Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen"

Transkript

1 Beispiele (Ein-) Gelenkrahmen Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines 2-fach statisch unbestimmten Rahmens veranschaulicht. Dabei gliedert sich die Berechnung in folgende Schritte: Systemanalyse: Ermittlung des Grades der statischen Unbestimmtheit Herstellen eines statisch bestimmten Grundsystems Lastspannungszustand: Antragen der Belastung am Ersatzsystem und Ermittlung der Schnittkräfte Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen werden Berechnung der Verformung infolge des Last- und Eigenspannungszustandes Aufstellen und Lösen des Gleichungssystems Ermittlung der endgültigen Zustandslinien durch Superposition System und Belastung Systemanalyse Auflagerreaktionen a = 5 Stabelemente p = 2 Knotenpunkte k = n = 5 + * ( 2 ) 0 n = 2 Nebenbedingungen r = 0

2 Beispiele (Ein-) Gelenkrahmen Seite 2 Statisch bestimmtes Grundsystem Zur Berechnung eines n-fach statisch unbestimmten Systems sind n Verformungsbedingungen notwendig. Diese Bedingungen lassen sich durch Wegnahme von Auflagern oder Einführung von Gelenken formulieren. Das System wird in ein statisch bestimmtes Ersatzsystem umgewandelt. An den Stellen der entfernten Lager oder der eingeführten Gelenke werden die am Ursprungssystem wirkenden Kräfte (Einheitskräfte) angesetzt. Das statisch bestimmte Ersatzsystem sollte so gewählt werden, dass sich die Schnittkraftermittlung leicht gestaltet und zu Schnittkraftlinien führt, die eine möglichst geringe Integrationsarbeit bei der Verformungsberechnung ergibt. An der Rahmenecke sowie am Auflager A wird jeweils ein Momentengelenk eingeschaltet. Als Unbekannte werden somit das Eckmoment und das Einspannmoment M A gewählt. Zustand 0 (Lastzustand) Nachdem das statisch bestimmte Ersatzsystem gewählt wurde, erfolgt die Berechnung der Schnitt- und Auflagerkräfte infolge des Lastzustandes. Hierbei wird die äußere Belastung am Ersatzsystem angetragen und die Schnittkraftermittlung mit Hilfe der Gleichgewichtsbedingungen erarbeitet. Momentenbild M 0 (x) Querkraftbild Q 0 (x) Normalkraftbild N 0 (x)

3 Beispiele (Ein-) Gelenkrahmen Seite Zustand X = (Einheitszustand) Für alle n Einheitszustände werden nun die Schnittkräfte am Grundsystem berechnet. Die Vorgehensweise ist mit der des Lastzustandes identisch. Momentenbild M (x) Querkraftbild Q (x) Normalkraftbild N (x) Zustand X 2 = (Einheitszustand) Für alle n Einheitszustände werden nun die Schnittkräfte am Grundsystem berechnet. Die Vorgehensweise ist mit der des Lastzustandes identisch. Momentenbild M 2 (x) Querkraftbild Q 2 (x) Normalkraftbild N 2 (x)

4 Beispiele (Ein-) Gelenkrahmen Seite 4 Formänderungsintegrale An den n Stellen der eingeführten Einheitslasten werden mit dem Prinzip der virtuellen Kräfte die EI-fachen Verformungen infolge des Lastzustandes ermittelt. Hierzu werden die Momentenflächen der Zustände Xi = mit sich selbst und mit der des Zustandes 0 integriert. ( x) M = M =,00,00 5,00 +,00,00 8,00 = 4, = M =,00,00 5, = 0,8 22 = M =,00,00 5,00 22 =,67 0 = M 0 0 =,00 46,88 5, = 8, 4,00 0,00 8,00 20 = M =,00 46,88 5,00 20 = 78,

5 Beispiele (Ein-) Gelenkrahmen Seite 5 Gleichungssystem Das Gleichungssystem ergibt sich aus den n Verformungsbedingungen, die man an den n Stellen der im statisch unbestimmten System eingeführten Freiheitsgrade formulieren kann. Die Summe der Verformungen infolge des Lastzustandes und aller Xi-fachen Verformungen aus n Einheitszuständen müssen für jede der n Stellen gleich Null sein. Die Auflösung des Gleichungssystems liefert die unbekannten Kräfte. X + 2 X2 + 0 = 0 2 X X = , X + 0,8 X2 + 8, = 0 0,8 X2 +,67 X2 + 78, = 0 4, 0,8 0,8,67 8, 78, X = 25,5kNm X 2 = 4,9kNm ,5 4,9 Superposition Die endgültigen Schnitt- und Auflagerkräfte des statisch unbestimmten Systems ergeben sich aus der Summe der Größen des Lastzustandes und aller Einheitszustände multipliziert mit der jeweiligen Unbekannten. Normalkraftbild N = N0 + X N + X2 N2 NA = 7,50kN 0,25kN + ( 4.9) 0,00kN NA = 0,67kN N Ecke(unten) = 7,50kN 0,25kN + ( 4.9) 0,00kN NEcke(unten) = 0,67kN N Ecke(rechts) = 7,50kN 0,20kN + ( 4.9) NEcke(rechts) = 5,7kN NB = 7,50kN 0,20kN + ( 4.9) NB = 5,7kN Auflagerkräfte: V A = 0,67 kn H B = 5,7 kn

6 Beispiele (Ein-) Gelenkrahmen Seite 6 Querkraftbild Q = Q0 + X Q + X2 Q2 QA = 7,50kN 0,20kN + ( 4.9) QA = 9,27kN Q Ecke(unten) = 7,50kN 0,20kN + ( 4.9) QEcke(unten) = 5,7kN Q Ecke (rechts) = 7,50kN ( 0,25kN) + ( 4.9) 0,00kN QEcke(rechts) = 0,67kN QB = 7,50kN ( 0,25kN) + ( 4.9) 0,00kN QB = 4,kN Auflagerkräfte: H A = 9,27 kn H B = 4, kn Nulldurchgang der Querkraftlinie: X 0 = 9,27 kn * ( 5,00 m / ( 9,27 kn + 5,7 kn ) ) X 0 =,62 m Momentenbild M = M0 + X M + X2 M2 MA MEcke = 0,00kNm 0,00kNm + ( 4.9),00kNm = 0,00kNm,00kNm + ( 4.9) 0,00kNm MA MEcke = 4,9kNm MB = 0,00kNm 0,00kNm + ( 4.9) 0,00kNm MB = 0,00kNm = 25,5kNm Einspannmoment: M A = - 4,9 knm

7 Beispiele (Ein-) Gelenkrahmen Seite 7 Maximales Moment im Stiel: Das maximale Moment wirkt an der Stelle des Nulldurchgangs der Querkraftlinie. Es wird mit Hilfe eines fiktiven Schnittes an der Stelle x 0 berechnet! M max = ( 4,9 knm ) + 5,00 kn/m * 2,62 m *, m 9,27 kn * 2,62 m M max = 7,2 knm Maximales Moment im Riegel: Das maximale Moment wird durch Einhängen der Momentenlinie M 0 (x) ermittelt! M max = 0,5 * ( 25,5 knm ) + 0,00 knm M max = 7, knm

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele Zweifeldträger Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines -fach statisch

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden. FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter ERLÄUTERUNGEN ZUM An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.. SYSTEM UND BELASTUNG q= 20 kn / m C 2 B 4

Mehr

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.

Mehr

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2 Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

Arbeitsunterlagen. Statik 2

Arbeitsunterlagen. Statik 2 Arbeitsunterlagen Statik 2 WS 2014/15 Stand 07.10.2014 Inhalt 1. Vertiefung KGV 1.1 Eingeprägte Auflagerverformungen 1.2 Vorspannung 1.3 Systeme mit elastischer Lagerung 1.4 Ermittlung von Federsteifigkeiten

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 0.0.00 Name: Vorname: Matr.-Nr.: (bitte deutlich schreiben!) (9-stellig!) Aufgabe 5 6 7 8 9 Summe mögliche Punkte 7 5 5 6 0 8 0 6 0 erreichte Punkte

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

Baustatik & Festigkeitslehre Vorlesung & Übung

Baustatik & Festigkeitslehre Vorlesung & Übung Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister Kraftgrößenverfahren Wenn statisch unbestimmte Systeme berechnet werden sollen, müssen zusätzliche

Mehr

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens

Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Bachelorprojekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Wintersemester 2009/20 Verfasser:

Mehr

Statisch Unbestimmte Systeme

Statisch Unbestimmte Systeme 3. Semester Seite 1/13 Statisch Unbestimmte Systeme 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Freischneiden 2 4.1 Darstellung des Verfahrens am Zweifeldträger 2 4.2 Verallgemeinerte

Mehr

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!)

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!) Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 04.0.00 Name: Vorname: (bitte deutlich schreiben) Matr.-Nr.: (9-stellig) Aufgabe 4 5 6 7 8 9 Summe mögliche Punkte 7 5 4 6 6 4 4 0 erreichte Punkte

Mehr

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck

Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im November 2009 Verfasser: Betreuer: Mario Jackisch

Mehr

Grundfachklausur Teil 2 / Statik II

Grundfachklausur Teil 2 / Statik II Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER 1) Definition für statisch bestimmte Systeme 2) Auflagerreaktionen beim einfachen Balken 3)

Mehr

Statisch bestimmte Tragsysteme

Statisch bestimmte Tragsysteme Statisch bestimmte Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Statisch

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben).

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben). Technische Universität Darmstadt Technische Mechanik I B 13, G Kontinuumsmechanik Wintersemester 007/008 Prof. Dr.-Ing. Ch. Tsakmakis 9. Lösungsblatt Dr. rer. nat. P. Grammenoudis 07. Januar 008 Dipl.-Ing.

Mehr

Aufgaben TK II SS 2000 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.

Aufgaben TK II SS 2000 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O. ETHZ Departement Architektur Prof. Dr. O. Künzle Aufgaben TK II www.kuenzle.hbt.arch.ethz.ch ETHZ - Abteilung für Architektur Aufgabe 1: Sprungbrett Übung 1: Schnittkräfte, Festigkeitslehre und Formänderungen

Mehr

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O. Aufgaben TK II Übung 1: Schnittkraftermittlung, Festigkeitslehre Aufgabe : Trog-Querschnitt Querschnitt z 0.2 0.2 Übung 1: Schnittkraftermittlung Festigkeitslehre 1.2 0.3 0.9 S 0.35 0.85 y Ausgabe : Freitag,

Mehr

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 13.0 Einfacher Lastabtrag für Vertikallasten 13.1 Konstruktionsbeispiele für Lastabträge Garage in Wandbauweise zugehöriger Lastabtrag

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Beispiel 4: Theorie II. Ordnung

Beispiel 4: Theorie II. Ordnung Titel: Theorie II. Ordnung Blatt: Seite 1 von 10 Beispiel 4: Theorie II. Ordnung Nachweis: Stabilität des Systems nach Theorie II. Ordnung. Schnittgrößen nach Theorie I. Ordnung, ohne Imperfektion F Ed

Mehr

POS: 001 Bezeichnung: Hallendach Thermodachelemente System M 1 : 75 1 2 3 45 9.10 BAUSTOFF : S 355 E-Modul E = 21000 kn/cm2 γm = 1.10 spez. Gewicht : 7.85 kg/dm3 QUERSCHNITTSWERTE Quersch. Profil I A Aq

Mehr

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Stabwerkslehre - WS 11/12 Prof. Dr. Colling

Stabwerkslehre - WS 11/12 Prof. Dr. Colling Fachhochschule Augsburg Studiengang Bauingenieurwesen Stabwerkslehre - WS 11/12 Name: Prof. Dr. Colling Arbeitszeit: Hilfsmittel: 90 min. alle, außer Rechenprogrammen 1. Aufgabe (ca. 5 min) Gegeben: Statisches

Mehr

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II Fachbereich 02 BI 4. Semester 1. und 2. Studienarbeit aus Baustatik II 1. Aufgabe: Bestimmen Sie mit Hilfe des Drehwinkelverfahrens die Schnittgrößen des obigen Tragwerkes und stellen Sie deren Verlauf

Mehr

7. Inneres Gleichgewicht - Schnittgrößen

7. Inneres Gleichgewicht - Schnittgrößen 7. Inneres Gleichgewicht - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I

Baustatik und Holzbau. Übungen Technische Mechanik I Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1

Mehr

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Bachelorprüfung Winter 2011 Modul 13 Baustatik I und II Klausur am 15.01.2011 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche Punkte 30 22 18

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

Bachelorarbeit. Das Ersatzstabverfahren nach Eurocode 3. Vereinfachungsmöglichkeiten

Bachelorarbeit. Das Ersatzstabverfahren nach Eurocode 3. Vereinfachungsmöglichkeiten Ostbayerische Technische Hochschule Regensburg Fakultät Bauingenieurwesen Fachgebiet Stahlbau Prof. Dr.-Ing. Othmar Springer Sommersemester 2014 Das Ersatzstabverfahren nach Eurocode 3 Regensburg, 30.Juni

Mehr

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK)

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Technische Mechanik 2 (SS 2011) 6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Arbeit: 6.1 Grundbegriffe und Arbeitssatz 6.1 Grundbegriffe und Arbeitssatz

Mehr

Baustatik Formelsammlung

Baustatik Formelsammlung Baustatik Formelsammlung Jan Höffgen 16. April 2013 Die Formelsammlung wurde auf der Grundlage der Vorlesungen Baustatik I im SS2012 und Baustatik II im WS2012/2013 am KIT erstellt. Es besteht kein Anspruch

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

4. Verschiebungsgrößenverfahren

4. Verschiebungsgrößenverfahren Baustatik I WS 2013/2014 4. Verschiebungsgrößenverfahren 4.2 Geometrische Unbestimmtheit Geometrische Unbestimmtheit Geometrisch bestimmtes System: Bei einem geometrisch bestimmten System sind alle Knotenverschiebungen

Mehr

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten Inhalt (Abschnitte, die mit * gekennzeichnet sind, enthalten Übungsaufgaben) 1 Einführung... 1 1.1 Begriffe und Aufgaben der Statik... 2 1.1.1 Allgemeine Begriffe 1.1.2 Begriffe für Einwirkungen... 4 1.1.3

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

Ingenieurholzbau I, WS 2005/06

Ingenieurholzbau I, WS 2005/06 Fachhochschule Augsburg Studiengang Bauingenieurwesen Name:... Ingenieurholzbau I, WS 2005/06 Prüfungstag: 03.02.2006 Arbeitszeit: 90 Minuten Hilfsmittel: Formelsammlung, Bemessungstabellen Aufgabe 1 (ca.

Mehr

22M Ziegelsturz, -Wärmedämmsturz

22M Ziegelsturz, -Wärmedämmsturz Programmvertriebsgesellschaft mbh Lange Wender 1 34246 Vellmar BTS STATIK-Beschreibung - Bauteil: 22M -Ziegel,-Dämmsturz Seite 1 22M Ziegelsturz, -Wärmedämmsturz Das Programm dient der Bemessung von Ziegel-

Mehr

Inhaltsverzeichnis. Elas tizitiif sichre. Kapitel IV. Formänderungsberechnungen auf Grund elementarer

Inhaltsverzeichnis. Elas tizitiif sichre. Kapitel IV. Formänderungsberechnungen auf Grund elementarer Inhaltsverzeichnis. Einleitung. Kapitel I. Gleichgewichtsbedingungen, Auflagerungsarten und Beispiele für statisch bestimmte Bauwerke.... 1 Gleichgewichtsbedingungen 1 Statisch bestimmte ibauwerke \ 3

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

ATJ Vordach LIVO. Statischer Nachweis der Überkopfverglasung und Ermittlung der Dübellasten

ATJ Vordach LIVO. Statischer Nachweis der Überkopfverglasung und Ermittlung der Dübellasten Statischer Nachweis der Überkopfverglasung und Ermittlung der Dübellasten Projekt: P-25-02 Bericht: P-25-02 Datum: 10. Januar 2003 PSP Technologien im Bauwesen GmbH Lagerhausstraße 27 D-52064 Aachen Tel.:

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 Grundsatz Geschossbauten müssen gegen Horizontallasten ausgesteift sein. Aussteifende Bauteile können sein: Wandscheiben, Kerne, Rahmen, Verbände Bauformen Schotten- oder Wandbau, meist im Wohnungsbau.

Mehr

Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik

Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik Ekkehard Batzies www.hs-furtwangen.de/ batzies 28. März 2008 Unser Beispiel: mit 4 Knoten. R 0,1 := Widerstand zwischen Knoten 0 und Knoten

Mehr

Statische Berechnung

Statische Berechnung Statische Berechnung Nachweis einer Styrostonedecke Auftrags-Nr. : 05_750 Bauvorhaben : Musterhaus Musterdecke Bauherr : Planung: Styro Stone S.L. Balcón al Mar Buzón 502 E 03738 Jávea +34 96 646 84 90

Mehr

Statik- und Festigkeitslehre I

Statik- und Festigkeitslehre I 05.04.2012 Statik- und Festigkeitslehre I Prüfungsklausur 2 WS 2011/12 Hinweise: Dauer der Klausur: Anzahl erreichbarer Punkte: 120 Minuten 60 Punkte Beschriften Sie bitte alle Seiten mit und Matrikelnummer.

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

1 Technische Mechanik 2 Festigkeitslehre

1 Technische Mechanik 2 Festigkeitslehre Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Verbundträger im Hochbau

Verbundträger im Hochbau Verbundträger im Hochbau Vorbemessungstabellen Verbundträger mit Verstärkung A u Verbundträger sind Stahlträger, die durch Verbundmittel, z.b. Kopfbolzendübel, mit einer Betonplatte schubfest verbunden

Mehr

Das Hebelgesetz zur Lösung technischer Aufgaben

Das Hebelgesetz zur Lösung technischer Aufgaben Es gibt einseitige Hebel, zweiseitige Hebel und Winkelhebel. Mit allen Hebeln kann man die Größe und Richtung von Kräften ändern. In der Regel verwendet man Hebel zur Vergrößerung von Kräften. Das Hebelgesetz

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Diese statische Berechnung umfasst die Seiten

Diese statische Berechnung umfasst die Seiten Büro für Tragwerksplanung und Ingenieurbau vom Felde + Keppler GmbH&Co. KG Lütticher Straße 10-12 Telefon: 0241 / 70 96 96 52064 Aachen Telefax: 0241 / 70 96 46 www.vom-felde.de buero@vom-felde.de Statische

Mehr

F u n k t i o n e n Gleichungssysteme

F u n k t i o n e n Gleichungssysteme F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von

Mehr

7.2 Dachverband Achse Pos A1

7.2 Dachverband Achse Pos A1 7.2 Dachverband Achse 1 + 2 Pos A1 Dieser neukonstruierte Dachverband ersetzt den vorhandenen alten Verband. Um die Geschosshöhe der Etage über der Zwischendecke einhalten zu können, wird er auf dem Untergurt

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Beispiel 3: Ersatzstabverfahren

Beispiel 3: Ersatzstabverfahren Beispiel: Ersatzstabverfahren Blatt: Seite 1 von 9 Beispiel 3: Ersatzstabverfahren Bestimmung der maßgeblichen Knickfigur und zugehörigen Knicklänge in der Ebene. Nachweis gegen Biegeknicken nach dem Ersatzstabverfahren

Mehr

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse . Netzwerke II 4. Maschenstromanalyse 5. Knotenpotentialanalyse 4. Netzwerkberechnungsverfahren Das Maschenstromanalyse Paul, Elektrotechnik 2, Seite 68 ff. Unbehauen, Grundlagen der Elektrotechnik 1,

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

Hochschule München. Gesamt erreichbar ca. 92 Punkte (davon ca. 30 Punkte für Bewehrungsskizzen),

Hochschule München. Gesamt erreichbar ca. 92 Punkte (davon ca. 30 Punkte für Bewehrungsskizzen), ,40,22 4,00 Hochschule München Fak. 02: Bauingenieurwesen Bachelorprüfung SS 2012 Massivbau I Freitag, den 20.07.2012 11.30 13.30 Uhr Name:.. Studiengruppe.. Gesamt erreichbar ca. 92 Punkte (davon ca.

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Technische Mechanik 1. Einleitung 2. Statik des starren Körpers 3. Statik von Systemen starrer Körper 3.1 Gleichgewichtsbedingungen, das Erstarrungsprinzip 3.2 Lager 3.2.1 Lagerung in der Ebene 3.2.2 Allgemeiner

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Buch Teil 1, Formelsammlung, Bemessungstabellen

Buch Teil 1, Formelsammlung, Bemessungstabellen Fachhochschule Augsburg Stuiengang Bauingenieurwesen Name:... Holzbau SS 2007 Arbeitszeit: Hilfsmittel: 120 Minuten Buch Teil 1, Formelsammlung, Bemessungstabellen 1. Aufgabe (ca. 80 min) Gegeben: Statisches

Mehr

Schöck Isokorb Typ K-Eck

Schöck Isokorb Typ K-Eck Schöck Isokorb Typ Schöck Isokorb Typ Nach SIA 262 Inhalt Seite Elementanordnung/Hinweise 132 Bemessungstabelle 133 Bewehrungsanordnung Schöck Isokorb Typ -CV35 134 Bewehrungsanordnung Schöck Isokorb Typ

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 sind ebene flächenförmige Konstruktionen, die in ihrer Ebene belastet werden und deren Bauhöhe im Verhältnis zur Stützweite groß ist. Es können ein- und mehrfeldrige Systeme ausgeführt werden;

Mehr

Statische Berechnung

Statische Berechnung Ing.-Büro Klimpel Stapel - Gitterbox - Paletten Seite: 1 Statische Berechnung Tragwerk: Stapel - Gitterbox - Paletten Rack 0,85 m * 1,24 m Herstellung: Scafom International BV Aufstellung: Ing.-Büro Klimpel

Mehr

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur.

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur. 5. Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu BI - I Tragsysteme

Mehr

STATISCHE BERECHNUNG vom 20.04.2012

STATISCHE BERECHNUNG vom 20.04.2012 Projekt : 1020-12 Frank Blasek Beratender Ingenieur Heinestraße 1 D-33142 Büren Tel. +49 2951-937 582-0 Fax +49 2951-937 582-7 info@ifb-blasek.de Ingenieurbüro Frank Blasek Beratender Ingenieur Heinestraße

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

Sessionsprüfung Stahlbeton I+II. Sommer Donnerstag, 22. August 2013, Uhr, HIL F61

Sessionsprüfung Stahlbeton I+II. Sommer Donnerstag, 22. August 2013, Uhr, HIL F61 Sessionsprüfung Stahlbeton I+II Sommer 2013 Donnerstag, 22. August 2013, 14.00 17.00 Uhr, HIL F61 Name, Vorname : Studenten-Nr. : Bemerkungen 1. Für die Raumlast von Stahlbeton ist 25 kn/m 3 anzunehmen.

Mehr

Schnittgrößen räumlicher Systeme, senkrecht zur Tragwerksebene belastet: TRÄGERROST

Schnittgrößen räumlicher Systeme, senkrecht zur Tragwerksebene belastet: TRÄGERROST FH Potsdam Statik der Baukonstruktionen IV FB Bauingenieurwesen Prof. Dr.-Ing. Klaus Berner Stand März 00 (kb0) Schnittgrößen räumlicher Systeme, senkrecht zur ragwerksebene belastet: RÄGERROS. Einführung,

Mehr

Stahlbau 1. Name:... Matr. Nr.: Geschraubter Kopfplattenstoß Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit

Stahlbau 1. Name:... Matr. Nr.: Geschraubter Kopfplattenstoß Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit 1/1 Name:... Matr. Nr.:... A. Rechnerischer steil 1. Geschraubter Kopfplattenstoß Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit Die beiden Biegeträger werden mit Hilfe von 6 vorgespannten

Mehr

Inhalt der Vorlesung. Einführendes Beispiel Typische Aussteifungssysteme Fotos aus der Praxis Horizontale Beanspruchungen

Inhalt der Vorlesung. Einführendes Beispiel Typische Aussteifungssysteme Fotos aus der Praxis Horizontale Beanspruchungen Grundlagen des konstruktiven Ingenieurbaus Stahlbau 1. Februar 2011 Aussteifung von Gebäuden Inhalt der Vorlesung Einführendes Beispiel Typische Aussteifungssysteme Fotos aus der Praxis Horizontale Beanspruchungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Baustatik I / II VORLESUNGSUNTERLAGEN

Baustatik I / II VORLESUNGSUNTERLAGEN University of Applied Sciences Baustatik I / II VORLESUNGSUNTERLAGEN WIPPE STATIK System: Gleichgewicht: G 1 G 2 M a = 0 G 1 x - G 2 (l-x) = 0 x (G 1 G 2 ) - G 2 l = 0 a x l-x x = G 2 /(G 1 G 2 ) l l Stand

Mehr

Erläuterungen: GEO - Lastverteilung

Erläuterungen: GEO - Lastverteilung Erläuterungen: GEO - Lastverteilung FRILO Software GmbH www.frilo.de info@frilo.eu Stand: 27.10.2015 Zusätzliche Erläuterungen zur Lastverteilung im Programm GEO - Gebäudemodell Auswirkung der Option Last

Mehr

HOCH- UND TIEFBAUUNFÄLLE

HOCH- UND TIEFBAUUNFÄLLE HOCH- UND TIEFBAUUNFÄLLE H o c h - und INHALTE 1. HOCHBAUUNFÄLLE a) Grundlagen b) Versagensmuster 2. TIEFBAUUNFÄLLE a) Grundlagen b) Gefahren im Tiefbau c) Maßnahmen / Vorgehen H o c h - und GRUNDLAGEN

Mehr

Zusammenfassung. Vorlesung und Übungen 1. Semester BA Architektur.

Zusammenfassung. Vorlesung und Übungen 1. Semester BA Architektur. Zusammenfassung Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Zusammenfassung

Mehr