen Weg Creußen Praktikumslehrer: Herr Mann Jahrgangsstufe: 8. Klasse Thema der eigenen Unterrichtsstunde: Der Kreisumfang 1

2 1. Sachanalyse Zu den Eigenschaften Der Kreis ist der geometrische Ort aller Punkte einer Ebene, die von einem festen Punkt dieser Ebene, dem Mittelpunkt, einen konstanten Abstand haben, der als Radius bezeichnet wird. Zum Unterschied von der durch einen Kreis in der Ebene abgegrenzten Fläche, der Kreisfläche, wird der Kreis selbst als Kreisumfang bezeichnet. Die gerade Verbindungsstrecke zweier Punkte auf der Kreislinie, die durch den Mittelpunkt führt, ist der Kreisdurchmesser, der doppelt so groß ist wie der Radius des Kreises. Zur Kreiszahl Die Berechnung der Kreiszahl Pi beruht auf einem zuerst von Archimedes angewandten Verfahren, wobei sich sowohl der Umfang als auch die Fläche des Kreises als Grenzwert unendlicher Folgen von Vielecken, die einem Kreis ein- bzw. umbeschrieben sind, ergibt. Der aus dem Kreisumfang und dem Durchmesser gewonnene Proportionalitätsfaktor wird mit dem griechischen Buchstaben Pi bezeichnet. Die ersten 30 Stellen der konstanten Kreiszahl Pi lauten: Pi = 3, Gebräuchliche Näherungswerte sind: Pi = 3,14 Pi = 3 1/7 2. Lernziele Richtziel: Der Mathematikunterricht stellt sich die Aufgabe, einen bedeutsamen Beitrag zur Allgemeinbildung der Hauptschüler zu leisten. Er soll sie befähigen, vor allem wirtschaftliche und technische Sachverhalte des Alltagslebens mit mathematischen Mitteln zu erfassen, zu durchdringen und aus ihnen erwachsende Fragestellungen und Probleme zu lösen. Der Unterricht schafft die Grundlage für die Bewältigung mathematischer Aufgaben in Arbeits- und Berufswelt sowie in weiteren Bildungsgängen. Dabei orientiert er sich an der mathematischen Wissenschaft, den Anforderungen einer von Technik und Information geprägten Gesellschaft, den Interessen und dem Lern- und Leistungspotenzial der Hauptschüler. Grobziel: Handlungsorientiertes Vorgehen soll ihnen die Ermittlung des Umfangs und des Flächeninhalts beim Kreis ermöglichen. Auf diese Weise finden die Schüler Näherungswerte für die Kreiszahl Pi. 2

3 Aussagen des amtlichen Lehrplans: Vielecke und Kreis Umfang und Flächeninhalt von unregelmäßigen Vielecken Umfang und Flächeninhalt beim Kreis; Kreiszahl Pi Kreisbögen, Kreisausschnitte, Kreisringe und zusammengesetzte Flächen Feinziele: Schüler sollen: erkennen was der Kreisumfang ist. den Kreis wiederholen ( Durchmesser, Radius, Mittelpunkt ). Kreisumfang und Kreisdurchmesser errechnen. durch gemessene Werte Pi errechnen. verschiedene Varianten der Formel (durch Umstellen) kennenlernen. 3. Konzeption der Unterrichtseinheit Zeit Artikulation Geplantes Lehrerverhalten 8 min Einführung Lehrer zeigt vier verschieden große Topfuntersetzer aus Sperrholz, Aufgabe: Untersetzer sollen mit Zierband eingefasst werden. Wieviel Meter Band werden benötigt? Erwartetes Schülerverhalten Schüler sollen zeigen was berechnet werden soll. Umfang des Kreises 2 Möglichkeiten: 1. bewegliches Maßband, Schnur 2. Abrollmethode Arbeitsform Medien 8 min Austeilen von Schnüren und Holz- platten 2 min Vortragen der Ergebnisse Arbeitsauftrag: mit den Schnüren den Unfang des Kreises bestimmen. L. teilt Arbeitsblatt (Tabelle) aus. Malt Tabelle an die Tafel und hilft gegebenenfalls. Lehrer schreibt Ergebnisse in Tabelle an Tafel. Schüler legen Schnur um Holzplatten und messen die Länge der Schnur, tragen Ergebnisse in Tabelle ein. Schüler verbessern gegebenenfalls und tragen ihre Ergebnisse vor. Partnerarbeit Tafel 3

4 5 min Erarbeitung/ Wiederholung von bereits Gelernten L. stellt Frage: Was steht in direktem Zusammenhang mit dem Kreisumfang? L. zeichnet gegebenenfalls Kreis an die Seitentafel und trägt die wichtigen Größen ein. 5 min L. hilft gegebenenfalls, erweitert Tabelle und trägt Ergebnisse ein. 2 min Errechnung von Pi Arbeitsauftrag: Berrechnung des Verhältnisses von Umfang zu Durchmesser. Eintragen in Tabellen Schüler vergleichen Untersetzer: => Durchmesser ( wird durch den Mittelpunkt des Kreises gemessen) Schüler messen die Durchmesser, erweitern Tabelle und tragen Ergebnisse ein. Schüler errechnen den Quotienten U/d (mit Taschenrechner), Eintragen in Tabelle 2 min Eingehen auf Pi Was fällt auf? Schüler: Näherungswert. 5 min Hefteintrag Tafelanschrift Schüler schreiben ab, stellen Formel um 5 min Genaue Berrechnung des Umfangs mit Hilfe der Formeln 3 min Verbesserung/ Stellung der Hausaufgaben Arbeitsauftrag L. vergleicht Ergebnisse der Schüler, bespricht Hausaufgabe Schüler machen neue Tabelle ins Heft und rechnen Schüler tragen Ergebnisse vor und tragen diese in Tabelle ein, schauen sich Hausaufgaben an. Tafel 3.1. Arbeitsblatt Der Kreisumfang ( Tabelle wird im Unterricht weitergeführt) U 4

5 S1 S2 S3 S geplanter Hefteintrag U/d = 3,14 U = 3,14*d d = U/3,14 d = 2*r => r = d/2 4. Einschätzung der Klasse Es handelt sich um eine achte Klasse, bestehend aus 17 Schülern (11 Jungen und 6 Mädchen). Die Schüler sind in einem schwierigen Alter und somit nicht sehr leicht zu unterrichten. Es ist nur schwer möglich das Interesse der Schüler zu wecken. Man muss die Schüler öfters ermahnen, damit sie dem Unterricht folgen. Es kommt ununterbrochen zu Störungen durch Schwätzen. Es sind jedoch meistens die gleichen Schüler, die die Schulstunde unterbrechen. Jedoch werden natürlich hierdurch die anderen Schüler, die versuchen aufzupassen, auch abgelenkt. Zwei Schüler dieser Klasse sind besonders schwierig. Sie werden jetzt noch die achte Klasse beenden, um ihre Schulpflicht zu erfüllen, sie sind nämlich schon einmal sitzen geblieben. Danach werden sie in einem berufsvorbereitenden Programm aufgenommen, welches von der IHK unterstützt wird. Die Schwierigkeit bei diesen Beiden besteht in der Tatsache, dass ihnen wirklich alles egal ist. Sie bleiben auch öfters unentschuldigt vom Unterricht fern oder gehen einfach nach der zweiten Stunde nach Hause. Sie wurden auch schon öfters vom Unterricht ausgeschlossen. Der Großteil der Klasse ist sehr faul. Dies bemerkt man vor allem dann, wenn man die nicht gemachte Hausaufgabe überprüfen will. Trotz der leichten Aufgaben, die laut des Lehrers dem Niveau der 7. Klasse entsprechen, begründen die Schüler ihre unvollständige Hausaufgaben mit Ausreden wie Ich habe es versucht, war aber zu schwer. Nur mit viel Mühe gelingt es dem Lehrer seine Schüler immer wieder zu motivieren. Trotz der Faulheit und der immer wiederkehrenden Unruhe war die Klasse mir gegenüber immer sehr freundlich und respektvoll, eingeschlossen der 2 Querulanten. Bei der von mir gehaltenen Unterrichtsstunde wurde mitgearbeitet und es herrschte auch größtenteils Ruhe. 5. Was hätte ich besser machen können? Scheiben mit Beschriftung versehen. Schüler wussten nicht genau, ob sie Scheibe 1, 2, 3 oder 4 hatten. 5

6 Scheiben vor dem Unterrichtsbeginn ordnen. Beim Austeilen der Scheiben bin ich durcheinander gekommen. Beim Erkennen des Näherungswertes Pi durch die Schüler habe ich zu stark nachgeholfen und ihnen zu wenig Zeit gelassen. Hätte mehr auf Pi eingehen sollen. (z.b. hätte ich erwähnen sollen, dass der Näherungswert unendlich viele Stellen nach dem Komma hat) Habe die anfangs gestellte Aufgabe nicht rechnen lassen aus Zeitmangel. Hätte das Umstellen der Formeln mit bereits bekanten Gleichungen (mit x) unterstützen sollen. 6

Kreis Kreisabschnitt Kreissegment Kreisbogen

Kreis Kreisabschnitt Kreissegment Kreisbogen Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)

Mehr

Äquatoraufgabe. Der Äquator

Äquatoraufgabe. Der Äquator Humboldt Universität zu Berlin Datum: 06.01.09 Institut für Mathematik SE: Ausgewählte Kapitel der Didaktik der Mathematik (Computerunterstützter Mathematikunterricht) Dozent: I. Lehmann Autor: A. Gielsdorf

Mehr

4.7 Der goldene Schnitt

4.7 Der goldene Schnitt 4.7 Der goldene Schnitt Aus Faust I: MEPHISTO: Gesteh' ich's nur! Dass ich hinausspaziere,verbietet mir ein kleines Hindernis: Der Drudenfuß auf Eurer Schwelle --- FAUST: Das Pentagramma macht dir Pein?

Mehr

2008.II.2.Verbesserung Haushaltsplan einer Familie UE zur Prozentrechnung

2008.II.2.Verbesserung Haushaltsplan einer Familie UE zur Prozentrechnung 2008.II.2.Verbesserung Haushaltsplan einer Familie UE zur Prozentrechnung 1. Sachanalyse zu Prozentrechnung Die Prozentrechnung ist ein Anwendungsgebiet der Bruchrechnung. Zur erfolgreichen Bewältigung

Mehr

Themenbereich: Mathematik 7

Themenbereich: Mathematik 7 Themenbereich: Mathematik 7 Lehreinheit : 7.4.1 Geometrische Flächen Name : Scheglmann, Richard Schule : MS USH Stundenthema: Wie viele brauchen wir für das neue Schullogo? Datum : 10.05.2011 Klasse :

Mehr

Du erhältst jeweils ein Lösungswort: a), b). 10 cm 31,4 dm (O) 3,7 cm 1086,4 mm (L) 7 cm 3,8 m (T) 11,5 m 6091,6 m (B)

Du erhältst jeweils ein Lösungswort: a), b). 10 cm 31,4 dm (O) 3,7 cm 1086,4 mm (L) 7 cm 3,8 m (T) 11,5 m 6091,6 m (B) Kreise und Vielecke Kreisumfang berechnen Material: Zirkel und Faden 1 a) Zeichne den, den Radius und den Durchmesser des Kreises mit verschiedenen Farben ein. Beschrifte die Zeichnung. b) Bestimme alle

Mehr

Unterrichtseinheit: Das sichere Überqueren einer Straße (2. Klasse)

Unterrichtseinheit: Das sichere Überqueren einer Straße (2. Klasse) Pädagogik Franziska Reichel Unterrichtseinheit: Das sichere Überqueren einer Straße (2. Klasse) Unterrichtsentwurf Heimat- und Sachunterricht Grundschule 2. Schuljahr von Franziska Meier Studentin für

Mehr

Daten des aktuellen regelmäßigen 6-Ecks

Daten des aktuellen regelmäßigen 6-Ecks Wie groß ist der Umfang eines regelmäßigen 6-Ecks, das einen Flächeninhalt von 200 cm² hat? Geben Sie die Eckenzahl 6 ein und klicken Sie "Bestätige Eckenzahl". Wählen Sie als bekannte Größe die Fläche.

Mehr

Die magische Welt der Zahlen Teil 3. Irina Dück MAGISCHE ZAHLEN UND IHRE BEDEUTUNG. Lehrerinformationen und Arbeitsblätter

Die magische Welt der Zahlen Teil 3. Irina Dück MAGISCHE ZAHLEN UND IHRE BEDEUTUNG. Lehrerinformationen und Arbeitsblätter Die magische Welt der Zahlen Teil 3 Irina Dück MAGISCHE ZAHLEN UND IHRE BEDEUTUNG Lehrerinformationen und Arbeitsblätter Lehrerinformation 1 LEHRERINFORMATION Der griechische Buchstabe π (Pi) zur Bezeichnung

Mehr

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz 2009 Zusammenfassung Wenn es dich schon immer interessiert

Mehr

1.2 Einführung der Zahl Dominik Schomas Clemens Blank

1.2 Einführung der Zahl Dominik Schomas Clemens Blank 1.2 Einführung der Zahl Dominik Schomas Clemens Blank Die Zahl wird über den konstanten Quotienten eingeführt. Der Umfang sowie der Durchmesser werden von den Schülern experimentell gemessen mit und in

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren 4 Wochen Geometrie Erfassen Grundbegriffe, Kreisfläche, Kreislinie, Radius, Mittelpunkt, Durchmesser kennen, benennen und differenzieren Benennungen beim Winkel, Scheitel, Beschriftungen Neben, Scheitel,

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - 1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Übungen für zwischendurch - 9./10. Schuljahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Übungen für zwischendurch - 9./10. Schuljahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Übungen für zwischendurch - 9./10. Schuljahr Das komplette Material finden Sie hier: Download bei School-Scout.de Inhalt Vorwort

Mehr

Sicheres Wissen und Können zum Kreis 1

Sicheres Wissen und Können zum Kreis 1 Sicheres Wissen und Können zum Kreis 1 Die Schüler können Figuren als Kreise erkennen und Kreise nach gegebenen Maßen mit dem Zirkel zeichnen. Die Schüler beherrschen folgende Bezeichnungen: Mittelpunkt

Mehr

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel:

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel: Download Michael Franck Basics Mathe Flächenberechnung Kreisfläche Downloadauszug aus dem Originaltitel: Basics Mathe Flächenberechnung Kreisfläche Dieser Download ist ein Auszug aus dem Originaltitel

Mehr

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 16. November 12 Inhaltsverzeichnis 1 Kreisberechnungen 1 1.1

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 5 Lehrwerk: Fundamente der Mathematik 5, Schroedel-Verlag, ISBN 978-3-06-040348-6 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Näherungsverfahren zur Berechnung von Pi Ein- und Umbeschreibung von regelmässigen n-ecken

Näherungsverfahren zur Berechnung von Pi Ein- und Umbeschreibung von regelmässigen n-ecken Näherungsverfahren zur Berechnung von Pi Ein- und Umbeschreibung von regelmässigen n-ecken Erarbeitet von: Klasse: Freitag, den 13. Februar 009 Dominik Tanner KP-E Patrick Zauta Claudio Wilda Oliver Vanoni

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

9.2 Augensummen beim Würfeln mit zwei Würfeln

9.2 Augensummen beim Würfeln mit zwei Würfeln 9.2 Augensummen beim Würfeln mit zwei Würfeln Thema der Unterrichtsstunde Augensummen beim Würfeln Beschreibung der Lerngruppe Die Klasse 6 setzt sich aus 9 Schülerinnen und 2 Schülern (im Folgenden kurz

Mehr

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln. Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren

Mehr

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung Lösungsvorschlag 2006/I,2: 1. Erläutern Sie die Beziehung zwischen gewöhnlichen Brüchen und Dezimalbrüchen. 2. Beschreiben

Mehr

Klassenarbeit im Fach Mathematik, Nr.:

Klassenarbeit im Fach Mathematik, Nr.: Klassenarbeit im Fach Mathematik, Nr.: (Bearbeitungszeit: 40 Minuten) Bitte ausfüllen: Name: Vorname: Klasse: Datum: Bitte nicht ausfüllen: Punktzahl: Note: Mündliche Bemerkung: Teilnote: von max. 24 Aufgabe

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Geometrie Jahrgangsstufe 5

Geometrie Jahrgangsstufe 5 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau

Mehr

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5 Seite 1 von 8 Schulinternes Curriculum Mathematik Jahrgang 5 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene bereiche inhaltsbezogene bereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Natürliche Zahlen und Größen - große Zahlen - Stellentafel - Zahlenstrahl - Runden - Geld, Länge, Gewicht,Zeit

Mehr

Inhaltsverzeichnis. Hinweise für den Benutzer Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)...

Inhaltsverzeichnis. Hinweise für den Benutzer Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)... Inhaltsverzeichnis Hinweise für den Benutzer... 6 1. Wiederholung 8. Klasse Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)... 11 2. Prozent- und Zinsrechnung

Mehr

Spannungsmessung im Physikunterricht

Spannungsmessung im Physikunterricht Lösungsvorschlag zur Staatsexamensaufgabe Frühjahr 2007 Thema 1 Spannungsmessung im Physikunterricht 1.a Der Begriff der elektrischen Spannung bereitet vielen Schülerinnen und Schülern erhebliche Lernschwierigkeiten.

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben

Mehr

Drei Kreise Was ist zu tun?

Drei Kreise Was ist zu tun? 1 Drei Kreise Der Radius der Kreise beträgt drei Zentimeter. Zeichnet die Abbildung nach, falls ihr einen Zirkel zur Hand habt. Ansonsten genügt auch eine Skizze. Bestimmt den Flächeninhalt der schraffierten

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen Mathematik Klasse 9 Inhalt/Thema von Maßstab Band 5 1. Grundkenntnisse Rechnen mit Brüchen und Dezimalbrüchen Rechnen mit Größen Proportionale und umgekehrt proportionale Zuordnungen, Dreisatz Prozent-

Mehr

Department Fachdidaktiken Philosophische Fakultät. Friedrich-Alexander-Universität Erlangen-Nürnberg. Regensburger Straße Nürnberg

Department Fachdidaktiken Philosophische Fakultät. Friedrich-Alexander-Universität Erlangen-Nürnberg. Regensburger Straße Nürnberg FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG PHILOSOPHISCHE FAKULTÄT LEHRSTUHL DIDAKTIK DER MATHEMATIK Lehrstuhl für Didaktik der Mathematik Department Fachdidaktiken Philosophische Fakultät Friedrich-Alexander-Universität

Mehr

Materialien/ Anregungen. prozessbezogene Kompetenzen laut Kernlehrplan. inhaltsbezogene Kompetenzen laut Kernlehrplan

Materialien/ Anregungen. prozessbezogene Kompetenzen laut Kernlehrplan. inhaltsbezogene Kompetenzen laut Kernlehrplan HARDTBERG GYMNASIUM DER STADT BONN Stand: Juni 2011 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen

Mehr

Mathematik - Klasse 8 -

Mathematik - Klasse 8 - Schuleigener Lehrplan Mathematik - Klasse 8 - 1. Terme und Gleichungen mit Klammern 1.1 Auflösen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern 1.4 Auflösen

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr

Stoffverteilungsplan Mathematik 5 für den G9-Zweig

Stoffverteilungsplan Mathematik 5 für den G9-Zweig Stoffverteilungsplan Mathematik 5 für den G9-Zweig prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lehrbuch Argumentieren / Darstellungen (Text, Bild, Tabelle) mit eigenen Worten Begriffe, Regeln

Mehr

Anne Büttner Mandy Freyer

Anne Büttner Mandy Freyer Anne Büttner Mandy Freyer 1. Planung von Unterricht 2. Aufbau eines Langentwurfs 1. Aufbau eines Verlaufsplan GA 2. Alternative Verlaufspläne 3. Aufbau eines Kurzentwurfs 4. Ratschläge für den Alltag Inhalt

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Näherungsverfahren zur Berechnung von PI

Näherungsverfahren zur Berechnung von PI 2009 Näherungsverfahren zur Berechnung von PI Patrick Ulmann Thierry Altermat David Heller KP-E2 26.02.2009 2 Inhaltsverzeichnis Tittelblatt... 1 Inhaltsverzeichnis... 2 Zusammenfassung... 3 Aufgabenstellung

Mehr

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot athplan 8.4 Geometrie Kreis Kreisteile Flächenberechnung Name: Hilfsmittel : Geometrie 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.4 Wichtige Punkte: Ich mache eine saubere, klare

Mehr

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen.

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen. Muster 1 131. Setze die fehlende Malrechnung so ein, dass die Waage im Gleichgewicht ist. 4 9 3 8 8 5 8 5 151. Für welche Zahl steht das Smily am Schluss? 40 - = 32 + =. 3 = : 6 = Für das Smily steht die

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen Mathematik Lerntheke Klasse 5d: Flächeninhalte von Vielecken Die einzelnen Stationen: Station 1: Station 2: Station 3: Station 4: Wiederholung (Quadrat und Rechteck) Material: Zollstock Das Parallelogramm

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Negative Exponenten und Potenzgesetze

Negative Exponenten und Potenzgesetze Negative Exponenten und Potenzgesetze Eine Einführung Maria Treimer Thema Stoffzusammenhang Jahrgangsstufe 8 InhaltsbezogeneKompetenzbereiche ProzessbezogeneKompetenzen Einführung von negativen Exponenten,

Mehr

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. 1.1 Mischungs- und Teilverhältnisse 1.2 Zahlenstrahl Gebrochene Zahlen 1.3 Ordnen von 1.4 Addieren und Subtrahieren von Kommutativ- und Assoziativgesetz der Addition 1.5 Vervielfachen und Teilen von

Mehr

Funktion der Aufgabe Stellung innerhalb des Unterrichts. Schulformen, in denen entwickelt/ erprobt wurde:

Funktion der Aufgabe Stellung innerhalb des Unterrichts. Schulformen, in denen entwickelt/ erprobt wurde: Mogelpackung? 1. Sucht zu Hause oder auch im Supermarkt nach Verpackungen, von denen ihr vermutet, dass es sich um Mogelpackungen handelt. 2. (Gruppenarbeit) Wählt aus den mitgebrachten Packungen zwei

Mehr

DIDAKTISCH-METHODISCHE ÜBERLEGUNGEN GEOGEBRA

DIDAKTISCH-METHODISCHE ÜBERLEGUNGEN GEOGEBRA DIDAKTISCH-METHODISCHE ÜBERLEGUNGEN GEOGEBRA Unterrichtsthema Winkel Zielgruppe 1. Klasse Hauptschule/1. Leistungsgruppe Ziele Die Unterrichtseinheit soll die Schülerinnen und Schüler dazu befähigen, aus

Mehr

Miteinander - Ich und die anderen (Praktikumsbericht Hauptschule, Katholische Religion)

Miteinander - Ich und die anderen (Praktikumsbericht Hauptschule, Katholische Religion) Geisteswissenschaft Katharina Heinen Miteinander - Ich und die anderen (Praktikumsbericht Hauptschule, Katholische Religion) Praktikumsbericht / -arbeit Universität Paderborn Fakultät für Kulturwissenschaften:

Mehr

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 1 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Kommunizieren bei der Lösung von Problemen im Team arbeiten; über Begründen

Mehr

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt. Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die

Mehr

Unterrichtseinheit 2.1

Unterrichtseinheit 2.1 Unterrichtseinheit 2.1 1 Unterrichtseinheit 2.1 Ca. 2 Schulstunden Aufgabenart Mathematischer Inhalt Materialien Zielsetzungen Wassersparen Wassersparen Unterbestimmt: beinhaltet weniger Annahmen als benötigt

Mehr

Unterrichtsverlauf zu: UE Statische Investitionsrechnung, 6 Std., Jahrgangsstufe 1, Betriebswirtschaftslehre, Berufliches Gymnasium

Unterrichtsverlauf zu: UE Statische Investitionsrechnung, 6 Std., Jahrgangsstufe 1, Betriebswirtschaftslehre, Berufliches Gymnasium Unterrichtsverlauf zu: UE Statische Investitionsrechnung, 6 Std., Jahrgangsstufe 1, Betriebswirtschaftslehre, Berufliches Gymnasium 1. Std. Angestrebte Kompetenzen 10 Min. Stundenthema: Merkmale statischer

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Schnittpunkt 9 Klettbuch

Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Schnittpunkt 9 Klettbuch Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Klettbuch 978-3-12-742591-8 Stoffverteilungsplan Schnittpunkt Band 9 Schule: 978-3-12-742591-8 Lehrer: - vergleichen Vorgehensweisen

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Zahlen und Größen Beitrag 34 Einführung in den Maßstab 1 von 26. Max richtet sein Zimmer neu ein eine Einführung in den Maßstab

Zahlen und Größen Beitrag 34 Einführung in den Maßstab 1 von 26. Max richtet sein Zimmer neu ein eine Einführung in den Maßstab Zahlen und Größen Beitrag 34 Einführung in den Maßstab 1 von 26 Max richtet sein Zimmer neu ein eine Einführung in den Maßstab Von Lisa M. D. Polzer, Karlsruhe In Max Zimmer herrscht ein ganz schönes Chaos!

Mehr

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7

SCHULINTERNES CURRICULUM MATHEMATIK JUNI 2016 ( G 8 ) Seite 1 von 7 Seite 1 von 7 Kapitel I: Rationale Zahlen - Einfache Bruchteile auf verschiedene Weise darstellen: handelnd, zeichnerisch an verschiedene Objekten, durch Zahlensymbole und als Punkt auf der Zahlengerade;

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln

Mehr

Kreis und Kreisteile. - Aufgaben Teil 1 -

Kreis und Kreisteile. - Aufgaben Teil 1 - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht. a) Gib das Bogenmaß,3 im Gradmaß an. b) Gib das Bogenmaß im Gradmaß an. 9 c) Gib das Gradmaß 44 im Bogenmaß als Bruchteil von an. d) Gib das

Mehr

Prüfungstermin Frühjahr 2002, Thema Nr. 2 Lineare Bewegungen

Prüfungstermin Frühjahr 2002, Thema Nr. 2 Lineare Bewegungen Staatsexamen Fachdidaktik Fächergruppe der Hauptschule Prüfungster Frühjahr 2002, Thema Nr. 2 Lineare Bewegungen 1. Beschreiben Sie zwei für den Unterricht geeignete Methoden zur Aufnahme des Zeit-Weg-Diagramms

Mehr

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9 Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Artikulationsschema zur Unterrichtseinheit: Artikulation Lehrerverhalten Erwartetes Schülerverhalten Lehr-/ Lernform

Artikulationsschema zur Unterrichtseinheit: Artikulation Lehrerverhalten Erwartetes Schülerverhalten Lehr-/ Lernform Artikulationsschema zur Unterrichtseinheit: Artikulation Lehrerverhalten Erwartetes Schülerverhalten Lehr-/ Motivation Lehrer hat verschiedene Stromquellen (1,5 V-Mignonzelle, 1,55 V-Knopfzelle, 3,6 V-Handyakku,

Mehr

7 Beziehungen im Raum

7 Beziehungen im Raum Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade

Mehr

geeigneten Fachbegriffen erläutern Kommunizieren

geeigneten Fachbegriffen erläutern Kommunizieren Kapitel I Rationale Zahlen Arithmetik / Algebra Einfache Bruchteile auf verschiedene Weise darstellen: Lesen: Informationen aus Text, Bild, 1 Brüche und Anteile handelnd, zeichnerisch an wiedergeben 2

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

Klasse Fach Lehrplan Zeit 8 Deutsch Zugang zu literarischen Texten finden 1 UE

Klasse Fach Lehrplan Zeit 8 Deutsch Zugang zu literarischen Texten finden 1 UE Klasse Fach Lehrplan Zeit 8 Deutsch 8.2.3 Zugang zu literarischen Texten finden 1 UE Stundenthema Max von der Grün: Masken Vorbereitung In der vorherigen Unterrichtseinheit wurde die Kurzgeschichte Masken

Mehr

Inhaltsverzeichnis / Modul 1

Inhaltsverzeichnis / Modul 1 Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,

Mehr

Grundlagen IV der Kathetensatz

Grundlagen IV der Kathetensatz Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des

Mehr

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie Übung zur Abgaben Didaktik der Geometrie Gruppe 5 Alt, Regine u. Gampfer,Stefanie Inhalt der Klassenstufe 2 in Geometrie Der Geometrieunterricht im zweiten Schuljahr findet in allen fünf Ebenen der Geometrie

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

Artikulationsschema. Zeit Artikulation Geplante Lehrer-/Schüleraktivität Medien

Artikulationsschema. Zeit Artikulation Geplante Lehrer-/Schüleraktivität Medien Artikulationsschema Datum/Stunde: 14.3.2013 Fach: Deutsch Thema: Kurzgeschichte Generalvertreter Ellebracht begeht Fahrerflucht Einbettung in die Sequenz: Werkstatt Geschichten Kurzgeschichten Wenn man

Mehr

1 Abschlussarbeit Mathematik des Jahres 2005 in Hessen

1 Abschlussarbeit Mathematik des Jahres 2005 in Hessen Testarbeit 1 Abschlussarbeit Mathematik des Jahres 2005 in Hessen Bildungsgang Hauptschule Diese Arbeit wurde am 30. Mai 2005 geschrieben. Die Veröffentlichung geschieht mit freundlicher Genehmigung des

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S )

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S ) M ATHEMATIK Klasse 3 Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern Duden Mathematik 3 Lehrplan: Anforderungen / Inhalte Der Zahlenraum bis 1000 (S. 14 25) Entwickeln von Zahlvorstellungen

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 2008 Lehrbuch: Mathematik heute 9

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 2008 Lehrbuch: Mathematik heute 9 Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 008 Lehrbuch: Mathematik heute 9 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Lineare Gleichungssysteme Lineare

Mehr

Einnahmen und Ausgaben Die Schuldenfalle. Unterrichtsentwurf

Einnahmen und Ausgaben Die Schuldenfalle. Unterrichtsentwurf Einnahmen und Ausgaben Die Schuldenfalle Unterrichtsentwurf - Oeconomix - Fachzuordnung: Sozialkunde Schulform: Gymnasium Klasse: Jahrgangsstufe 7 / 8 Dipl.-Hdl. / Dipl.-Kff. Katja Koreny Dipl.-Hdl. Maike

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

DOWNLOAD. Flächeninhalt und Umfang vom Kreis. Differenzierte Aufgaben zum Üben und Festigen für das Gymnasium. Bernard Ksiazek

DOWNLOAD. Flächeninhalt und Umfang vom Kreis. Differenzierte Aufgaben zum Üben und Festigen für das Gymnasium. Bernard Ksiazek DOWNLOAD Bernard Ksiazek Flächeninhalt und Umfang vom Kreis Differenzierte Aufgaben zum Üben und Festigen für das Gymnasium Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen

Mehr

Lehrplan. Wirtschaftsmathematik. Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung. Ministerium für Bildung, Kultur und Wissenschaft

Lehrplan. Wirtschaftsmathematik. Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung. Ministerium für Bildung, Kultur und Wissenschaft Lehrplan Wirtschaftsmathematik Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung Ministerium für Bildung, Kultur und Wissenschaft Hohenzollerstraße 60, 66117 Saarbrücken Postfach 10 24 52,

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen

Mehr

LU 17: Kreisumfang Lösungen

LU 17: Kreisumfang Lösungen athematik LU 7: Kreisumfang Lösungen 59 LU 7: Kreisumfang Lösungen Aufgabe Berechne im Kopf die fehlenden Angaben, nimm für die Zahl π den Wert 3. Gegenstand Radius r Durchmesser d Umfang u Abfalleimer

Mehr

Berechnung von Pi und verwandte Probleme

Berechnung von Pi und verwandte Probleme Berechnung von Pi und verwandte Probleme 1. Gitterpunkte im Kreis 1.1. Näherungsformel. Wir wollen eine möglichst einfache näherungsweise Formel finden für die Anzahl der Gitterpunkte in einem Kreis um

Mehr

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler... I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen

Mehr

Inhaltsverzeichnis. Checklisten zur Seite Teste dich! Kopiervorlagen - Lösungen finden Si. auf der CD-ROM. Lineare Gleichungssysteme

Inhaltsverzeichnis. Checklisten zur Seite Teste dich! Kopiervorlagen - Lösungen finden Si. auf der CD-ROM. Lineare Gleichungssysteme Inhaltsverzeichnis Vorschlag für einen Stoffverteilungsplan 4-6 Hinweise zu den Kapiteln des Schülerbuches 7-11 Checklisten 12-18 Kopiervorlagen 19-136 Inklusionsmaterial 137-168 Checklisten zur Seite

Mehr

Unterrichtseinheit Natürliche Zahlen I

Unterrichtseinheit Natürliche Zahlen I Fach/Jahrgang: Mathematik/5.1 Unterrichtseinheit Natürliche Zahlen I Darstellen unterschiedliche Darstellungsformen verwenden und Beziehungen zwischen ihnen beschreiben (LE 8) Darstellungen miteinander

Mehr

Die Hälfte färben. So kann man vorgehen:

Die Hälfte färben. So kann man vorgehen: Die Hälfte färben Gut geeignet: für die 2. und 3. Jahrgangsstufe (mit dem 20er- Feld auch für die 1. Klasse und dem Tausenderbuch für die 4. Klasse geeignet) Darum geht es: Die Kinder müssen auf der Hundertertafel

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr