Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1 Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen

2 Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript Passwort: **koesa** Übungen Benutzername: Uebungsskript Passwort: **koenig** Ergänzungen Benutzername: Zusatzinfos Passwort: **stesa** Tutorübungen Benutzername: Tutoruebungen Passwort: **stesa**

3 Werkstoffmodelle linear-elastisches Werkstoffverhalten Elasto-plastisches Werkstoffverhalten Linear-elastisches Material- dreidimensionaler Fall: Normalspannungen Schubspannungen

4 Vereinfachungen und Beschränkungen Werkstoff Idealisierung: 1.) isotropes Verhalten Werkstoffverhalten in alle Richtungen gleich im Gegensatz dazu orthotrop z.b. bei Faserverbundwerkstoffen E 1 E3 in Statik I sind ausschließlich Spannungen und Dehnungen in Längsrichung (eindimensional) E 2 2.) lineares Werkstoff- Zusammenhang zwischen verhalten bzw. Spannung σ und Materialgesetz Dehnung ε σ= ε E E = const σ Gummi Hooksche Gerade Metalle ε

5 Elementare Theorie der Biegung (ETB) Querschnitte bleiben eben und normal zur verformten Mittellinie Demo Materialgesetz: daraus ergibt sich der Zusammenhang zwischen Verzerrungs- und Kraftgrößen Erläuterung

6 Zusammenhang: Verzerrungs- und Kraftgrößen Biegung: Verzerrung Kraft Materialgesetz Krümmung verallgem. Spannungsgröße Biegesteifigkeit Zug-Druck: verallgem. Verzerrung verallgem. Spannungsgröße (Längskraft) Längssteifigkeit

7 Schnittprinzip Anwendung zur Bestimmung von inneren Kraftgrößen für Rahmentragwerke = Stabwerke aus Biegestäben hier: Abzählkriterium für den Grad der statischen Unbestimmtheit für Rahmentragwerke: 2

8 Schnittprinzip für Fachwerke Abzählkriterium für den Grad der statischen Unbestimmtheit von Fachwerken: = 4 = 2 = 3 im obigen Beispiel: n = (4 + 2) 2 3 = 0 Allgem. Formel für den Grad der statischen Unbestimmtheit:

9 Arbeit Prinzip der Virtuellen Arbeiten GG-Punkt A a u u A i A a äußere Arbeit P Verschiebung A ges gesamte Arbeit Last A a u A a u Verschiebung Spannung s A i innere Arbeit A i e A i A ges A i A a! 0 Dehnung

10 Prinzip der Virtuellen Arbeiten Prinzip der Virtuellen Verrückungen PVV (auch Prinzip der Virtuellen Verschiebungen) äußere Arbeit innere Arbeit Das PVV gilt auch bei geometrischer Nichtlinearität und bei nichtlinearem Materialverhalten

11 P INSTITUT FÜR STATIK UND DYNAMIK DER Prinzip der Virtuellen Arbeiten Prinzip der Virtuellen Kräfte PVK Last P A a komplementäre Arbeit u A a Verschiebung Spannung s A A i i e Dehnung Bei Beschränkung auf lineare Probleme gilt: u äußere Arbeit innere Arbeit

12 Prinzip der Virtuellen Arbeiten PVV: Zur Berechnung von Lasten (z.b. Schnittlasten, Auflagerraktionen) PVK: Bei stat. unbest. Systemen werden die virtuellen Größen auf stat. best. Untersysteme aufgebracht Zur Berechnung von Verformungen (PVK gilt nur bei linearen Problemen)

13 PVV: INSTITUT FÜR STATIK UND DYNAMIK DER Prinzip der Virtuellen Arbeiten Anwendung auf den Zug-Druckstab (Skipt: Seite 60) (heutige Tutorübungen: Aufgabe 4) =? Zug-Druck-Stab PVV: innere Arbeit N verallgemeinerte wahre Spannung (Belastung) verallgemeinerte virtuelle Verzerrung (Dehnung) analog im PVK: innere Arbeit N verallgemeinerte virtuelle Spannung (Belastung) verallgemeinerte wahre Verzerrung (Dehnung) mit N E A

14 INSTITUT FÜR STATIK UND DYNAMIK DER Prinzip der Virtuellen Arbeiten Anwendung auf den Biegestab (Skipt: Seite 61) Zusammenhang von Verzerrungs-und Kraftgrößen: M verallgem. Spannungsgröße verallgem. Verzerrungsgröße (Krümmung) I Trägheitsmoment PVV: innere Arbeit M verallgemeinerte wahre Spannung (Belastung) verallgemeinerte virtuelle Verzerrung (Krümmung) Erläuterung Anwendungsbeispiel analog im PVK: innere Arbeit M verallgemeinerte wahre Verzerrung (Dehnung) verallgemeinerte virtuelle Spannung (Belastung) mit M E I

15 Prinzip der Virtuellen Arbeiten Berechnung statisch unbestimmter Systeme mit dem Kraftgrößenverfahren Idee: Statisch unbestimmte Tragwerke Superposition aus statisch bestimmten Untersystemen Der Berechnung liegt ein statisch bestimmtes Grundsystem 0 zugrunde Bindungen (Lagerungen) müssen gelöst werden, um ein statisch unbestimmtes System bestimmt zu machen (bewusste Verletzung der Kinematik) Gelöste Bindungen werden als äußere Lasten angesetzt Skalierung, bis Kinematik wieder eingehalten wird

16 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren-Reduktionssatz M, M,Q,N=? P P v =? n=1 = P + X 1 Kraftgrößenverfahren dm 1, dq 1, dn 1 1 Ergebnis: tatsächliche M-, Q-, N-Verlauf des stat. unbest. Systems M,Q,N im stat. unbest. System nun bekannt M 0, Q 0, N 0 M, P =? l 1 M, l 1 l1 M M P v dx =1 E I 0 P=1 P im stat. best. Untersystem am Ort der gesuchten Verschiebung aufbringen M, l l 1 M=1 l1 M M M dx =1 E I 0 M im stat. best. Untersystem am Ort der gesuchten Verdrehung aufbringen

17 Prinzip der Virtuellen Arbeiten Berechnung statisch unbestimmter Systeme mit dem Kraftgrößenverfahren Allgemeine Vorgehensweise

18 Prinzip der Virtuellen Arbeiten Berechnung statisch unbestimmter Systeme mit dem Kraftgrößenverfahren Allgemeine Vorgehensweise

19 Kraftgrößenverfahren für mehrfach statisch unbestimmte Systeme

20 Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: 2-fach statisch unbestimmtes System belastet mit der äußeren Punktlast P P Idee hinter dem Kraftkrößenverfahren: Aufteilen in stat. best. Untersysteme und anschließende Superposition! statisch bestîmmtes Untersystem wird durch Schneiden erzeugt Hinweis: Das rechte Lager zwar nur 1 mal weggeschnitten. Dadurch entstehen jedoch 2 Reaktionen

21 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: 2-fach statisch unbestimmtes System stat. unbest. Gesamtsystem P stat. best. Grundsystem 0 -System (nur äußere Lasten) P erstes Einheitslastsystem 1 -System (Schnitt 1 bzw. Richtung 1 ) 1 X 1 zweites Einheitslastsystem 2 -System (Schnitt 2 bzw. Richtung 2 ) X 2 1 = = 10 + X 1 + X 2

22 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: 2-fach statisch unbestimmtes System Wie werden die Verschiebungen ij berechnet? am Beispiel von Einheitslastsystem 1 1 Verschiebung aufgrund von Last 1 in Richtung bzw. an der Stelle 2 11 =? Ausgangssystem 1 Hier ist das Ausgangs- System zugleich mit der Einheitslast beaufschlagt Virtuelles Lastsystem 11 =? P=1 am Ort der gesuchten Verschiebung Einheitslast P=1 aufbringen (Einheitslastgestz) 21 M=M 1 N=N 1 M 1 N 1 11 Verschiebung aufgrund von Last 1 in Richtung bzw. an der Stelle 1 Prinzip der virtuellen Arbeit (hier PVK): Zusammenhang von Verformung 11 und der im Gesamttragwerk gespeicherten Energie. Abhängig von Normalkräften, Momenten (Querkräften)

23 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: 2-fach statisch unbestimmtes System Wie werden die Verschiebungen d ij berechnet? analog für weitere ij =? =0 20 = X 1 + X s. Skipt S Verträglichkeitsbedingung Forderung : =0 X 1, X 2, bestimmen (lin. Gl.-System)

24 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Belastungen des statisch unbestimmten Tragwerks? stat. unbest. Gesamtsystem M Verformung ~ Belastung X 1, X 2, auch auf Belastung anwendbar = - stat. best. Grundsystem 0 -System (nur äußere Lasten) - M 0 P + erstes Einheitslastsystem 1 -System (Schnitt 1 bzw. Richtung 1 ) M 1 + X 1 X 2 + zweites Einheitslastsystem 2 -System (Schnitt 2 bzw. Richtung 2 ) M 2 1 P - 1 N = - N N 1 + X 1 X 2 N 2

25 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: Ringspant E, I, A F R a + z - 3b = n = 3 Das Gesamtsystem ist 3-fach statisch unbestimmt. F/2 ausnutzen der Symmetrie 1 2 a + z - 3b = n = 2 symmetriesches Halbmodell 3 Das reduzierte System ist 2-fach statisch unbestimmt.

26 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: Ringspant Zustandslinien ermitteln 0-System 0 F/2 1-System F/2 statisch bestimmtes Grundsystem erzeugen durch Entfernen des 2-wertigen Lagers System R

27 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: Ringspant Verträglichkeitsbedingung formulieren Verschiebung aufgrund von Last 1 in Richtung bzw. an der Stelle 1 Verschiebung aufgrund von Last 1 in Richtung bzw. an der Stelle 2 Skalierfaktor für Einheits - Lastrichtung 2

28 / INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: Ringspant Koeffizienten bestimmen / / / =0 / / / / 1cos /

29 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: Ringspant Koeffizienten bestimmen / / / / / =0 1cos / / / / 1 1 =0 / 1 1

30 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: Ringspant Skalierfaktoren bestimmen Verträglichkeitsbedingung: = Gleichungssystem nach X 1 und X 2 auflösen

31 INSTITUT FÜR STATIK UND DYNAMIK DER Kraftgrößenverfahren - mehrfach stat. unbest. Systeme Beispiel: Ringspant Endsystem berechnen und darstellen

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden. FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter ERLÄUTERUNGEN ZUM An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.. SYSTEM UND BELASTUNG q= 20 kn / m C 2 B 4

Mehr

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK)

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Technische Mechanik 2 (SS 2011) 6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Arbeit: 6.1 Grundbegriffe und Arbeitssatz 6.1 Grundbegriffe und Arbeitssatz

Mehr

Baustatik & Festigkeitslehre Vorlesung & Übung

Baustatik & Festigkeitslehre Vorlesung & Übung Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister Kraftgrößenverfahren Wenn statisch unbestimmte Systeme berechnet werden sollen, müssen zusätzliche

Mehr

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 0.0.00 Name: Vorname: Matr.-Nr.: (bitte deutlich schreiben!) (9-stellig!) Aufgabe 5 6 7 8 9 Summe mögliche Punkte 7 5 5 6 0 8 0 6 0 erreichte Punkte

Mehr

Arbeitsunterlagen. Statik 2

Arbeitsunterlagen. Statik 2 Arbeitsunterlagen Statik 2 WS 2014/15 Stand 07.10.2014 Inhalt 1. Vertiefung KGV 1.1 Eingeprägte Auflagerverformungen 1.2 Vorspannung 1.3 Systeme mit elastischer Lagerung 1.4 Ermittlung von Federsteifigkeiten

Mehr

Grundfachklausur Teil 2 / Statik II

Grundfachklausur Teil 2 / Statik II Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204

Mehr

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele Zweifeldträger Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines -fach statisch

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im November 2009 Verfasser: Betreuer: Mario Jackisch

Mehr

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!)

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!) Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 04.0.00 Name: Vorname: (bitte deutlich schreiben) Matr.-Nr.: (9-stellig) Aufgabe 4 5 6 7 8 9 Summe mögliche Punkte 7 5 4 6 6 4 4 0 erreichte Punkte

Mehr

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Bachelorprojekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Wintersemester 2009/20 Verfasser:

Mehr

1 Technische Mechanik 2 Festigkeitslehre

1 Technische Mechanik 2 Festigkeitslehre Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

Verzerrungen und Festigkeiten

Verzerrungen und Festigkeiten Verzerrungen und Festigkeiten Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Verzerrungen

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen

Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Praktikum Antriebssystemtechnik - Elektrisches Messen mechanischer Größen Name: Vorname: Mat.-Nr.: Studiengang: Datum: Note: Betreuer: Dipl.-Ing. Matthias vom Stein / fml Versuch 1: Drehzahl und Beschleunigung

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Inhaltsverzeichnis. 1 Einleitung 1

Inhaltsverzeichnis. 1 Einleitung 1 Inhaltsverzeichnis 1 Einleitung 1 2 Mathematische Grundlagen 5 2.1 Koordinatensystem... 5 2.2 Koordinatentransformation... 7 2.3 Indexschreibweise... 9 2.4 Tensoren... 11 2.5 Tensoroperationen... 14 2.6

Mehr

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O. Aufgaben TK II Übung 1: Schnittkraftermittlung, Festigkeitslehre Aufgabe : Trog-Querschnitt Querschnitt z 0.2 0.2 Übung 1: Schnittkraftermittlung Festigkeitslehre 1.2 0.3 0.9 S 0.35 0.85 y Ausgabe : Freitag,

Mehr

4. Verschiebungsgrößenverfahren

4. Verschiebungsgrößenverfahren Baustatik I WS 2013/2014 4. Verschiebungsgrößenverfahren 4.2 Geometrische Unbestimmtheit Geometrische Unbestimmtheit Geometrisch bestimmtes System: Bei einem geometrisch bestimmten System sind alle Knotenverschiebungen

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

Zugversuch - Versuchsprotokoll

Zugversuch - Versuchsprotokoll Gruppe 13: René Laquai Jan Morasch Rudolf Seiler 16.1.28 Praktikum Materialwissenschaften II Zugversuch - Versuchsprotokoll Betreuer: Heinz Lehmann 1. Einleitung Der im Praktikum durchgeführte Zugversuch

Mehr

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe Stabilitätsfragen Theorie II. Ordnung Wintersemester 2012/2013 Stabilitätsfragen 1 / 36 Einleitung Begriffe (aus Wikipedia) Theorie I. Ordnung Die Berechnung der Kräfte an unverformten Tragwerken nennt

Mehr

Festigkeit und Härte

Festigkeit und Härte Festigkeit und Härte Wichtige Kenngrößen für die Verwendung metallischer Werkstoffe sind deren mechanische Eigenschaften unter statischer Beanspruchung bei Raumtemperatur (RT). Hierbei hervorzuheben sind

Mehr

2. Eulersche Knickfälle

2. Eulersche Knickfälle Das Stabilitätsversagen von Balken unter Druckbelastung wird als Knicken bezeichnet. Linear-elastisches Knicken wurde bereits von Euler untersucht. Je nach Randbedingungen lassen sich verschiedene so genannte

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 Grundsatz Geschossbauten müssen gegen Horizontallasten ausgesteift sein. Aussteifende Bauteile können sein: Wandscheiben, Kerne, Rahmen, Verbände Bauformen Schotten- oder Wandbau, meist im Wohnungsbau.

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

Aufgaben TK II SS 2000 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.

Aufgaben TK II SS 2000 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O. ETHZ Departement Architektur Prof. Dr. O. Künzle Aufgaben TK II www.kuenzle.hbt.arch.ethz.ch ETHZ - Abteilung für Architektur Aufgabe 1: Sprungbrett Übung 1: Schnittkräfte, Festigkeitslehre und Formänderungen

Mehr

Elastizitätslehre. Verformung von Körpern

Elastizitätslehre. Verformung von Körpern Baustatik II Seite 1/7 Verformung von Körpern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Elastische Verformungen 3 4.1 Allgemeines 3 4.2 Achsiale Verformungen und E-Modul 3

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Skript. Technische Mechanik. Festigkeitslehre

Skript. Technische Mechanik. Festigkeitslehre Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Extreme Biegung von Federstahldrähten

Extreme Biegung von Federstahldrähten Extreme Biegung von Federstahldrähten Moderne Materialien im Bereich der Federstahldrähte gestatten sehr große elastische Verformungen, die allerdings mit der linearen Biegetheorie nicht berechnet werden

Mehr

Zugversuch. 1. Aufgabe. , A und Z! Bestimmen Sie ihre Größe mit Hilfe der vorliegenden Versuchsergebnisse! Werkstoffkennwerte E, R p0,2.

Zugversuch. 1. Aufgabe. , A und Z! Bestimmen Sie ihre Größe mit Hilfe der vorliegenden Versuchsergebnisse! Werkstoffkennwerte E, R p0,2. 1. Aufgabe An einem Proportionalstab aus dem Stahl X3CrNi2-32 mit rechteckigem Querschnitt im Messbereich (a 6,7 mm; b 3 mm; L 8mm) wurde in einem das dargestellte Feindehnungs- bzw. Grobdehnungsdiagramm

Mehr

Lösungen TM I Statik und Festigkeitslehre

Lösungen TM I Statik und Festigkeitslehre Technische Mechanik I L Lösungen TM I Statik und Festigkeitslehre Modellbildung in der Mechanik N Pa (Pascal). m.4536kg.38slug [a] m, [b] dimensionslos, [c] m, [d] m Dichte: kgm 3.94 3 slugft 3 Geschwindigkeit:

Mehr

Technische Mechanik. Jürgen Dankert Helga Dankert

Technische Mechanik. Jürgen Dankert Helga Dankert Jürgen Dankert Helga Dankert Technische Mechanik Statik, Festigkeitslehre, Kinematik/Kinetik 6., überarbeitete Auflage Mit 1102 Abbildungen, 128 Übungsaufgaben, zahlreichen Beispielen und weiteren Abbildungen

Mehr

Zugversuch. Der Zugversuch gehört zu den bedeutendsten Versuchen, um die wichtigsten mechanischen Eigenschaften von Werkstoffen zu ermitteln.

Zugversuch. Der Zugversuch gehört zu den bedeutendsten Versuchen, um die wichtigsten mechanischen Eigenschaften von Werkstoffen zu ermitteln. Name: Matthias Jasch Matrikelnummer: 2402774 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 26. Mai 2009 Betreuer: Vera Barucha Zugversuch 1 Einleitung Der Zugversuch gehört zu den

Mehr

Statik- und Festigkeitslehre I

Statik- und Festigkeitslehre I 05.04.2012 Statik- und Festigkeitslehre I Prüfungsklausur 2 WS 2011/12 Hinweise: Dauer der Klausur: Anzahl erreichbarer Punkte: 120 Minuten 60 Punkte Beschriften Sie bitte alle Seiten mit und Matrikelnummer.

Mehr

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds Blatt. ederkennlinie Die ederkennlinie gibt die Abhängigkeit zwischen Belastung (Kraft, Moment) und Verformung (Weg, Winkel) an. Man unterscheidet drei grundsätzlich unterschiedliche Verhaltensweisen mit

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

Zugversuch - Metalle nach DIN EN ISO

Zugversuch - Metalle nach DIN EN ISO WT-Praktikum-Zugversuch-Metalle.doc 1 1. Grundlagen 1.1. Zweck dieses Versuchs Im Zugversuch nach DIN EN ISO 689-1 (DIN EN 1) an Proben mit konstanten Querschnitten über die Prüflänge, wird das Werkstoffverhalten

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Praktikum Materialwissenschaft II. Zugversuch

Praktikum Materialwissenschaft II. Zugversuch Praktikum Materialwissenschaft II Zugversuch Gruppe 8 André Schwöbel 132837 Jörg Schließer 141598 Maximilian Fries 147149 e-mail: a.schwoebel@gmail.com Betreuer: Herr Lehmann 5.12.27 Inhaltsverzeichnis

Mehr

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur.

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur. Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Schnittgrößen Verlauf

Mehr

Formelsammlung. für die Klausur. Technische Mechanik I & II

Formelsammlung. für die Klausur. Technische Mechanik I & II Formelsammlung für die Klausur Technische Mechanik I & II Vorwort Diese Formelsammlung ist dazu gedacht, das Suchen und Herumblättern in den Büchern während der Klausur zu vermeiden und somit Zeit zu sparen.

Mehr

Werkstoffkunde II - 2. Übung

Werkstoffkunde II - 2. Übung Werkstoffkunde II - 2. Übung Mechanisches Werkstoffverhalten von Kunststoffen Barbara Heesel heesel@ikv.rwth-aachen.de Hendrik Kremer kremer_h@ikv.rwth-aachen.de Anika van Aaken vanaaken@ikv.rwth-aachen.de

Mehr

Festigkeitslehre. klipp und klar. für Studierende des Bauingenieurwesens. Jens Göttsche Maritta Petersen. 2., aktualisierte Auflage

Festigkeitslehre. klipp und klar. für Studierende des Bauingenieurwesens. Jens Göttsche Maritta Petersen. 2., aktualisierte Auflage Jens Göttsche Maritta Petersen Festigkeitslehre klipp und klar für Studierende des Bauingenieurwesens 2., aktualisierte Auflage Göttsche/Petersen Festigkeitslehre - klipp und klar für Studierende des Bauingenieurwesens

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2 Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen

Mehr

Spannungs-Dehnungskurven

Spannungs-Dehnungskurven HVAT Metalle Paul H. Kamm Tillmann R. Neu Technische Universität Berlin - Fakultät für Prozesswissenschaften Institut für Werkstoffwissenschaften und -technologien FG Metallische Werkstoffe 01. Juli 2009

Mehr

Vereinfachte Fließzonentheorie

Vereinfachte Fließzonentheorie 1 Vereinfachte Fließzonentheorie mit ANSYS Hartwig Hübel FH Lausitz, Cottbus 1. Lausitzer FEM-Symposium, 12. November 1999 Ermüdungs- und Ratcheting-Nachweise 2 Miner: Uf = n N Ermüdung: 1 Wanddicke Dehnungsakkumulation:

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

Aufgaben zur Festigkeitslehre ausführlich gelöst

Aufgaben zur Festigkeitslehre ausführlich gelöst Aufgaben zur estigkeitslehre ausführlich gelöst Mit Grundbegriffen, ormeln, ragen, Antworten von Gerhard Knappstein 6. Auflage VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KG Düsselberger Straße

Mehr

2.4 Elastische Lagerung elastische Bettung

2.4 Elastische Lagerung elastische Bettung 38 2 Stabtragwerke 2.4 Elastische Lagerung elastische Bettung 2.4.1 Elastisch gebetteter Fundamentbalken Neben der starren oder verschieblichen Lagerung kommen in der Praxis noch zahlreiche Systeme vor,

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 27.0.206 Klausur Datum: 2.3.206 Numerische Methoden RES, SM, MT (DPO 203),

Mehr

Baustatik Formelsammlung

Baustatik Formelsammlung Baustatik Formelsammlung Jan Höffgen 16. April 2013 Die Formelsammlung wurde auf der Grundlage der Vorlesungen Baustatik I im SS2012 und Baustatik II im WS2012/2013 am KIT erstellt. Es besteht kein Anspruch

Mehr

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.

Mehr

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L Zugversuch Zugversuch Vor dem Zugversuch Verlängerung ohne Einschnürung Beginn Einschnürung Bruch Zerrissener Probestab Ausgangsmesslänge L 0 Verlängerung L L L L Verformung der Zugprobe eines Stahls mit

Mehr

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Bachelorprüfung Winter 2011 Modul 13 Baustatik I und II Klausur am 15.01.2011 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche Punkte 30 22 18

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

-BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg TEIL 7 BEMESSUNG IM STAHLBAU.

-BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg TEIL 7 BEMESSUNG IM STAHLBAU. STAHLBAU -BEMESSUNG EINFACHER BAUTEILE- Prof. Dr.-Ing. Jens Minnert Fachhochschule Gießen-Friedberg Nachweiskonzept Die Beanspruchung S d darf nicht größer sein als die Beanspruchbarkeit R d eines Bauteils

Mehr

STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS

STATISCHE BERECHNUNG Traverse Typ F23 Länge bis 10,00m GLOBAL TRUSS Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS Die statische Berechnung ist ausschließlich aufgestellt

Mehr

Spannungszustand

Spannungszustand 1. Spannungszustand 1.1 Spannungsvektor und Spannungstensor 1.2 Hauptspannungen 1.3 Mohrsche Spannungskreise 1.4 Fließbedingung 1.5 Gleichgewichtsbedingungen 1.1-1 1.1 Spannungsvektor und Spannungstensor

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Friedrich U. Mathiak. Festigkeitslehre

Friedrich U. Mathiak. Festigkeitslehre Friedrich U. Mathiak Festigkeitslehre 1 1 Seile und Ketten, Stützlinienbögen Aufgabe 1-1 An einem als masselos angenommenen Seil ist ein waagerecht hängender Balken befestigt. Bestimmen Sie: a) die Gleichung

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II

12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II Technische Mechanik 1. Flächenmomente Prof. Dr.-ng. T. Preußler Flächenmomente werden in der tatik ur Berechnung von pannungen infolge Biegung, chub und Torsion sowie bei tabilitätsuntersuchungen (Knicken,

Mehr

Biegung. Vorlesung und Übungen 1. Semester BA Architektur.

Biegung. Vorlesung und Übungen 1. Semester BA Architektur. Biegung Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungsentrum in der Helmholt-Gemeinschaft www.kit.edu Biegung Biegung Spannungsnachweise

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Modellierung von duktilen Stählen bei Verwendung von kommerziellen FE-Programm. Programm- systemen

Modellierung von duktilen Stählen bei Verwendung von kommerziellen FE-Programm. Programm- systemen Modellierung von duktilen Stählen bei Verwendung von kommerziellen FE-Programm Programm- systemen Dr.-Ing Ing.. S. Mesecke-Rischmann, C. Hornig 3. Norddeutsches Simulationsforum, 21. Oktober 2010 Motivation

Mehr

Berücksichtigung des Längsdehnungsverhalten von Betonfahrbahndecken

Berücksichtigung des Längsdehnungsverhalten von Betonfahrbahndecken VILLARET Ingenieurgesellschaft mbh Berücksichtigung des Längsdehnungsverhalten von Betonfahrbahndecken Dipl.-Ing. Stephan Villaret Dipl.-Ing. Axel Riwe Forschungskolloquium Betonstraßenbau 12.12.2014 in

Mehr

Das lineare Gleichungssystem

Das lineare Gleichungssystem 26/27 Grundwissen Analytische Geometrie I m1 as lineare Gleichungssystem Man startet zuerst mit der Betrachtung eines linearen Gleichungssystem mit zwei Unbekannten.(Genaueres siehe Skript) Einführung

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

METALLGUMMI. Berechnungsgrundlagen

METALLGUMMI. Berechnungsgrundlagen METLLGUMMI Berechnungsgrundlagen Formelzeichen Die verwendeten Formelzeichen entsprechen der DIN 1304. Dort nicht aufgeführte Formelzeichen sind in diesem Programm mit den üblichen Buchstaben bezeichnet.

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flachentragwerke 3., aktualisierte und erweiterte Auflage mit 305 Abbildungen und 43 Tabellen vieweg IX Inhaltsverzeichnis

Mehr

Leseprobe. Biegung. Kirbs TECHNISCHE MECHANIK. Studienbrief HDL HOCHSCHULVERBUND DISTANCE LEARNING. 3. Auflage 2008

Leseprobe. Biegung. Kirbs TECHNISCHE MECHANIK. Studienbrief HDL HOCHSCHULVERBUND DISTANCE LEARNING. 3. Auflage 2008 Leseprobe Kirbs Biegung TECHNISCHE MECHANIK Studienbrief -5-97 3. Auflage 8 HDL HOCHSCHULVERBUND DISTANCE LEARNING Verfasser: Prof. Dr.-Ing. Jörg Kirbs Professor für Technische Mechanik / Festigkeitslehre

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Inhalt der Vorlesung. Einführendes Beispiel Typische Aussteifungssysteme Fotos aus der Praxis Horizontale Beanspruchungen

Inhalt der Vorlesung. Einführendes Beispiel Typische Aussteifungssysteme Fotos aus der Praxis Horizontale Beanspruchungen Grundlagen des konstruktiven Ingenieurbaus Stahlbau 1. Februar 2011 Aussteifung von Gebäuden Inhalt der Vorlesung Einführendes Beispiel Typische Aussteifungssysteme Fotos aus der Praxis Horizontale Beanspruchungen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Zugstab

Zugstab Bisher wurde beim Zugstab die Beanspruchung in einer Schnittebene senkrecht zur Stabachse untersucht. Schnittebenen sind gedankliche Konstrukte, die auch schräg zur Stabachse liegen können. Zur Beurteilung

Mehr

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken:

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken: UNIVERITÄT IEGEN B 10 Lehrstuhl für Baustatik - chiefe Biegung - chiefe Biegung Kommt es bei einem Balken nicht nur u Durchbiegungen w in -Richtung, sondern auch u Durchbiegungen v in -Richtung, so spricht

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

CIP-Kurztitelaufnahme der Deutschen Bibliothek

CIP-Kurztitelaufnahme der Deutschen Bibliothek CIP-Kurztitelaufnahme der Deutschen Bibliothek Rossi, Marco: Unelastisches Verhalten zyklisch verformter Stahlbetonbalken / von Marco Rossi. -Basel; Boston; Stuttgart: Birkhäuser, 1982. (Bericht/Institut

Mehr