Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Größe: px
Ab Seite anzeigen:

Download "Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen"

Transkript

1 Beispiele (Ein-) Gelenkrahmen Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines 2-fach statisch unbestimmten Rahmens veranschaulicht. Dabei gliedert sich die Berechnung in folgende Schritte: Systemanalyse: Ermittlung des Grades der statischen Unbestimmtheit Herstellen eines statisch bestimmten Grundsystems Lastspannungszustand: Antragen der Belastung am Ersatzsystem und Ermittlung der Schnittkräfte Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen werden Berechnung der Verformung infolge des Last- und Eigenspannungszustandes Aufstellen und Lösen des Gleichungssystems Ermittlung der endgültigen Zustandslinien durch Superposition System und Belastung Systemanalyse Auflagerreaktionen a = 5 Stabelemente p = 2 Knotenpunkte k = n = 5 + * ( 2 ) 0 n = 2 Nebenbedingungen r = 0

2 Beispiele (Ein-) Gelenkrahmen Seite 2 Statisch bestimmtes Grundsystem Zur Berechnung eines n-fach statisch unbestimmten Systems sind n Verformungsbedingungen notwendig. Diese Bedingungen lassen sich durch Wegnahme von Auflagern oder Einführung von Gelenken formulieren. Das System wird in ein statisch bestimmtes Ersatzsystem umgewandelt. An den Stellen der entfernten Lager oder der eingeführten Gelenke werden die am Ursprungssystem wirkenden Kräfte (Einheitskräfte) angesetzt. Das statisch bestimmte Ersatzsystem sollte so gewählt werden, dass sich die Schnittkraftermittlung leicht gestaltet und zu Schnittkraftlinien führt, die eine möglichst geringe Integrationsarbeit bei der Verformungsberechnung ergibt. An der Rahmenecke sowie am Auflager A wird jeweils ein Momentengelenk eingeschaltet. Als Unbekannte werden somit das Eckmoment und das Einspannmoment M A gewählt. Zustand 0 (Lastzustand) Nachdem das statisch bestimmte Ersatzsystem gewählt wurde, erfolgt die Berechnung der Schnitt- und Auflagerkräfte infolge des Lastzustandes. Hierbei wird die äußere Belastung am Ersatzsystem angetragen und die Schnittkraftermittlung mit Hilfe der Gleichgewichtsbedingungen erarbeitet. Momentenbild M 0 (x) Querkraftbild Q 0 (x) Normalkraftbild N 0 (x)

3 Beispiele (Ein-) Gelenkrahmen Seite Zustand X = (Einheitszustand) Für alle n Einheitszustände werden nun die Schnittkräfte am Grundsystem berechnet. Die Vorgehensweise ist mit der des Lastzustandes identisch. Momentenbild M (x) Querkraftbild Q (x) Normalkraftbild N (x) Zustand X 2 = (Einheitszustand) Für alle n Einheitszustände werden nun die Schnittkräfte am Grundsystem berechnet. Die Vorgehensweise ist mit der des Lastzustandes identisch. Momentenbild M 2 (x) Querkraftbild Q 2 (x) Normalkraftbild N 2 (x)

4 Beispiele (Ein-) Gelenkrahmen Seite 4 Formänderungsintegrale An den n Stellen der eingeführten Einheitslasten werden mit dem Prinzip der virtuellen Kräfte die EI-fachen Verformungen infolge des Lastzustandes ermittelt. Hierzu werden die Momentenflächen der Zustände Xi = mit sich selbst und mit der des Zustandes 0 integriert. ( x) M = M =,00,00 5,00 +,00,00 8,00 = 4, = M =,00,00 5, = 0,8 22 = M =,00,00 5,00 22 =,67 0 = M 0 0 =,00 46,88 5, = 8, 4,00 0,00 8,00 20 = M =,00 46,88 5,00 20 = 78,

5 Beispiele (Ein-) Gelenkrahmen Seite 5 Gleichungssystem Das Gleichungssystem ergibt sich aus den n Verformungsbedingungen, die man an den n Stellen der im statisch unbestimmten System eingeführten Freiheitsgrade formulieren kann. Die Summe der Verformungen infolge des Lastzustandes und aller Xi-fachen Verformungen aus n Einheitszuständen müssen für jede der n Stellen gleich Null sein. Die Auflösung des Gleichungssystems liefert die unbekannten Kräfte. X + 2 X2 + 0 = 0 2 X X = , X + 0,8 X2 + 8, = 0 0,8 X2 +,67 X2 + 78, = 0 4, 0,8 0,8,67 8, 78, X = 25,5kNm X 2 = 4,9kNm ,5 4,9 Superposition Die endgültigen Schnitt- und Auflagerkräfte des statisch unbestimmten Systems ergeben sich aus der Summe der Größen des Lastzustandes und aller Einheitszustände multipliziert mit der jeweiligen Unbekannten. Normalkraftbild N = N0 + X N + X2 N2 NA = 7,50kN 0,25kN + ( 4.9) 0,00kN NA = 0,67kN N Ecke(unten) = 7,50kN 0,25kN + ( 4.9) 0,00kN NEcke(unten) = 0,67kN N Ecke(rechts) = 7,50kN 0,20kN + ( 4.9) NEcke(rechts) = 5,7kN NB = 7,50kN 0,20kN + ( 4.9) NB = 5,7kN Auflagerkräfte: V A = 0,67 kn H B = 5,7 kn

6 Beispiele (Ein-) Gelenkrahmen Seite 6 Querkraftbild Q = Q0 + X Q + X2 Q2 QA = 7,50kN 0,20kN + ( 4.9) QA = 9,27kN Q Ecke(unten) = 7,50kN 0,20kN + ( 4.9) QEcke(unten) = 5,7kN Q Ecke (rechts) = 7,50kN ( 0,25kN) + ( 4.9) 0,00kN QEcke(rechts) = 0,67kN QB = 7,50kN ( 0,25kN) + ( 4.9) 0,00kN QB = 4,kN Auflagerkräfte: H A = 9,27 kn H B = 4, kn Nulldurchgang der Querkraftlinie: X 0 = 9,27 kn * ( 5,00 m / ( 9,27 kn + 5,7 kn ) ) X 0 =,62 m Momentenbild M = M0 + X M + X2 M2 MA MEcke = 0,00kNm 0,00kNm + ( 4.9),00kNm = 0,00kNm,00kNm + ( 4.9) 0,00kNm MA MEcke = 4,9kNm MB = 0,00kNm 0,00kNm + ( 4.9) 0,00kNm MB = 0,00kNm = 25,5kNm Einspannmoment: M A = - 4,9 knm

7 Beispiele (Ein-) Gelenkrahmen Seite 7 Maximales Moment im Stiel: Das maximale Moment wirkt an der Stelle des Nulldurchgangs der Querkraftlinie. Es wird mit Hilfe eines fiktiven Schnittes an der Stelle x 0 berechnet! M max = ( 4,9 knm ) + 5,00 kn/m * 2,62 m *, m 9,27 kn * 2,62 m M max = 7,2 knm Maximales Moment im Riegel: Das maximale Moment wird durch Einhängen der Momentenlinie M 0 (x) ermittelt! M max = 0,5 * ( 25,5 knm ) + 0,00 knm M max = 7, knm

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele Zweifeldträger Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines -fach statisch

Mehr

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Bachelorprojekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Wintersemester 2009/20 Verfasser:

Mehr

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im November 2009 Verfasser: Betreuer: Mario Jackisch

Mehr

Statisch Unbestimmte Systeme

Statisch Unbestimmte Systeme 3. Semester Seite 1/13 Statisch Unbestimmte Systeme 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Freischneiden 2 4.1 Darstellung des Verfahrens am Zweifeldträger 2 4.2 Verallgemeinerte

Mehr

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER 1) Definition für statisch bestimmte Systeme 2) Auflagerreaktionen beim einfachen Balken 3)

Mehr

Statisch bestimmte Tragsysteme

Statisch bestimmte Tragsysteme Statisch bestimmte Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Statisch

Mehr

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben).

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben). Technische Universität Darmstadt Technische Mechanik I B 13, G Kontinuumsmechanik Wintersemester 007/008 Prof. Dr.-Ing. Ch. Tsakmakis 9. Lösungsblatt Dr. rer. nat. P. Grammenoudis 07. Januar 008 Dipl.-Ing.

Mehr

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 13.0 Einfacher Lastabtrag für Vertikallasten 13.1 Konstruktionsbeispiele für Lastabträge Garage in Wandbauweise zugehöriger Lastabtrag

Mehr

Beispiel 4: Theorie II. Ordnung

Beispiel 4: Theorie II. Ordnung Titel: Theorie II. Ordnung Blatt: Seite 1 von 10 Beispiel 4: Theorie II. Ordnung Nachweis: Stabilität des Systems nach Theorie II. Ordnung. Schnittgrößen nach Theorie I. Ordnung, ohne Imperfektion F Ed

Mehr

Stabwerkslehre - WS 11/12 Prof. Dr. Colling

Stabwerkslehre - WS 11/12 Prof. Dr. Colling Fachhochschule Augsburg Studiengang Bauingenieurwesen Stabwerkslehre - WS 11/12 Name: Prof. Dr. Colling Arbeitszeit: Hilfsmittel: 90 min. alle, außer Rechenprogrammen 1. Aufgabe (ca. 5 min) Gegeben: Statisches

Mehr

POS: 001 Bezeichnung: Hallendach Thermodachelemente System M 1 : 75 1 2 3 45 9.10 BAUSTOFF : S 355 E-Modul E = 21000 kn/cm2 γm = 1.10 spez. Gewicht : 7.85 kg/dm3 QUERSCHNITTSWERTE Quersch. Profil I A Aq

Mehr

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II Fachbereich 02 BI 4. Semester 1. und 2. Studienarbeit aus Baustatik II 1. Aufgabe: Bestimmen Sie mit Hilfe des Drehwinkelverfahrens die Schnittgrößen des obigen Tragwerkes und stellen Sie deren Verlauf

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

Fachwerkträger. (Skript zur Online-Version)

Fachwerkträger. (Skript zur Online-Version) Fachwerkträger (Skript zur Online-Version) Name: Czapalla Vorname: Oliver E-Mail: czapalla@web.de Online-Version: http://www.biw.fhd.edu/partsch/diplomarbeiten/fachwerktraeger Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Das Hebelgesetz zur Lösung technischer Aufgaben

Das Hebelgesetz zur Lösung technischer Aufgaben Es gibt einseitige Hebel, zweiseitige Hebel und Winkelhebel. Mit allen Hebeln kann man die Größe und Richtung von Kräften ändern. In der Regel verwendet man Hebel zur Vergrößerung von Kräften. Das Hebelgesetz

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

STATISCHE BERECHNUNG vom 20.04.2012

STATISCHE BERECHNUNG vom 20.04.2012 Projekt : 1020-12 Frank Blasek Beratender Ingenieur Heinestraße 1 D-33142 Büren Tel. +49 2951-937 582-0 Fax +49 2951-937 582-7 info@ifb-blasek.de Ingenieurbüro Frank Blasek Beratender Ingenieur Heinestraße

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Erläuterungen: GEO - Lastverteilung

Erläuterungen: GEO - Lastverteilung Erläuterungen: GEO - Lastverteilung FRILO Software GmbH www.frilo.de info@frilo.eu Stand: 27.10.2015 Zusätzliche Erläuterungen zur Lastverteilung im Programm GEO - Gebäudemodell Auswirkung der Option Last

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Berechnung von Kräften im Seilgarten, Teil 2: Umlenkungen, 5,00 kn 10,0 9,96 kn 5,00 kn 5,00 kn Daraus folgt für Umlenkungen im Seilgarten u.

Berechnung von Kräften im Seilgarten, Teil 2: Umlenkungen, 5,00 kn 10,0 9,96 kn 5,00 kn 5,00 kn Daraus folgt für Umlenkungen im Seilgarten u. Berechnung von Kräften im Seilgarten, Teil 2: Umlenkungen, Version 2.1 Copyright online www.online-seilgarten.de Vorspannung auf Seil F1=F2 5,00 kn Winkel der Umlenkung α 10,0 Zugkraft auf Umlenkung, Baum

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flächentragwerke Mit 208 Abbildungen, 36 Tabellen und zahlreichen Beispielen 2., überarbeitete und erweiterte Auflage vieweg

Mehr

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Checkliste Lagergeräte und Stapelhilfsmittel

Checkliste Lagergeräte und Stapelhilfsmittel Checkliste Lagergeräte und Stapelhilfsmittel Firma und Stempel Firma: Name des Prüfers: Ort und Datum der Prüfung: Ort, den Datum Lagergeräte sind zur Wiederverwendung bestimmte Paletten mit oder ohne

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

NCCI: Elastisches kritisches Biegedrillknickmoment

NCCI: Elastisches kritisches Biegedrillknickmoment Dieses NCCI Dokument enthält die Gleichung ur Ermittlung des elastischen kritischen Biegedrillknickmomentes für doppelt symmetrische Querschnitte. Für die Berechnung werden Parameter für häufig auftretende

Mehr

Benutzerhandbuch. RuckZuck 5.0 Für die Betriebssysteme: Microsoft WindowsTM 9x/NT/2000/XP/Vista

Benutzerhandbuch. RuckZuck 5.0 Für die Betriebssysteme: Microsoft WindowsTM 9x/NT/2000/XP/Vista Benutzerhandbuch RuckZuck 5.0 Für die Betriebssysteme: Microsoft WindowsTM 9x/NT/2000/XP/Vista Mursoft Wörgötter, Kump OEG Grafenbergstraße 47c/13 A 8051 Graz Tel.: +43 (316) 673 673 43 Fax: +43 (316)

Mehr

- Grundlagen der Elektrotechnik I - 81 11.01.01. 5 Gleichströme und Gleichspannungen in linearen Netzwerken 1

- Grundlagen der Elektrotechnik I - 81 11.01.01. 5 Gleichströme und Gleichspannungen in linearen Netzwerken 1 - Grundlagen der Elektrotechnik - 8.0.0 5 Gleichströme und Gleichspannungen in linearen Netzwerken 5. Begriffsbestimmungen 5.. Netzwerk, Knoten, Zweig, Schleife, Masche Allgemein besteht eine Schaltung

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

Einflusslinien und ihre Anwendung

Einflusslinien und ihre Anwendung Einflusslinien und ihre Anwendung Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Mai 2009 Verfasser: Betreuer: Christiana Köppl Dipl. Ing. Klaus Thöni II Inhaltsverzeichnis

Mehr

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik)

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik) 6 Hydropumpen 6.1 Allgemeines Als Herzstück eines hydraulischen Systems gilt die Hydropumpe. Die über ihre Antriebswelle zugeführte mechanische Energie wird dazu benötigt, die Energie des durch die Pumpe

Mehr

Stahlbau I SS2009. Name: Vorname: Matrikelnr.: Detail Knoten e. Ergebnis Punkte. Bachelor. Gesamtpunkte: Diplom. 250 kn S 4. 3 m S 8 S S 1 S2 S3

Stahlbau I SS2009. Name: Vorname: Matrikelnr.: Detail Knoten e. Ergebnis Punkte. Bachelor. Gesamtpunkte: Diplom. 250 kn S 4. 3 m S 8 S S 1 S2 S3 Ergebnis Punkte Gesamtpunkte: tahlbau I 17. Juli 2009 Ro 120 Minuten Alle Ergebnisse sind prüfbar zu dokumentieren. Programmierbare Rechner sind nur ohne Programme zugelassen. Aufgabe 1 (10 Punkte) 1.1

Mehr

X-Lam Designer für Derix Brettsperrholz. Benutzerhandbuch. X-Lam Designer. Version 2.2. Seite 1

X-Lam Designer für Derix Brettsperrholz. Benutzerhandbuch. X-Lam Designer. Version 2.2. Seite 1 X-Lam Designer Version 2.2 Seite 1 INHALTSVERZEICHNIS 1 Allgemeines... 4 1.1 Systemvoraussetzungen... 4 1.2 Berechnungsverfahren... 4 1.3 Verwendete Normen und Richtlinien... 4 1.4 Übersetzungen... 5 2

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flachentragwerke 3., aktualisierte und erweiterte Auflage mit 305 Abbildungen und 43 Tabellen vieweg IX Inhaltsverzeichnis

Mehr

DOKUMENT ZU DEN RENTEN

DOKUMENT ZU DEN RENTEN DOKUMENT ZU DEN RENTEN Der RENTENFONDS LABORFONDS haftet für die Vollständigkeit und die Wahrhaftigkeit der in diesem Dokument enthaltenen Daten und Angaben. Hinweis: Bei eventuellen Übersetzungsfehlern

Mehr

prof. dr.-ing. h a r t m u t e r n e r Verwendung von Würth ASSY 3.0 Kombi Holzschrauben als Transportanker

prof. dr.-ing. h a r t m u t e r n e r Verwendung von Würth ASSY 3.0 Kombi Holzschrauben als Transportanker Prof. Dr.-Ing. Hartmut Werner,, Adolf Würth GmbH & Co.KG Postfach D-74650 Künzelsau Datum: 15.01.2011 Gutachtliche Stellungnahme Verwendung von Würth ASSY 3.0 Kombi Holzschrauben als Transportanker 1 Allgemeines

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

Tragwerkslehre I Statik

Tragwerkslehre I Statik Tragwerkslehre I Statik Ausgabe: September 2013 Dipl.-Ing. E. Schuler Tragwerkslehre 1! 1 1. Einführung! 2 1.1. Die Statik als Teilgebiet der Mechanik! 2 1.2. Sicherheit! 3 1.3. Modellbildung! 4 1.4. Methoden

Mehr

Ruckzuck Symbolleisten

Ruckzuck Symbolleisten Ruckzuck Symbolleisten Automatische Berechnung Theorie I. Ordnung, II. Ordn., Stabilität, Dyynamik, Knicklänge Bemessung,.., N, Q, M, Biegelinie, Auflagerkräfte, Stabergebnis, min/max. je Stab, Knotenwerte

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

HP 2009/10-1: Wanddrehkran

HP 2009/10-1: Wanddrehkran HP 2009/10-1: Wanddrehkran Mit dem Kran können Lasten angehoben, horizontal verfahren und um die Drehachse A-B geschwenkt werden. Daten: Last F L 5,kN Hebezeug F H 1,kN Ausleger 1,5 kn l 1 500,mm l 2 2500,mm

Mehr

Formelsammlung. für die Klausur. Technische Mechanik I & II

Formelsammlung. für die Klausur. Technische Mechanik I & II Formelsammlung für die Klausur Technische Mechanik I & II Vorwort Diese Formelsammlung ist dazu gedacht, das Suchen und Herumblättern in den Büchern während der Klausur zu vermeiden und somit Zeit zu sparen.

Mehr

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z (ZUSENFSSUNG) rbeitsblätter. LLGEEINES. Sstem und Belastung Längsansicht: p( x) z, w x, u Biegesteifigkeit EI h Bettung c l Querschnittsdarstellung: p( x) p ( x) ( verschmiert) z h Bettung c b Bemerkung:

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Diskrete Optimierungsverfahren zur Lösung von Sudokus

Diskrete Optimierungsverfahren zur Lösung von Sudokus Diskrete Optimierungsverfahren zur Lösung von Sudokus Seminarvortrag von Daniel Scholz am 6. Dezember 2006 Am Beispiel der Lösung von Sudokurätseln mit Hilfe der linearen Optimierung werden verschiedenen

Mehr

1.2 Gauß-Algorithmus zum Lösen linearer Gleichungssysteme

1.2 Gauß-Algorithmus zum Lösen linearer Gleichungssysteme . Gauß-Algorithmus zum Lösen linearer Gleichungssysteme. Gauß-Algorithmus zum Lösen linearer Gleichungssysteme Die Bestimmung einer Polynomfunktion zu gegebenen Eigenschaften erfordert oft das Lösen eines

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

Ergänzung Forschungsvorhaben DIN EN 1995 - Eurocode 5 - Holzbauten Untersuchung verschiedener Trägerformen

Ergänzung Forschungsvorhaben DIN EN 1995 - Eurocode 5 - Holzbauten Untersuchung verschiedener Trägerformen 1 Vorbemerkungen Begründung und Ziel des Forschungsvorhabens Die Berechnungsgrundsätze für Pultdachträger, Satteldachträger mit geradem oder gekrümmtem Untergurt sowie gekrümmte Träger sind nach DIN EN

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Dax-Sparplan ohne zwischenzeitliche Wertsicherungsmaßnahmen (herkömmlicher bzw. üblicher Sparplan)

Dax-Sparplan ohne zwischenzeitliche Wertsicherungsmaßnahmen (herkömmlicher bzw. üblicher Sparplan) Dax-Sparplan ohne zwischenzeitliche Wertsicherungsmaßnahmen (herkömmlicher bzw. üblicher Sparplan) 60.00 Entwicklung Dax-Sparplan ohne zwischenzeitliche Wertsicherungsmaßnahmen im Zeitraum Jan. 1990 bis

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Baumechanik 1 (Modul 3104) Veranstaltungen WS 2012 / 2013

Baumechanik 1 (Modul 3104) Veranstaltungen WS 2012 / 2013 (Modul 304) Veranstaltungen WS 0 / 03 Vorlesung Mi. 0:00 :30 Uhr, 3.03 (Casino-Gebäude) Beginn: 6.9.0 Hörsaalübung Gruppe Bauingenieure A Di. :45-3:5 Uhr, R..6 Beginn: 5.9.0 Gruppe Bauingenieure B Do.

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Herzlich Willkommen Bienvenue Welcome. Beispiele zur Mathematik-/Logikfunktion. Manfred Schleicher

Herzlich Willkommen Bienvenue Welcome. Beispiele zur Mathematik-/Logikfunktion. Manfred Schleicher Herzlich Willkommen Bienvenue Welcome Beispiele zur Mathematik-/Logikfunktion Manfred Schleicher Hinweise zur Präsentation Diese Präsentation zeigt Beispiele zur Anwendung der Mathematikfunktion: Mittelwertbildung

Mehr

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Bearbeitungszeit: W-Mathe 60 Minuten, F-Mathe 45 Minuten Aufgabe 1 a) Gegeben ist das folgende Gleichungssystem:

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Berechnung der Weideleistung

Berechnung der Weideleistung Berechnung der Weideleistung Bearbeitung: Dr. Clara Berendonk und Anne Verhoeven Landwirtschaftskammer Nordrhein-Westfalen Versuchs- und Bildungszentrum Landwirtschaft Haus Riswick Elsenpaß 5, 47533 Kleve

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung Angabe für Prüfer/innen Hinweise zur Kompensationsprüfung

Mehr

Abnehmer der Erzeugnisse (Output) Werk 1 Werk 2 Werk 3 Markt Werk 1 400 1400 1000 1200 Hersteller der Erzeugnisse

Abnehmer der Erzeugnisse (Output) Werk 1 Werk 2 Werk 3 Markt Werk 1 400 1400 1000 1200 Hersteller der Erzeugnisse Name: Datum: Produktionsverflechtung - Einstiegsaufgabe mit Lösung Ein Unternehmen produziert in drei Zweigwerken an verschiedenen Standorten unterschiedliche Teile und Waren. Jedes Zweigwerk bezieht für

Mehr

STATISCHE BERECHNUNG "Traverse Typ Foldingtruss F52F" Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia Corp.

STATISCHE BERECHNUNG Traverse Typ Foldingtruss F52F Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia Corp. Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ Foldingtruss F52F" Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Liechtensteinisches Landesgesetzblatt

Liechtensteinisches Landesgesetzblatt Liechtensteinisches Landesgesetzblatt 831.421 Jahrgang 2015 Nr. 241 ausgegeben am 31. August 2015 Verordnung vom 25. August 2015 über die Abänderung der Pensionsfondsverordnung Aufgrund von Art. 7 Abs.

Mehr

2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB

2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB 2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB Auf dem Weg zum Quantennormal für die Stromstärke Doris III am DESY 1 Versuch zur Stromwirkung: Leuchtende Gurke 2 2.1.2 Stromdichte

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Statistische Auswertung in der Betriebsprüfung

Statistische Auswertung in der Betriebsprüfung Dr. Harald Krehl Der Einsatz verteilungsbezogener Verfahren Der Einsatz verteilungsbezogener Verfahren etwa des Benford- Newcomb Verfahrens oder der Normalverteilung bzw. der LogNormalverteilung in der

Mehr

Aussteifung von Gebäuden

Aussteifung von Gebäuden Aussteifung von Gebäuden Institut für Stahlbau und Werkstoffmechanik Prof. Dr.-Ing. Jörg Lange 1 Inhalt der Vorlesung Einführendes Beispiel Typische Aussteifungssysteme Fotos aus der Praxis Horizontale

Mehr

Ordnung für die Teilung von Lebensversicherungen aufgrund des Gesetzes über den Versorgungsausgleich (Teilungsordnung) in der Fassung vom 01.12.

Ordnung für die Teilung von Lebensversicherungen aufgrund des Gesetzes über den Versorgungsausgleich (Teilungsordnung) in der Fassung vom 01.12. Ordnung für die Teilung von Lebensversicherungen aufgrund des Gesetzes über den Versorgungsausgleich (Teilungsordnung) in der Fassung vom 01.12.2012 1. Anwendungsbereich Diese Teilungsordnung gilt für

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Traglasten. Traglasten. Seite 1 von 7

Traglasten. Traglasten. Seite 1 von 7 Einbaudicken der Estriche für unterschiedliche Belastungen ohne nennenswerte Fahrbeanspruchung unbeheizt. Bei Estrichen mit im Estrichmörtel eingebetteten Heizrohren ist die Dicke um den Rohraussendurchmesser

Mehr

Die Steuerbescheinigung

Die Steuerbescheinigung Die Steuerbescheinigung Mit Einführung der Abgeltungsteuer im Jahr 2009 hat der Gesetzgeber ein neues Format der Steuerbescheinigung definiert. Die wichtigsten Punkte der Bescheinigung möchten wir Ihnen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

STATIK- UND BELASTUNGSTABELLEN. Statik und Belastungen EUROPÄISCHER GERICHTSHOF, LUXEMBURG

STATIK- UND BELASTUNGSTABELLEN. Statik und Belastungen EUROPÄISCHER GERICHTSHOF, LUXEMBURG STATIK- UND BESTUNGSTABELLEN EUROPÄISCHER GERICHTSHOF, LUXEMBURG 1 BESTUNGSTABELLEN STUFEN Bestiung der für die einzelnen Spannweiten, DIN EN 1991, S235 Maschenteilung 33,3 x 33,3 Industrietreppe, Arbeitsbühnen

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

Seil / Stange. Mit einem Seil verlegt man den Angriffspunkt der Kraft

Seil / Stange. Mit einem Seil verlegt man den Angriffspunkt der Kraft Seil / Stange F F Mit einem Seil verlegt man den Angriffspunkt der Kraft Die feste Rolle F 1 F F2 = F1 2 aber: F F 2 1 Mit einer festen Rolle verändert man die Richtung der Kraft Die lose Rolle F 1 F 2

Mehr