3. Kraftgrößenverfahren
|
|
- Magdalena Albert
- vor 2 Jahren
- Abrufe
Transkript
1 .Kraftgrößenverfahren von 8. Kraftgrößenverfahren. Prinzip Das Prinzip des Kraftgrößenverfahrens ist es ein statisch unbestimmtes System durch Einschalten von Gelenken und Zerschneiden von Stäben oder durch Wegnahme von Auflagerkräften, in ein statisch bestimmtes System zu verwandeln. Es werden so viele Fesselungen gelöst und zusätzliche Freiheitsgrade geschaffen, dass gerade noch ein unbewegliches statisch bestimmtes system übrigbleibt. Dieses System heißt statisch bestimmtes Hauptsystem. An ihm werden alle Berechnungen vorgenommen. Einmal werden die Schnittgrößen an diesem System durch die äußeren Lasten ermittelt (Lastspannungszustand). Anschließend wird für jede entfernte Fesselung deren Gelenk- bzw. Auflagerkräfte oder Momente angetragen und die Schnittgrößen daraus ermittelt (Eigenspannungszustand). Nun können die Durchbiegungen oder Verformungen (Delta-Werte) errechnet werden. Mit Hilfe der Verträglichkeitsbedingung, z.b. dass an einem 'entfesselten' Auflager die Durchbiegung null ist, können nun die Größen der Fesseln bestimmt werden. Durch Superposition der Schnittgrößen von Last- und Eigenspannungszustand erhält man letztendlich die Größen des statisch unbestimmten Systems. In der Theorie mag sich das alles ganz schön verwirrend anhören, aber in der Praxis ist es dann doch relativ einfach. Das nächste Beispiel eines - fach statisch unbestimmten Systems soll das Prinzip des Kraftgrößenverfahrens anschaulich verdeutlichen. Einseitig eingespannter Träger Das System Ein Träger mit der Länge l wird über seine gesamte Länge mit einer Streckenkraft q belastet. Am linken Auflagerrand befindet sich der Punkt a und am rechten der Punkt b. Das System ist -fach statisch unbestimmt, deshalb können die vorhandenen Auflagerkräfte nicht durch die Gleichgewichtsbedingungen ermittelt werden.
2 .Kraftgrößenverfahren von 8 Einseitig eingespannter Träger Statisch bestimmtes Ersatzsystem Lastspannungszustand Eigenspannungszustand Verträglichkeitsbedingung δ δ = b0 Pl = EI 8EI b = X δ b + δ b 0 = l EI 0 Der erste Schritt ist das Herstellen eines statisch bestimmten Ersatzsystems. Dafür müssen wir in diesem Fall eine Auflagerreaktion 'entfesseln'. Hierfür gibt es verschiedene Möglichkeiten. Hier ersetzen wir die Auflagerkraft B V durch die Kraft X. Den Betrag der Kraft setzen wir. Somit ist dieses System unbeweglich und statisch bestimmt. Nun betrachten wir das System wie es sich unter der ursprünglichen Belastung verformt. Der Punkt b wird um den Betrag δ b0 (delta b0) nach unten verschoben. Der erste Index (b) bezeichnet den Ort und der Zweite (0) die Kraft bzw. die Ursache der Verschiebung. Der Lastspannungszustand erhält immer den Index 0. Die Durchbiegung δ b0 entnehmen wir vorerst mal einem Tabellenwerk (z.b. Schneider Bautabellen) später werden wir diese Formel noch selber herleiten. Nun betrachten wir wie stark unsere angebrachte Kraft den Träger nach oben biegt. Da diese Kraft Ursprünglich vom System (Auflager) stammt nennt man dies den Eigenspannungszustand. Bei n-fach statisch unbestimmten Systemen gibt es n Zustände. Da dies der erste ist, erhält dieser den Index folglich heißt die Verschiebung des Punktes b hier δ b. Wieder entnehmen wir die Formel aus einem Tabellenwerk. ACHTUNG! Negatives Vorzeichen, da der Träger in anderer Richtung wie durch q verschoben wird. Da am Punkt b durch das vorhandene Auflager keine Verschiebung statt finden kann muss sich die Verschiebung durch die Belastung q mit der aus X aufheben. Also X mal die Verschiebung aus der Kraft PLUS die Verschiebung von q ist null.
3 .Kraftgrößenverfahren von 8 Einseitig eingespannter Träger Lösung X l EI + 8EI 8 = X = 0 Durch Einsetzen in die Verträglichkeitsbedingung erhalten wir dann schließlich den Wert für X. Da dies den Wert hatte ist dies zugleich der Wert für B V. Nun gibt es nur noch unbekannte Auflagerreaktionen, welche, wie schon bekannt, mit Hilfe der Gleichgewichtsbedingung bestimmt werden können.. Prinzip der virtuellen Kräfte Mit dem Prinzip der virtuellen Kräfte ist es möglich Verformungen an beliebigen Stellen von beliebig belasteten Systemen zu berechnen. Es ist dem Prinzip der virtuellen Arbeiten untergeordnet. Dabei wird die gespeicherte Energie der äußeren Arbeit gleichgesetzt. Da für das Kraftgrößenverfahren die Anwendung im Vordergrund steht möchte ich auf die Herleitung der jeweiligen Prinzipien verzichten. Für alle die an diesem Thema näher interessiert sind, empfehle ich folgende Bücher: o Wagner/Erlhof: Praktische Baustatik, 8. Aufl., B.G. Teubner, Stuttgart 997; ISBN o Hirschfeld: Baustatik Theorie und Beispiele Teil u.,. Aufl., Springer Verlag, Heidelberg 98; ISBN o Cziesielski: Hütte Bautechnik IV Konstruktiver Ingenieurbau, 9. Aufl., Springer Verlag, Heidelberg 988; ISBN o Bochmann: Statik im Bauwesen Band Statisch unbestimmte Systeme,. Aufl., HUSS-Medien GmbH, Berlin 00; ISBN Theorie Die Ermittlung der Verformung an einem System erfolgt mit Schritten:. Virtuelle Hilfskraft (mit der Größe ) an der Stelle x anbringen. Momentenverlauf daraus bestimmen. Tatsächlicher Momentenverlauf. Arbeitssatz * MM w ( x) = ds EI
4 .Kraftgrößenverfahren von 8 Das ganze erkläre ich am besten mit einem Beispiel. Berechnen wir einfach die vom vorherigen Beispiel aus Tabellenwerken entnommenen Durchbiegunge (δ b0 ).
5 .Kraftgrößenverfahren von 8 Durchbiegung eines Kragarms Das System Ein Träger mit der Länge l wird über seine gesamte Länge mit einer Streckenkraft q belastet. Am linken Auflagerrand befindet sich der Punkt a und am rechten der Punkt b. virtuelle Hilfskraft Nun bringen wir eine Hilfskraft mit der Größe an der Stelle an, wo wir die Durchbiegung bestimmen wollen. In unserem Fall im Punkt b. Momentenverlauf aus der Hilfskraft Jetzt bestimmen wir den Momentenverlauf. Wir haben einen dreiecksförmigen Verlauf mit dem maximalen Wert von l. tatsächlicher Momentenverlauf Arbeitssatz Integrationstabelle Einsetzen MM * w ( x) = ds EI Der durch die Streckenlast auftretende Momentenverlauf ist eine quadratische Parabel mit dem einem Maximum von (l/)(lq)=/ l²q. Der Arbeitssatz besagt, dass die Durchbiegung an der Stelle x das Integral der beiden Momentenverläufe durch EI über s bis x ist. Durch schon vorgefertigte Integrationstabellen (siehe nächste Seite) ist die Auflösung dieses Integrals relativ einfach. Aus dieser Tabelle entnehmen wir für Dreiecks- und Parabelverlauf (Zelle b7) den Faktor ¼. Nun müssen die entsprechenden Werte nur noch eingesetzt und aufgelöst werden. ACHTUNG: EI nicht vergessen! Dies w = l l q l bleibt durch die Integration konstant EI und kann deshalb vor das Integral geholt werden. w = 8EI Das Ergebnis können wir nun mit dem beim vorherigen Beispiel dem Tabellenwerk entnommenen vergleichen. Und beide Formeln stimmen über ein.
6 Kraftgrößenverfahren - Integrationstabelle von 8 MM EI ds a b c d e f g h γ δ fürγ δ a ( j j) k + a ( j + j ) k a ( j j ) k + a ( j + j ) k a ( j j ) k + a[ j( + δ ) + j ( + γ )] k aj ( k + k ) ( + γ ) aj ( k + k ) ( + δ ) aj (k + k ) 0 aj ( k + k ) a[ j(k + k) + j ( k + k )] 0 ak ( j + j ) ( + γδ ) aj ( k + k ) ( + γ+γ ( +δ +δ ) ) aj ( k + k ) 0 aj (k + k )
7 Kraftgrößenverfahren 7 von 8. Algorithmus des Kraftgrößenverfahrens Das Kraftgrößenverfahren folgt immer einem gleichen Ablauf. Dieser Algorithmus wurde am Anfang des Kapitels schon einmal erläutert und besteht aus verschiedenen Hauptpunkten:. Statisch bestimmtes System herstellen. Antragen der Schnittgrößen am statisch bestimmten Ersatzsystem (Lastspannungszustand). Bestimmung der Schnittgrößen aus den Ersatzkräften bzw. Momenten (Eigenspannungszustand). Berechnen der δ-werte (Delta). Aufstellen und -lösen der Verträglichkeitsbedingungen Bei Berechnungen an komplizierten mehrfach statisch unbestimmten Systemen hilft es, Punkt für Punkt vor zu gehen.. Beispiele Der -Feld Träger Das System Ein zweifeldträger (-fach statisch unbestimmt) wird über seine gesamte Länge (l) mit einer Linienlast q belastet.. statisch bestimmtes Ersatzsystem. Lastspannungszustand Wie schon im Kapitel. beschrieben gibt es mehrer Möglichkeiten ein statisch bestimmtes Ersatzsystem herzustellen. Hier setzen wir nun Gelenk über dem mittleren Auflager ein und tragen ein Moment mit der Größe an. Der Lastspannungszustand Beschreibt die Schnittgrößen am Ersatzsystem unter der von außen wirkenden Last. Der Momentenverlauf ist parabolisch mit dem maximal Wert ²/8.
8 Kraftgrößenverfahren 8 von 8 Der -Feld Träger. Eigenspannungszustand. Berechnen der δ- Werte EI δ 0 = l + l = 8 8 EIδ = l + l = l. Verträglichkeitsbedingung δ X +δ 0 = 0 l X + X = 8 Lösung = 0 Der Eigenspannungszustand beschreibt die Schnittgrößen durch das Ersatzmoment. Der Verlauf ist an der Stelle wo das Moment angebracht wurde und nimmt zu den Auflagern linear ab. Laut der Integrationstabelle (Zeile und und Spalte d) ist der Faktor jeweils immer /. Der hier ermittelte Wert stellt nun die Verdrehung des Trägers am Gelenk durch die Streckenlast dar. Bei der Überlagerung des Eigenspannungszustandes ist der Faktor jeweils / (siehe Integrationstabelle Zeile - und Spalte b-c). Dieser Wert hier beschreibt die Verdrehung durch das Moment. Da der Träger am mittleren Auflager keine Verdrehung aufweist, gilt wieder die Verträglichkeitsbedingung. Der tatsächliche Momentenverlauf wird nun durch die Überlagerung der beiden Zustände erreicht, wobei der Eigenspannungszustand mit X multipliziert wird.
ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.
FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter ERLÄUTERUNGEN ZUM An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.. SYSTEM UND BELASTUNG q= 20 kn / m C 2 B 4
Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen
www.statik-lernen.de Beispiele Zweifeldträger Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines -fach statisch
RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am
Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 0.0.00 Name: Vorname: Matr.-Nr.: (bitte deutlich schreiben!) (9-stellig!) Aufgabe 5 6 7 8 9 Summe mögliche Punkte 7 5 5 6 0 8 0 6 0 erreichte Punkte
Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast
www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.
Grundfachklausur Teil 2 / Statik II
Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204
Baustatik & Festigkeitslehre Vorlesung & Übung
Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister Kraftgrößenverfahren Wenn statisch unbestimmte Systeme berechnet werden sollen, müssen zusätzliche
Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.
Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor
Technische Mechanik. Statik
Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg
Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk
Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet
Arbeitsunterlagen. Statik 2
Arbeitsunterlagen Statik 2 WS 2014/15 Stand 07.10.2014 Inhalt 1. Vertiefung KGV 1.1 Eingeprägte Auflagerverformungen 1.2 Vorspannung 1.3 Systeme mit elastischer Lagerung 1.4 Ermittlung von Federsteifigkeiten
6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK)
Technische Mechanik 2 (SS 2011) 6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Arbeit: 6.1 Grundbegriffe und Arbeitssatz 6.1 Grundbegriffe und Arbeitssatz
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis
Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!)
Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 04.0.00 Name: Vorname: (bitte deutlich schreiben) Matr.-Nr.: (9-stellig) Aufgabe 4 5 6 7 8 9 Summe mögliche Punkte 7 5 4 6 6 4 4 0 erreichte Punkte
Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten
Inhalt (Abschnitte, die mit * gekennzeichnet sind, enthalten Übungsaufgaben) 1 Einführung... 1 1.1 Begriffe und Aufgaben der Statik... 2 1.1.1 Allgemeine Begriffe 1.1.2 Begriffe für Einwirkungen... 4 1.1.3
Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2
Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen
Klausur Technische Mechanik
Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.
www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien
www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...
Statisch bestimmte Tragsysteme
Statisch bestimmte Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Statisch
Statik- und Festigkeitslehre I
05.04.2012 Statik- und Festigkeitslehre I Prüfungsklausur 2 WS 2011/12 Hinweise: Dauer der Klausur: Anzahl erreichbarer Punkte: 120 Minuten 60 Punkte Beschriften Sie bitte alle Seiten mit und Matrikelnummer.
l p h (x) δw(x) dx für alle δw(x).
1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe
Berechnung von Trägerrosten mittels Kraftgrößenmethode
Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.
Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck
Kontrolle von Beispielen zum Kraftgrößenverfahren mit RuckZuck Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im November 2009 Verfasser: Betreuer: Mario Jackisch
Ein Tabellenverfahren zur Lösung linearer Gleichungssysteme
Ein Tabellenverfahren zur Lösung linearer Gleichungssysteme Holger Krug 17. Februar 2007 1 Das Tabellenverfahren Zum Lösen linearer Gleichungssysteme gibt es mehrere Verfahren. Alle Verfahren haben gemeinsam,
Statisch Unbestimmte Systeme
3. Semester Seite 1/13 Statisch Unbestimmte Systeme 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Freischneiden 2 4.1 Darstellung des Verfahrens am Zweifeldträger 2 4.2 Verallgemeinerte
1. Einfache ebene Tragwerke
Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse
In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.
6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander
3. Prinzip der virtuellen Arbeit
3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie
Modul 13. Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)
Bachelorprüfung Winter 2011 Modul 13 Baustatik I und II Klausur am 15.01.2011 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche Punkte 30 22 18
Quadratische Funktion
Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion
52 5 Gleichgewicht des ebenen Kraftsystems. Festlager
52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen
Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)
Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der
Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast
www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.
Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens
Berechnung statisch unbestimmter Systeme mit Hilfe des Kraftgrößenverfahrens Bachelorprojekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Wintersemester 2009/20 Verfasser:
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
Beispiel 3: Ersatzstabverfahren
Beispiel: Ersatzstabverfahren Blatt: Seite 1 von 9 Beispiel 3: Ersatzstabverfahren Bestimmung der maßgeblichen Knickfigur und zugehörigen Knicklänge in der Ebene. Nachweis gegen Biegeknicken nach dem Ersatzstabverfahren
Schnittgrößen und Vorzeichenkonvention
Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht
3. Das Gleichungssystem
Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen
Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)
Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:
() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2
Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.
Erfolg im Mathe-Abi 2014
Gruber I Neumann Erfolg im Mathe-Abi 2014 Schleswig-Holstein Übungsbuch Prüfungsaufgaben mit Tipps und Lösungen Inhaltsverzeichnis 1. Aufgabensatz... 7 2. Aufgabensatz... 12 3. Aufgabensatz... 17 4. Aufgabensatz...
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER
BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER 1) Definition für statisch bestimmte Systeme 2) Auflagerreaktionen beim einfachen Balken 3)
Beuth Hochschule für Technik Berlin
Seite 1 sind ebene flächenförmige Konstruktionen, die in ihrer Ebene belastet werden und deren Bauhöhe im Verhältnis zur Stützweite groß ist. Es können ein- und mehrfeldrige Systeme ausgeführt werden;
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf
Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut
Bachelorarbeit. Das Ersatzstabverfahren nach Eurocode 3. Vereinfachungsmöglichkeiten
Ostbayerische Technische Hochschule Regensburg Fakultät Bauingenieurwesen Fachgebiet Stahlbau Prof. Dr.-Ing. Othmar Springer Sommersemester 2014 Das Ersatzstabverfahren nach Eurocode 3 Regensburg, 30.Juni
Quadratische Gleichungen
Quadratische Gleichungen TEIL 1: Die Quadratische Funktion und die Quadratische Gleichung Bei linearen Funktionen kommt nur in der 1. Potenz vor. Bei quadratischen Funktion kommt in der. Potenz vor. Daneben
Kapitel 4: Variable und Term
1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de
Sessionsprüfung Stahlbeton I+II. Sommer Donnerstag, 22. August 2013, Uhr, HIL F61
Sessionsprüfung Stahlbeton I+II Sommer 2013 Donnerstag, 22. August 2013, 14.00 17.00 Uhr, HIL F61 Name, Vorname : Studenten-Nr. : Bemerkungen 1. Für die Raumlast von Stahlbeton ist 25 kn/m 3 anzunehmen.
Aufgaben TK II SS 2000 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.
ETHZ Departement Architektur Prof. Dr. O. Künzle Aufgaben TK II www.kuenzle.hbt.arch.ethz.ch ETHZ - Abteilung für Architektur Aufgabe 1: Sprungbrett Übung 1: Schnittkräfte, Festigkeitslehre und Formänderungen
Formelsammlung. für die Klausur. Technische Mechanik I & II
Formelsammlung für die Klausur Technische Mechanik I & II Vorwort Diese Formelsammlung ist dazu gedacht, das Suchen und Herumblättern in den Büchern während der Klausur zu vermeiden und somit Zeit zu sparen.
Elastizität und Torsion
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den
Mehmet Maraz. MechanikNachhilfe
Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?
Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade
Urs Wyder, 4057 Basel Funktionen. f x x x x 2
Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4
Einführung in die linearen Funktionen. Autor: Benedikt Menne
Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung
6 Bestimmung linearer Funktionen
1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1
2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen
Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...
Tipps & Tricks MicroFE
In MicroFE werden die Lastfälle automatisch nach Eurocode ÖNORM überlagert. Auf den folgenden Seiten beschreiben wir, wie MicroFE die Überlagerungen durchführt und wie man in diese Überlagerungen manuell
Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.
Aufgaben TK II Übung 1: Schnittkraftermittlung, Festigkeitslehre Aufgabe : Trog-Querschnitt Querschnitt z 0.2 0.2 Übung 1: Schnittkraftermittlung Festigkeitslehre 1.2 0.3 0.9 S 0.35 0.85 y Ausgabe : Freitag,
Das Skalarprodukt zweier Vektoren
Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften
Zahlen und Funktionen
Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen
Statische Berechnung
P fahlgründung Signalausleger Bauvorhaben: Objekt: Bahnhof Bitterfeld Signalausleger Diese Berechnung umfaßt 10 Seiten und gilt nur in Verbindung mit der statischen Berechnung Signalausleger, Bundesbahn-Zentralamt
mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)
Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)
4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE
BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE 1) Kräfte greifen in einem Punkt an a) Zusammensetzen (Reduktion) von Kräften -
Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen
Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c
Expertenpuzzle Quadratische Funktionen
Epertenpuzzle Quadratische Funktionen Phase Lösung für die Epertengruppe I Im Folgenden sollen die in IR definierten Funktionen a :, b :,, und d: untersucht werden. Die Abbildung zeigt den Graphen G a
Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.
Parabel zeichnen Parabel zeichnen chritt für chrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in cheitelform Funktionsgleichung in Nullstellenform
Kapitel 8 Einführung der Integralrechnung über Flächenmaße
8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb
NCCI: Elastisches kritisches Biegedrillknickmoment
Dieses NCCI Dokument enthält die Gleichung ur Ermittlung des elastischen kritischen Biegedrillknickmomentes für doppelt symmetrische Querschnitte. Für die Berechnung werden Parameter für häufig auftretende
7. Inneres Gleichgewicht - Schnittgrößen
7. Inneres Gleichgewicht - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu
Parabeln - quadratische Funktionen
Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer
Bestimmung der Erdbeschleunigung g
Laborbericht zum Thema Bestimmung der Erdbeschleuni Erdbeschleunigung g Datum: 26.08.2011 Autoren: Christoph Winkler, Philipp Schienle, Mathias Kerschensteiner, Georg Sauer Friedrich-August Haselwander
Fachwerkträger. (Skript zur Online-Version)
Fachwerkträger (Skript zur Online-Version) Name: Czapalla Vorname: Oliver E-Mail: czapalla@web.de Online-Version: http://www.biw.fhd.edu/partsch/diplomarbeiten/fachwerktraeger Inhaltsverzeichnis Inhaltsverzeichnis
Lösen linearer Gleichungssysteme
Lösen linearer Gleichungssysteme W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Die beschriebenen Verfahren 2 2 Einsetzungsverfahren 3 3 Additions-/Subtraktionsverfahren 5 4 Gleichsetzungsverfahren 8
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
F u n k t i o n e n Quadratische Funktionen
F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die
6 Gleichungen und Gleichungssysteme
03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion
1 Technische Mechanik 2 Festigkeitslehre
Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:
4. Verschiebungsgrößenverfahren
Baustatik I WS 2013/2014 4. Verschiebungsgrößenverfahren 4.2 Geometrische Unbestimmtheit Geometrische Unbestimmtheit Geometrisch bestimmtes System: Bei einem geometrisch bestimmten System sind alle Knotenverschiebungen
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Expertenpuzzle Quadratische Funktionen
Phase Aufgaben für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x,5x, und d: x x untersucht werden. Die Abbildung zeigt den Graphen G a von a. Zeichnet die Graphen
K l a u s u r N r. 2 Gk Ph 12
0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität
Baustatik und Holzbau. Übungen Technische Mechanik I
Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1
ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z
(ZUSENFSSUNG) rbeitsblätter. LLGEEINES. Sstem und Belastung Längsansicht: p( x) z, w x, u Biegesteifigkeit EI h Bettung c l Querschnittsdarstellung: p( x) p ( x) ( verschmiert) z h Bettung c b Bemerkung:
Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.
Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)
.5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................
Aufgaben. zu Inhalten der 5. Klasse
Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur.
5. Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu BI - I Tragsysteme
Lösung zur Übung 19 SS 2012
Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die
Kapitel I. Lineare Gleichungssysteme
Kapitel I Lineare Gleichungsssteme Lineare Gleichungen in zwei Unbestimmten Die Grundaufgabe der linearen Algebra ist das Lösen von linearen Gleichungssstemen Beispiel : Gesucht sind alle Lösungen des
Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur.
Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Schnittgrößen Verlauf
2. Klausur in K1 am
Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern