Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik: Berechenbarkeit und Formale Sprachen"

Transkript

1 Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel Kassel, Germany SS 2012 Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 1 / 309

2 Vorlesung mit Übungen im SS 2012 Vorlesung: Dienstag Donnerstag 9-10 Uhr, Raum 1603 WA Uhr, Raum 1603 WA Beginn: Donnerstag, den , Uhr. Übungen und Tutorium in 5 Gruppen: Gruppe 1: Montag Uhr, Raum WA Gruppe 2: Dienstag Uhr, Raum WA Gruppe 3: Dienstag Uhr, Raum 2104 WA Gruppe 4: Dienstag Uhr, Raum WA (in Engl.) Gruppe 5: Freitag 8:30-10 Uhr, Raum WA Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 2 / 309

3 Übungsaufgaben: Mittwoch Mittwoch (50% verpflichtend für Klausurteilnahme + aktive Teilnahme an den Übungen mit Vorrechnen ) Homepage: veranstaltungen/theoinf-b+formspss2012/ Abschlussklausur: Termin wird rechtzeitig bekannt gegeben. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 3 / 309

4 Buch zur Vorlesung: Literatur: Uwe Schöning; Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, Heidelberg/Berlin, 4. Auflage, Ergänzende Literatur: J.E. Hopcroft, R. Motwani, J.D. Ullman; Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Oldenbourg Verlag, München, 4. Auflage, J. Hromkovič; Theoretische Informatik. Teubner Verlag, Wiesbaden, 3. Auflage, K. Wagner; Theoretische Informatik - Eine kompakte Einführung. Springer Verlag, Berlin/Heidelberg, 2. Auflage, u.v.m. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 4 / 309

5 Einleitung Die Theoretische Informatik entwickelt formale Modelle für die Objekte und Methoden der Praktischen und Technischen Informatik. Modell: Beschreibung des Wesentlichen einer Klasse von verwandten realen Phänomenen unter Abstrahierung von technischen Details und zufälligen Eigenschaften. Nutzen: - besseres Verständnis der realen Phänomene - Entwicklung von Problemlösungen mit formalen Methoden Wo konkret werden in der Informatik formale Methoden benötigt? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 5 / 309

6 Einleitung Die Theoretische Informatik entwickelt formale Modelle für die Objekte und Methoden der Praktischen und Technischen Informatik. Modell: Beschreibung des Wesentlichen einer Klasse von verwandten realen Phänomenen unter Abstrahierung von technischen Details und zufälligen Eigenschaften. Nutzen: - besseres Verständnis der realen Phänomene - Entwicklung von Problemlösungen mit formalen Methoden Wo konkret werden in der Informatik formale Methoden benötigt? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 5 / 309

7 Einleitung Die Theoretische Informatik entwickelt formale Modelle für die Objekte und Methoden der Praktischen und Technischen Informatik. Modell: Beschreibung des Wesentlichen einer Klasse von verwandten realen Phänomenen unter Abstrahierung von technischen Details und zufälligen Eigenschaften. Nutzen: - besseres Verständnis der realen Phänomene - Entwicklung von Problemlösungen mit formalen Methoden Wo konkret werden in der Informatik formale Methoden benötigt? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 5 / 309

8 Einleitung Die Theoretische Informatik entwickelt formale Modelle für die Objekte und Methoden der Praktischen und Technischen Informatik. Modell: Beschreibung des Wesentlichen einer Klasse von verwandten realen Phänomenen unter Abstrahierung von technischen Details und zufälligen Eigenschaften. Nutzen: - besseres Verständnis der realen Phänomene - Entwicklung von Problemlösungen mit formalen Methoden Wo konkret werden in der Informatik formale Methoden benötigt? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 5 / 309

9 Problemstellung: umgangssprachlich beschrieben A1 Formale Problembeschreibung (Problemspezifikation) Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 6 / 309

10 Problemstellung: umgangssprachlich beschrieben A1 Formale Problembeschreibung (Problemspezifikation) Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 6 / 309

11 Beispiel: Auftragsplanung Eingaben: Aufträge A 1,...,A n (n 2), Bearbeitungsdauer l 1,...,l n N +, Deadlines d 1,...,d n N +, Profitwerte p 1,...,p n N +, identische Prozessoren P 1,...,P m (m 1). Aufgabe: Bedingungen: Ziel: Ordne jedem Auftrag A i (1 i n) einen Zeitpunkt z i 0 und ein P j (1 j m) zu, der A i ab Zeitpunkt z i bearbeiten soll. Es muß z i +l i d i gelten! P j ist im Zeitraum z i bis z i +l i mit A i beschäftigt. Finde ein Z : {A 1,...,A n } ({P 1,...,P m } N), sodass der erzielte Profit maximiert wird! Für l 1 =... = l n = 1 = m gibt es ein effektives Verfahren! (siehe Entwurf und Analyse von Algorithmen ). Das allgemeine Problem selbst ist NP-hart. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 7 / 309

12 Beispiel: Auftragsplanung Eingaben: Aufträge A 1,...,A n (n 2), Bearbeitungsdauer l 1,...,l n N +, Deadlines d 1,...,d n N +, Profitwerte p 1,...,p n N +, identische Prozessoren P 1,...,P m (m 1). Aufgabe: Bedingungen: Ziel: Ordne jedem Auftrag A i (1 i n) einen Zeitpunkt z i 0 und ein P j (1 j m) zu, der A i ab Zeitpunkt z i bearbeiten soll. Es muß z i +l i d i gelten! P j ist im Zeitraum z i bis z i +l i mit A i beschäftigt. Finde ein Z : {A 1,...,A n } ({P 1,...,P m } N), sodass der erzielte Profit maximiert wird! Für l 1 =... = l n = 1 = m gibt es ein effektives Verfahren! (siehe Entwurf und Analyse von Algorithmen ). Das allgemeine Problem selbst ist NP-hart. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 7 / 309

13 Beispiel: Auftragsplanung Eingaben: Aufträge A 1,...,A n (n 2), Bearbeitungsdauer l 1,...,l n N +, Deadlines d 1,...,d n N +, Profitwerte p 1,...,p n N +, identische Prozessoren P 1,...,P m (m 1). Aufgabe: Bedingungen: Ziel: Ordne jedem Auftrag A i (1 i n) einen Zeitpunkt z i 0 und ein P j (1 j m) zu, der A i ab Zeitpunkt z i bearbeiten soll. Es muß z i +l i d i gelten! P j ist im Zeitraum z i bis z i +l i mit A i beschäftigt. Finde ein Z : {A 1,...,A n } ({P 1,...,P m } N), sodass der erzielte Profit maximiert wird! Für l 1 =... = l n = 1 = m gibt es ein effektives Verfahren! (siehe Entwurf und Analyse von Algorithmen ). Das allgemeine Problem selbst ist NP-hart. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 7 / 309

14 Problemstellung: umgangssprachlich beschrieben A1 Formale Problembeschreibung (Problemspezifikation) A2 Formale Beschreibung einer Lösung (Algorithmus) A3 Programm (in einer gebräuchlichen Programmiersprache) A4 Interpretation der vom Programm gelieferten Ergebnisse im Sinne der ursprünglichen Problemstellung A1 und A4: A2 und A3: Informatiker gemeinsam mit Anwender Informatiker Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 8 / 309

15 Problemstellung: umgangssprachlich beschrieben A1 Formale Problembeschreibung (Problemspezifikation) A2 Formale Beschreibung einer Lösung (Algorithmus) A3 Programm (in einer gebräuchlichen Programmiersprache) A4 Interpretation der vom Programm gelieferten Ergebnisse im Sinne der ursprünglichen Problemstellung A1 und A4: A2 und A3: Informatiker gemeinsam mit Anwender Informatiker Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 8 / 309

16 Problemstellung: umgangssprachlich beschrieben A1 Formale Problembeschreibung (Problemspezifikation) A2 Formale Beschreibung einer Lösung (Algorithmus) A3 Programm (in einer gebräuchlichen Programmiersprache) A4 Interpretation der vom Programm gelieferten Ergebnisse im Sinne der ursprünglichen Problemstellung A1 und A4: A2 und A3: Informatiker gemeinsam mit Anwender Informatiker Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 8 / 309

17 Problemstellung: umgangssprachlich beschrieben A1 Formale Problembeschreibung (Problemspezifikation) A2 Formale Beschreibung einer Lösung (Algorithmus) A3 Programm (in einer gebräuchlichen Programmiersprache) A4 Interpretation der vom Programm gelieferten Ergebnisse im Sinne der ursprünglichen Problemstellung A1 und A4: A2 und A3: Informatiker gemeinsam mit Anwender Informatiker Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 8 / 309

18 Problemstellung: umgangssprachlich beschrieben A1 Formale Problembeschreibung (Problemspezifikation) A2 Formale Beschreibung einer Lösung (Algorithmus) A3 Programm (in einer gebräuchlichen Programmiersprache) A4 Interpretation der vom Programm gelieferten Ergebnisse im Sinne der ursprünglichen Problemstellung A1 und A4: A2 und A3: Informatiker gemeinsam mit Anwender Informatiker Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 8 / 309

19 Problemstellung: umgangssprachlich beschrieben A1 Korrektheit? Formale Problembeschreibung (Problemspezifikation) A2 Korrektheit? Logik Formale Beschreibung einer Lösung (Algorithmus) Berechenbarkeitstheorie, Algorithmentheorie A3 Korrektheit? Programm (in einer gebräuchlichen Programmiersprache) Formale Sprachen, Automatentheorie A4 Korrektheit? Interpretation der vom Programm gelieferten Ergebnisse im Sinne der ursprünglichen Problemstellung A1 und A4: A2 und A3: Informatiker gemeinsam mit Anwender Informatiker Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 9 / 309

20 Vorlesung (1.) Was ist ein Algorithmus? Theoretische Informatik: Berechenbarkeit und Formale Sprachen : Unter einem Algorithmus versteht man eine präzise, endliche Verarbeitungsvorschrift, die so formuliert ist, dass die in der Vorschrift notierten Elementaroperationen von einer mechanischen oder elektrisch arbeitenden Maschine durchgeführt werden können. Die Anzahl der verfügbaren Elementaroperationen ist beschränkt, ebenso ihre Ausführungszeit. Aus der sprachlichen Darstellung des A. muß die Abfolge der einzelnen Schritte eindeutig hervorgehen. Hierbei sind Wahlmöglichkeiten zugelassen, wobei aber genau festgelegt sein muß, wie diese Auswahl erfolgen soll (nach Appelrath und Ludewig 1991). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 10 / 309

21 Vorlesung (1.) Was ist ein Algorithmus? Theoretische Informatik: Berechenbarkeit und Formale Sprachen : Unter einem Algorithmus versteht man eine präzise, endliche Verarbeitungsvorschrift, die so formuliert ist, dass die in der Vorschrift notierten Elementaroperationen von einer mechanischen oder elektrisch arbeitenden Maschine durchgeführt werden können. Die Anzahl der verfügbaren Elementaroperationen ist beschränkt, ebenso ihre Ausführungszeit. Aus der sprachlichen Darstellung des A. muß die Abfolge der einzelnen Schritte eindeutig hervorgehen. Hierbei sind Wahlmöglichkeiten zugelassen, wobei aber genau festgelegt sein muß, wie diese Auswahl erfolgen soll (nach Appelrath und Ludewig 1991). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 10 / 309

22 Vorlesung (1.) Was ist ein Algorithmus? Theoretische Informatik: Berechenbarkeit und Formale Sprachen : Unter einem Algorithmus versteht man eine präzise, endliche Verarbeitungsvorschrift, die so formuliert ist, dass die in der Vorschrift notierten Elementaroperationen von einer mechanischen oder elektrisch arbeitenden Maschine durchgeführt werden können. Die Anzahl der verfügbaren Elementaroperationen ist beschränkt, ebenso ihre Ausführungszeit. Aus der sprachlichen Darstellung des A. muß die Abfolge der einzelnen Schritte eindeutig hervorgehen. Hierbei sind Wahlmöglichkeiten zugelassen, wobei aber genau festgelegt sein muß, wie diese Auswahl erfolgen soll (nach Appelrath und Ludewig 1991). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 10 / 309

23 Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen : (1.) Was ist ein Algorithmus? - Formale Modelle für den Begriff Berechenbarkeit : Welche Funktionen sind berechenbar, welche Mengen (Sprachen) sind entscheidbar? Gibt es Funktionen f : N N, die nicht berechenbar sind? Gibt es Mengen H N, die unentscheidbar sind? (2.) Mit welchen Mitteln lassen sich unendliche Sprachen endlich beschreiben? Programmiersprachen: syntaktische Korrektheit? Semantik? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 11 / 309

24 Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen : (1.) Was ist ein Algorithmus? - Formale Modelle für den Begriff Berechenbarkeit : Welche Funktionen sind berechenbar, welche Mengen (Sprachen) sind entscheidbar? Gibt es Funktionen f : N N, die nicht berechenbar sind? Gibt es Mengen H N, die unentscheidbar sind? (2.) Mit welchen Mitteln lassen sich unendliche Sprachen endlich beschreiben? Programmiersprachen: syntaktische Korrektheit? Semantik? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 11 / 309

25 Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen : (1.) Was ist ein Algorithmus? Kapitel 1: - Formale Modelle Berechenbarkeitstheorie Welche Funktionen sind berechenbar, welche Mengen (Sprachen) sind entscheidbar? Gibt es Funktionen f : N N, die nicht berechenbar sind? Gibt es Mengen H N, die unentscheidbar sind? (2.) Mit welchen Mitteln lassen sich unendliche Sprachen endlich beschreiben? Kapitel 2: Automatentheorie und Formale Sprachen Programmiersprachen: syntaktische Korrektheit? Semantik? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 12 / 309

26 (3.) Welcher Bedarf an den Resourcen Rechenzeit und Speicherplatz entsteht bei der Lösung welcher Probleme? Gibt es Funktionen f : N N, die prinzipiell berechenbar sind, die aber dennoch praktisch nicht berechnet werden können? Kann man mit mehr Rechenzeit wirklich mehr Funktionen berechnen? siehe Vorlesungen: Komplexitätstheorie Entwurf und Analyse von Algorithmen Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 13 / 309

Theoretische Informatik I (Grundzüge der Informatik I)

Theoretische Informatik I (Grundzüge der Informatik I) Theoretische Informatik I (Grundzüge der Informatik I) Literatur: Buch zur Vorlesung: Uwe Schöning, Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, Heidelberg/Berlin, 4. Auflage, 2001.

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Einführung in die Informatik I (autip)

Einführung in die Informatik I (autip) Einführung in die Informatik I (autip) Dr. Stefan Lewandowski Fakultät 5: Informatik, Elektrotechnik und Informationstechnik Abteilung Formale Konzepte Universität Stuttgart 24. Oktober 2007 Was Sie bis

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Hochschule Darmstadt, Wintersemester 2015/16 Bernd Baumgarten (Lehrbeauftragter) Der Großteil der Folieninhalte ist dankend übernommen von Prof. Steffen Lange, h_da 0/1, Folie 1

Mehr

Algorithmen & Datenstrukturen

Algorithmen & Datenstrukturen Algorithmen & Datenstrukturen Prof. Dr. Gerd Stumme Universität Kassel FB Elektrotechnik/Informatik FG Wissensverarbeitung Sommersemester 2009 Ziele der Veranstaltung 1 Kennenlernen grundlegender Algorithmen

Mehr

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik Teil 1 Wintersemester 2011/2012 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen Inhalt 1. Algorithmen -

Mehr

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Sanders: TGI October 20, 2015 1 Theoretische Grundlagen der Informatik Peter Sanders Übungen: Lorenz Hübschle-Schneider Tobias Maier Institut für theoretische Informatik Sanders: TGI October 20, 2015 2

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Einleitung Organisatorisches, Motivation, Herangehensweise Wolfram Burgard 1.1 Vorlesung Zeit und Ort: Mittwochs 16.00 18.00 Uhr Gebäude 101 HS 00-036 Informationen zur Vorlesung,

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 0. Organisatorisches Malte Helmert Gabriele Röger Universität Basel 16. Februar 2015 Organisatorisches Personen Dozenten Prof. Dr. Malte Helmert E-Mail: malte.helmert@unibas.ch Büro:

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Organisatorisches. Informatik II Informationen und Daten. Organisatorisches. Organisatorisches. Rainer Schrader. 13. Oktober 2008

Organisatorisches. Informatik II Informationen und Daten. Organisatorisches. Organisatorisches. Rainer Schrader. 13. Oktober 2008 Dozent: Prof. Dr. Rainer Schrader Informatik II Informationen und Daten Rainer Schrader Zentrum für Angewandte Informatik Köln 13. Oktober 2008 Tel.: 470-6030 email: schrader@zpr.uni-koeln.de Sprechstunde:

Mehr

Logik. Vorlesung im Wintersemester 2010

Logik. Vorlesung im Wintersemester 2010 Logik Vorlesung im Wintersemester 2010 Organisatorisches Zeit und Ort: Di 14-16 MZH 5210 Do 16-18 MZH 5210 Prof. Carsten Lutz Raum MZH 3090 Tel. (218)-64431 clu@uni-bremen.de Position im Curriculum: Modulbereich

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Ausgewählte unentscheidbare Sprachen

Ausgewählte unentscheidbare Sprachen Proseminar Theoretische Informatik 15.12.15 Ausgewählte unentscheidbare Sprachen Marian Sigler, Jakob Köhler Wolfgang Mulzer 1 Entscheidbarkeit und Semi-Entscheidbarkeit Definition 1: L ist entscheidbar

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://www.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de SS 2012 1 Einordnung der Theoretischen

Mehr

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm

ADS. 1. Vorlesung. Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm ADS 1. Vorlesung Techniken der Programmentwicklung Prof. Dr. Wolfgang Schramm 6.10.2016 ORGANISATORISCHES Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Der Dozent 2 Prof. Dr. Wolfgang Schramm

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 1. Einleitung Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 20 Organisatorisches Überblick Organisatorisches

Mehr

Grundbegriffe der Theoretischen Informatik Sommersemester Thomas Schwentick

Grundbegriffe der Theoretischen Informatik Sommersemester Thomas Schwentick Grundbegriffe der Theoretischen Informatik Sommersemester 2016 - Thomas Schwentick 0: Einleitung Version von: 12. April 2016 (13:13) GTI / Schwentick / SoSe 16 0. Einleitung. Folie 1 Inhalt 0.1 Was ist

Mehr

Einführung in die Informatik für Nebenfach. Einleitung

Einführung in die Informatik für Nebenfach. Einleitung Einführung in die Informatik für Nebenfach Einleitung Organisatorisches, Motivation, Herangehensweise Wolfram Burgard 1 Vorlesung Zeit und Ort: Di+Do 11.00 13.00 Uhr, Gebäude 086, Raum 00-006 Dozent: Prof.

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik von Dirk Hoffmann 2., aktualisierte Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 42639 9 Zu Leseprobe schnell und portofrei erhältlich bei

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 15. primitive Rekursion und µ-rekursion Malte Helmert Gabriele Röger Universität Basel 22. April 2015 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

Algorithmik - Kompaktkurs

Algorithmik - Kompaktkurs Algorithmik - Kompaktkurs Sommersemester 2012 Steffen Lange 0/1, Folie 1 2012 Prof. Steffen Lange - HDa/FbI - Algorithmik Organisatorisches Vorlesung Folien im Netz (/* bitte zur Vorlesung mitbringen */)

Mehr

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert

Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 10:30-12:00 Raum 1200 (Vorlesung) Do 8:15-9:45 Raum 1200 (Vorlesung)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge

Mehr

Diplomarbeit. Entwurf eines TI-Coaching Systems. von. Christof Kuhn

Diplomarbeit. Entwurf eines TI-Coaching Systems. von. Christof Kuhn Diplomarbeit Entwurf eines TI-Coaching Systems von Christof Kuhn Warum TI-Coaching System? Theoretische Informatik fällt vielen schwer Sie ist aber sehr wichtig für die Informatik Sie ist nicht wirklich

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien

Mehr

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen

Mehr

Logik und diskrete Strukturen

Logik und diskrete Strukturen Prof. Dr. Institut für Informatik Abteilung I Wintersemester 2012/13 Organisatorisches Vorlesung Dienstag und Donnerstag 10:15 11:45 Uhr (HS 1) und 12:30 14:00 Uhr (HS 2) Vorlesung am Vormittag = Vorlesung

Mehr

Die Informatik als junge Wissenschaft

Die Informatik als junge Wissenschaft Die Informatik als junge Wissenschaft Die Informatik ist die Wissenschaft von der automatischen Informationsverarbeitung. Die Informatik befasst sich mit den Gesetzmäßigkeiten und Prinzipien informationsverarbeitender

Mehr

Einführung in Berechenbarkeit, Komplexität und formale Sprachen

Einführung in Berechenbarkeit, Komplexität und formale Sprachen Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Einführung in die Computerlinguistik Berechenbarkeit, Entscheidbarkeit, Halteproblem

Einführung in die Computerlinguistik Berechenbarkeit, Entscheidbarkeit, Halteproblem Einführung in die Computerlinguistik Berechenbarkeit, Entscheidbarkeit, Halteproblem Dozentin: Wiebke Petersen 14.1.2009 Wiebke Petersen Einführung CL (WiSe 09/10) 1 Hinweis zu den Folien Der Text dieser

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Theoretische Informatik Kap 2: Berechnungstheorie

Theoretische Informatik Kap 2: Berechnungstheorie Gliederung der Vorlesung 0. Grundbegriffe 1. Formale Sprachen/Automatentheorie 1.1. Grammatiken 1.2. Reguläre Sprachen 1.3. Kontextfreie Sprachen 2. Berechnungstheorie 2.1. Berechenbarkeitsmodelle 2.2.

Mehr

Module Angewandte Informatik 2. Semester

Module Angewandte Informatik 2. Semester Module Angewandte Informatik 2. Semester Automaten und formale n AF Helga Carls Bettina Buth, Helga Carls, Erhard Fähnders, Franz Korf, Reinhard Völler 1 SWS Übung mit ca. 16 Studierenden Übung = 16h Kreditpunkte

Mehr

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm 1 Vom Problem zum Programm Ein Problem besteht darin, aus einer gegebenen Menge von Informationen eine weitere (bisher unbekannte) Information zu bestimmen. 1 Vom Problem zum Programm Ein Algorithmus ist

Mehr

Semantik von Programmiersprachen

Semantik von Programmiersprachen Semantik von Programmiersprachen Prof. Dr. Manfred Schmidt-Schauß SS 2013 Stand der Folien: 15. April 2013 Semantik von Programmen verschiedene Semantiken: operationale Semantik (Spezifikation eines Interpreters)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Lehrstuhl für Informatik I Algorithmen und Datenstrukturen Wintersemester 2013/14 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmiertutorium: Alexander Wolff (E29) Krzysztof Fleszar (E13)

Mehr

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben

2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung

Mehr

Übersicht über die Einzelveranstaltungen im. B.Ed. Informatik 2+1. oder 2-stündige Klausur Rechnerstrukturen (V+Ü) 2+1 5 1

Übersicht über die Einzelveranstaltungen im. B.Ed. Informatik 2+1. oder 2-stündige Klausur Rechnerstrukturen (V+Ü) 2+1 5 1 1 Übersicht über die Einzelveranstaltungen im B.Ed. Informatik Modul 1: Theoretische Grundlagen Automatentheorie und Formale Sprachen Berechenbarkeit und Komplexitätstheorie 10 2 3 Modul 2: Technische

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Sommersemester 2011 Dozent: Prof. Dr. J. Rothe, Prof. Dr. M. Leuschel J. Rothe (HHU Düsseldorf)

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 17.10.2005 1. Vorlesung 1 Kapitel I Motivation Motivation Komplexitätstheorie 01-2 Automaten und Formale

Mehr

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik 2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik Hinweise Ulrich Furbach Christian Schwarz Markus Kaiser Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V7, 3.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

CS1005 Objektorientierte Programmierung Bachelor of Science (Informatik)

CS1005 Objektorientierte Programmierung Bachelor of Science (Informatik) CS1005 Objektorientierte Programmierung Bachelor of Science (Informatik) Einfache Programme: Programm-Argument, Bedingte Anweisungen, Switch, Enum Boolesche Werte und Ausdrücke Seite 1 Beispiel: Umrechnen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Prof. Dr. Peer Kröger, Janina Bleicher, Florian Richter Ludwig-Maximilians-Universität München, Institut für Informatik, LFE Datenbanksysteme Wintersemester 2016/2017 Peer

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

EINI I. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 10/11

EINI I. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 10/11 EINI I Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 10/11 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.tu-dortmund.de

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 13. LOOP-, WHILE- und GOTO-Berechenbarkeit Malte Helmert Gabriele Röger Universität Basel 9. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

Mathematik für Biologen und Biotechnologen (240109)

Mathematik für Biologen und Biotechnologen (240109) Mathematik für Biologen und Biotechnologen (240109) Dr. Matthieu Felsinger Sommersemester 2014 Kontakt Matthieu Felsinger m.felsinger@math.uni-bielefeld.de Homepage: www.math.uni-bielefeld.de/~matthieu

Mehr

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung Teil I Einführung Überblick 1 Vorbemerkungen 2 Algorithmen 3 4 Historischer Überblick Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 1 1 Vorbemerkungen Was ist Informatik? Informatik

Mehr

Sprachen und Programmiersprachen

Sprachen und Programmiersprachen Sprachen und Programmiersprachen Natürliche Sprachen versus Programmiersprachen / Spezifikationssprachen Syntax legt die grammatikalische Korrektheit fest. Semantik legt die Bedeutung von syntaktisch korrekten

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 7.3 Beweistechniken für unlösbare Probleme 1. Diagonalisierung 2. Monotonieargumente 3. Problemreduktion 4. Der Satz von Rice Grenzen der Berechenbarkeit Wie beweist

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie (Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie 1) Schreiben Sie ein LOOP-Programm, das die Funktion f: N \ {0} N, f (n) = n n berechnet. Sie dürfen in Ihrem Programm die Multiplikation

Mehr

Algorithmische Mathematik und Programmieren

Algorithmische Mathematik und Programmieren Algorithmische Mathematik und Programmieren Martin Lanser Universität zu Köln WS 2016/2017 Organisatorisches M. Lanser (UzK) Alg. Math. und Programmieren WS 2016/2017 1 Ablauf der Vorlesung und der Übungen

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Formale Sprachen und Automaten Kapitel 1: Grundlagen Vorlesung an der DHBW Karlsruhe Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2012 Ziel Einführung der wichtigsten

Mehr

How To: Bachelor SWT. Heiko Geppert. Fachgruppe Informatik

How To: Bachelor SWT. Heiko Geppert. Fachgruppe Informatik How To: Bachelor SWT Heiko Geppert Fachgruppe Informatik 12.10.2015 Übersicht Das Studium Das erste Semester Scheine des 1. Semesters Prüfungen Deadlines und Prüfungsordnung LSF und Stundenplan Tipps &

Mehr

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange

Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange Datenstrukturen Sommersemester 2010 Steffen Lange 1/1, Folie 1 2010 Prof. Steffen Lange - HDa/FbI - Datenstrukturen Organisatorisches Vorlesung wöchentlich; zwei Blöcke Folien im Netz (/* bitte zur Vorlesung

Mehr

Veranstaltung Pr.-Nr.: Modul Wirtschaftsinformatik für Wirtschaftswissenschaftler. Organisatorisches. Veronika Waue WS 2007/2008

Veranstaltung Pr.-Nr.: Modul Wirtschaftsinformatik für Wirtschaftswissenschaftler. Organisatorisches. Veronika Waue WS 2007/2008 Veranstaltung Pr.-Nr.: 101023 Modul Wirtschaftsinformatik für Wirtschaftswissenschaftler Organisatorisches Veronika Waue WS 2007/2008 Hallo Dr. Veronika Waue Zimmer: 214 E-mail: veronika@waue.net Sprechstunde:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Grundlagen der Modellierung und Programmierung, Übung

Grundlagen der Modellierung und Programmierung, Übung Grundlagen der Modellierung und Programmierung Übung Prof. Wolfram Amme LS Softwaretechnik Prof. Klaus Küspert LS Datenbanksysteme Prof. Birgitta König-Ries LS Verteilte Systeme Prof. Dr. Wilhelm Rossak

Mehr

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen?

1. Einführung. Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? 1. Einführung Was ist ein Algorithmus (eine Datenstruktur)? Welche Probleme kann man damit lösen? Warum betrachten wir (effiziente) Algorithmen? Wie beschreiben wir Algorithmen? Nach welchen Kriterien

Mehr

Einführung in die Informatik Algorithms

Einführung in die Informatik Algorithms Einführung in die Informatik Algorithms Vom Problem zum Algorithmus und zum Programm Wolfram Burgard Cyrill Stachniss 1.1 Motivation und Einleitung In der Informatik sucht man im Normalfall nach Verfahren

Mehr

Kapitel 1 1 Einleitung

Kapitel 1 1 Einleitung Kapitel 1 Einleitung 1 1 1 Einleitung 1 Einleitung Die Informatik begegnet uns im Alltag ständig. Einmal natürlich als Rechenanlagen, die wir in Büros, Arztpraxen und zu Hause sehen. Zum anderen ist sie

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Einordnung 3.2. Berechnungsmodelle 3.3. Diskussion 3.4. Ergebnisse und

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Als Programmierung bezeichnet man die Tätigkeit Computerprogramme (software) zu erstellen. Konzeptioneller Entwurf Umsetzung des Entwurfs in Programmcode (Implementation):

Mehr

Einführung in die Informatik Algorithms

Einführung in die Informatik Algorithms Einführung in die Informatik Algorithms Eigenschaften von Algorithmen Wolfram Burgard 14.1 Motivation und Einleitung In der Informatik sucht man im Normalfall nach Verfahren zur Lösung von Problemen. Eine

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Einleitung Organisatorisches, Motivation, Herangehensweise Wolfram Burgard 1.1 Vorlesung Zeit und Ort: Dienstags 10:00-12:00 Uhr Donnerstags 10:00-12:00 Uhr Gebäude 101 HS

Mehr

Praktische Informatik I

Praktische Informatik I Praktische Informatik I WS 2005/2005 Prof. Dr. Wolfgang Effelsberg Lehrstuhl für Praktische Informatik IV Universität Mannheim 1. Einführung 1-1 Inhaltsverzeichnis (1) 1. Einführung 1.1 Was ist Informatik?

Mehr

Das Studium im Fach Informatik

Das Studium im Fach Informatik [Projekttage Studien- und Berufsorientierung der Jgst. 12] Fachbereich Informatik Fakultät für Mathematik und Informatik FernUniversität Hagen 22. Februar 2007 Was Informatik nicht ist Was ist Informatik?

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen 11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Algorithmen und Formale Sprachen

Algorithmen und Formale Sprachen Algorithmen und Formale Sprachen Algorithmen und formale Sprachen Formale Sprachen und Algorithmen Formale Sprachen und formale Algorithmen (formale (Sprachen und Algorithmen)) ((formale Sprachen) und

Mehr

Algorithmen und Datenstrukturen Laufzeitabschätzung

Algorithmen und Datenstrukturen Laufzeitabschätzung Algorithmen und Datenstrukturen Laufzeitabschätzung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren, Suchen,

Mehr

Vom Problem über den Algorithmus zum Programm

Vom Problem über den Algorithmus zum Programm 2 Vom Problem über den Algorithmus zum Programm Computer sind heute praktisch überall zu finden. Entsprechend groß ist die Vielzahl der Problemstellungen, mit denen man bei der Entwicklung von Programmen

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Einleitung Organisatorisches, Motivation, Herangehensweise Wolfram Burgard Cyrill Stachniss 0.1 Vorlesung Zeit und Ort: Mo 16.00 18.00 Uhr Gebäude 101, HS 00-026 Informationen

Mehr

Modellierung Prof. Dr. Uwe Kastens WS 2011 / 2012

Modellierung Prof. Dr. Uwe Kastens WS 2011 / 2012 Modellierung Prof. Dr. Uwe Kastens WS 2011 / 2012 Mod-1.0 Begründung der Vorlesung Mod-1.1 Das Modellieren ist eine für das Fach Informatik typische Arbeitsmethode. Mit der Modellierung einer Aufgabe zeigt

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de SS 2010 1 Einordnung der Theoretischen

Mehr

EINI LW/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 16/17

EINI LW/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 16/17 EINI LW/ Einführung in die für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 16/17 Dr. Lars Hildebrand Fakultät für Technische Universität Dortmund lars.hildebrand@tu-dortmund.de http://ls14-www.cs.tu-dortmund.de

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

Systemtheorie 1. Einführung Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.4

Systemtheorie 1. Einführung Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.4 Einführung intro 1 Grobklassifizierung r Methoden in der Informatik intro 2 Systemtheorie 1 Systeme 1 #342234 http://fmv.jku.at/fs1 WS 2006/2007 Johannes Kepler Universität Linz, Österreich Univ. Prof.

Mehr

Mathematik für Studierende der Wirtschaftswissenschaften und Gesundheitsökonomie

Mathematik für Studierende der Wirtschaftswissenschaften und Gesundheitsökonomie für Studierende der Wirtschaftswissenschaften und Gesundheitsökonomie Prof. Dr. Maragreta Heilmann Teresa M.Sc. Marco, M.Sc. Bergische Universität Wuppertal Fachbereich C - und Informatik Arbeitsgruppe

Mehr