Numerische Berechnung von Leichtbaustrukturen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Numerische Berechnung von Leichtbaustrukturen"

Transkript

1 von Leichtbaustrukturen 2.Vorlesung Institut für Mechanik 15. Oktober 2014 (IFME) 15. Oktober / 22

2 Folie 1 - Flächentragwerke Definition Als Zugsysteme werden Tragwerke bezeichnet, in denen vorzugsweise Zugglieder die tragenden Elemente bilden. Im Zugglied als Konstruktionsteil ist eine der Hauptabmessungen um ein vielfaches größer als die sonstigen Abmessungen. Einer hohen Längssteifigkeit steht eine kleine Biege- und Verdrehsteifigkeit gegenüber. Zugsysteme (IFME) 15. Oktober / 22

3 ebene ZS Zugsysteme räumliche ZS stat. best. stat. unbest. stat. best. stat. unbest. einknotig vielknotig einknotig vielknotig ohne Kn. konst. SpKr. veränd. SpKr. orthogonal nicht orth. symmetr. unsymmetr. kreisförm. fächerförm.. m. RingLag. m. RandZugGl. 1 Hajduk/Osiecki Zugsysteme - Theorie und " (IFME) 15. Oktober / 22

4 Folie 3 - Zugsysteme Anmerkung Für die von Zugsystemen ist es wesentlich, ob die Zugglieder durch eine konstante oder durch eine veränderliche Kraft gespannt werden,die von der äußeren Belastung des Systemes abhängen kann oder sich aus der Dehnung der einzelnen Zugglieder ergibt. Spannung durch konstante Spannkraft - Spanngewicht, hydraulische Winde usw. (a) Spannung durch veränderliche Spannkraft - beidseitig befestigtes Seil (b) (Kraft ändert sich durch Temperatur und äußerer Belastung) (IFME) 15. Oktober / 22

5 Folie 4 - Zugsysteme Beispiel Ebene statisch unbestimmte Zugsysteme - Ebene statisch unbestimmte Systeme findet man bei Hängebrücken, Abhängungen von Rohrleitungen, Hilfskonstruktionen zur Versteifung von Auslegern, Brücken und Gerüsten usw. (IFME) 15. Oktober / 22

6 Folie 5 - Zugsysteme Beispiel Ebene statisch unbestimmte Zugsysteme - Typisch für Seilbahnen, bei denen das Tragseil auf den Auflagerschuhen der Stützen gelagert ist oder bei elektrischen Leitungen, die über Isolatoren an Masten hängen. (IFME) 15. Oktober / 22

7 Folie 6 - Zugsysteme Beispiel Räumliche Zugsysteme ohne Knoten - Typisches Beispiel Dach der Sporthalle in Tokio (IFME) 15. Oktober / 22

8 Folie 7 - Zugsysteme Beispiel Räumliche unsymmetrische Zugsysteme mit einem Knoten - Im Knoten laufen mehrere Seile unterschiedlicher Länge zusammen. - Die Lage des Mittenknotens ergibt sich aus dem Gleichgewicht der wirkenden Horizontal- und Vertikalkräfte. - Typisches Beispiel für Seilbahnen deren Seile über hängende Stützen geführt werden. (IFME) 15. Oktober / 22

9 Folie 8 - Zugsysteme Beispiel Räumliche unsymmetrische Zugsysteme mit einem Knoten - Im Knoten laufen mehrere Seile unterschiedlicher Länge zusammen. - Die Lage des Mittenknotens ergibt sich aus dem Gleichgewicht der wirkenden Horizontal- und Vertikalkräfte. - Typisches Beispiel für Seilbahnen deren Seile über hängende Stützen geführt werden. (IFME) 15. Oktober / 22

10 Folie 9 - Zugsysteme Beispiel Räumliche symmetrische Zugsysteme mit einem Knoten - Die Kräfte der Zugglieder werden durch einen äußeren Ring aufgenommen - Zugglieder werden in der Mitte entweder durch einen Knoten ((a),(b)) oder einen Ring (c) zusammengeführt. - (b) und (c) sind in senkrechter Richtung nicht steif und deshalb anfällig gegen Wind. (IFME) 15. Oktober / 22

11 Folie 10 - Zugsysteme Beispiel Räumliche vielknotige Zugsysteme 1 - Tragende Zugglieder ; 2 - Spannende Zugglieder (IFME) 15. Oktober / 22

12 Folie 11 - Zugsysteme Beispiel Zugsysteme zwischen Randzuggliedern (IFME) 15. Oktober / 22

13 Folie 12 - Zugsysteme Beispiel Zugsysteme zwischen Randzuggliedern (IFME) 15. Oktober / 22

14 Folie 13 - Zugsysteme Stahlseile bilden bezüglich ihrer mechanischen Eigenschaften eine besondere Gruppe von Zuggliedern. Spannungs-Dehnungs-Diagramm: -Konvexe Kurve OM: Anfangsdehnung -Lineare Kurve MN: Entlastungskurve (IFME) 15. Oktober / 22

15 Folie 14 - Zugsysteme Ursache des Dehnungsverlaufes liegt in der Änderung der Seilstruktur. Gleichmäßige Ausrichtung der Seile Erhöhung des Steigungswinkels der Drähte. Abbau von Anfangsspannungen aus dem Herstellungsprozeß Hysterese eines Stahleiles ist bedeutend größer als bei einen auf Zug beanspruchten Drahtes gleichen Durchmessers. Aus der Charakteristik des Spannungs-Dehnungsverlaufes ergeben sich Unterschiede im Elastizitätsmodul zwischen neuen und länger im Einsatz befindlichen Seilen. Totaler Elastizitätsmodul E tot - nach einmalige Belastung Wahrer Elastizitätsmodul E el - nach mehrmaliger Be- und Entlastung (IFME) 15. Oktober / 22

16 Folie 15 - Zugsysteme Einfluss der Anzahl der Lastwechsel auf den tatsächlichen Wert des Elastizitätsmoduls (Litzenseil - 8 Litzen) mit Hanfeinlage Anzahl der Lastwechsel Belastung bis 1 10 σ B E tot 27600N/mm N/mm 2 E el 51800N/mm N/mm 2 Belastung bis 1 15 σ B E tot 22800N/mm N/mm 2 E el 43400N/mm N/mm 2 Bei den en geht man davon aus, dass das Hooksche Gesetz gilt Zur Korrektur des Elastizitätsmoduls wir ein Faktor k eingeführt E S = ke E ist der Elastizitätsmodul von Stahl (E = ) Beispiele für den Koorekturfaktor k: - Litzenseil (6 Litzen) mit organischer Einlage : k = Litzenseil mit Stahleinlage : k = Spiralseil : k = (IFME) 15. Oktober / 22

17 Folie 16 - Zugsysteme Zugglieder erfahren aufgrund von Belastungen unterschiedliche Verformungen: - Elastische Verformungen - Plastische Verformungen - Kriechverformungen (IFME) 15. Oktober / 22

18 Folie 17 - Zugsysteme Annahmen Seile und Ketten können nur Zugkräfte aufnehmen. Seile und Ketten sind biegeschlaff und können somit keine Querkräfte und Biegemomente aufnehmen. Zur der Zusammenhänge zwischen den äußeren Belastungen und den inneren Kräften betrachten wir ein zwischen den Punkten A und B aufgehangenes Seil. Die Gleichgewichtsbedingungen werden dann für einem differentiell kleines Seilelement der Länge ds aufgeschrieben. (IFME) 15. Oktober / 22

19 Folie 18 - Zugsysteme Gleichgewichtsbedingungen: x : FH2 FH1 = 0 y : FQ + dfq FQ + q(x)dx = 0 yc : FH1 dy FQ dx 2 (1) FQ dx 2 dfq (2) dx 2 = 0 (3) Aus Gleichung (1) folgt : FH1 = FH2 = FH (4) Aus Gleichung (2) folgt : qx = dfq 0 = FQ dx (5) Unter Vernachlässigung von Gliedern höherer Ordnung (dfq dx 2 ) folgt aus Gleichung (3): FQ = FH dy dx (6) Nach Differentiation der Gleichung (6) erhält man : 0 FQ = FH (IFME) d2 y dx 2 (7) 15. Oktober / 22

20 Folie 19 - Zugsysteme Differentialgleichung für den Seildurchhang y (x): qx = FH y 00 (8) Nach zweifacher Integration erhält man die Lösung für die Seillinie : Z y (x) = 1 FH Z (q(x)dx dx + C1 x + C2 (9) Es ist zu erkennen, dass sich bei q(x) = konst. für die Seilline eine Parabel ergibt. Ersetzt man die Streckenlast q(x) durch die Eigenlast γ [N/mm] erhält man folgende Lösung für die Kettenlinie: Gleichgewichtsbedingungen: (IFME) x : FH2 FH1 = 0 (10) y : FQ + dfq FQ + γds = 0 (11) yc : FH1 dy FQ dx 2 FQ dx 2 dfq dx 2 = 0 (12) 15. Oktober / 22

21 Folie 20 - Zugsysteme Unter Vernachlässigung von Gliedern höherer Ordnung (df Q dx 2 ) folgt aus Gleichung (12): F Q = F H dy dx = F Hy (13) Für das differentielle Längenelement ds erhält man : ds = dx 2 + dy 2 = 1 + y 2 dx (14) Damit ergibt sich aus Gleichung (11): γ 1 + y 2 dx = df Q dx = F Q (15) Mit F Q = F Hy erhält man aus Gleichung (15): γ 1 + y 2 dx = df Q dx = F Hy (16) Mit der Substitution y = u und der Abkürzung a = F H γ ensteht aus (16) : au = 1 + u 2 (17) oder : du = dx 1 + u 2 a (IFME) 15. Oktober / 22 (18)

22 Folie 21 - Zugsysteme Daraus folgt die Lösung: Die Umkehrung lautet: arcsinh u = x a + C 1 (19) ( u = sinh x ) ( x ) a + C 1 = sinh a C 1 (20) Ersetzt man in (20) u = y erhält ( man : x ) y = sinh a C 1 (21) Nach nochmaliger Integration von (21) wird: ( x ) y(x) = a cosh a C 1 + C 2 (22) (IFME) 15. Oktober / 22

Verzerrungen und Festigkeiten

Verzerrungen und Festigkeiten Verzerrungen und Festigkeiten Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Verzerrungen

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur.

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur. Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Schnittgrößen Verlauf

Mehr

Tragwerksentwurf II. Kursübersicht. 6. Material und Dimensionierung. 2. Gleichgewicht & grafische Statik. 18. Biegung

Tragwerksentwurf II. Kursübersicht. 6. Material und Dimensionierung. 2. Gleichgewicht & grafische Statik. 18. Biegung 29.10.2015 Tragwerksentwurf I+II 2 Tragwerksentwurf I Tragwerksentwurf II 2. Gleichgewicht & grafische Statik 6. Material und Dimensionierung 18. Biegung 1. Einführung 3.+4. Seile 7. Bögen 10. Bogen-Seil-

Mehr

Wenn Seile fremde Lasten tragen

Wenn Seile fremde Lasten tragen Wenn Seile fremde Lasten tragen 1 Wenn Seile fremde Lasten tragen von Dr. Markus Köcher, Calw Parabel versus Kettenlinie Immer, wenn ich in Schulbüchern im Abschnitt über Parabeln Abbildungen von Hängebrücken

Mehr

Die Kettenlinie. Thomas Peters Thomas Mathe-Seiten 9. Mai 2010

Die Kettenlinie. Thomas Peters Thomas Mathe-Seiten  9. Mai 2010 Die Kettenlinie Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 9. Mai 2010 Abbildung 1.1: Im Bild ist rot die Kettenlinie und blau die Parabel dargestellt. In diesem Artikel machen wir einen kleinen

Mehr

Skript. Technische Mechanik. Festigkeitslehre

Skript. Technische Mechanik. Festigkeitslehre Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März

Mehr

7. Inneres Gleichgewicht - Schnittgrößen

7. Inneres Gleichgewicht - Schnittgrößen 7. Inneres Gleichgewicht - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2 Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt Prof Dr M Gerdts Dr A Dreves J Michael Wintertrimester 216 Mathematische Methoden in den Ingenieurwissenschaften 1 Übungsblatt Aufgabe 1 : (Schwimmer Ein Schwimmer möchte einen Fluss der Breite b > überqueren,

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Wellen Eine an einem Draht befestigte Stimmgabel schwinge senkrecht zum Draht und erzeuge so auf diesem eine Transversalwelle. Die Amplitude der Stimmgabelschwingung

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung: Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

1 Der Eiffelturm (1889)

1 Der Eiffelturm (1889) Vortrag Kanti 2 1 Der Eiffelturm (1889) Die Kanten des Eiffelturms werden von vier ebenen Kurven gebildet. Auf vielen Postkarten sieht man in etwa die Parallelprojektion dieser Kurven in die Ebene E. Die

Mehr

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds Blatt. ederkennlinie Die ederkennlinie gibt die Abhängigkeit zwischen Belastung (Kraft, Moment) und Verformung (Weg, Winkel) an. Man unterscheidet drei grundsätzlich unterschiedliche Verhaltensweisen mit

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

Die Kettenlinie. Zwischen 2 Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l

Die Kettenlinie. Zwischen 2 Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l Zwischen Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l Fragen: (1) Wie weit hängt das Kabel durch? ( d =?) () Wie groß ist die Seilspannung

Mehr

Zusammenfassung. Vorlesung und Übungen 1. Semester BA Architektur.

Zusammenfassung. Vorlesung und Übungen 1. Semester BA Architektur. Zusammenfassung Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Zusammenfassung

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

STAHLSEILE. Technische Grundlagen. Kundenschulung. Technische Grundlagen. Teufelberger Seil Ges.m.b.H. TEUFELBERGER SEIL GMBH

STAHLSEILE. Technische Grundlagen. Kundenschulung. Technische Grundlagen. Teufelberger Seil Ges.m.b.H. TEUFELBERGER SEIL GMBH STAHLSEILE Technische Grundlagen Kundenschulung Technische Grundlagen TEUFELBERGER SEIL GMBH AGENDA: Warum Seil Seilarten und Aufbau Eigenschaften/Besonderheiten WARUM SEIL? Vergleich metallischer Vollstab

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Biegung. Vorlesung und Übungen 1. Semester BA Architektur.

Biegung. Vorlesung und Übungen 1. Semester BA Architektur. Biegung Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungsentrum in der Helmholt-Gemeinschaft www.kit.edu Biegung Biegung Spannungsnachweise

Mehr

Zugversuch - Versuchsprotokoll

Zugversuch - Versuchsprotokoll Gruppe 13: René Laquai Jan Morasch Rudolf Seiler 16.1.28 Praktikum Materialwissenschaften II Zugversuch - Versuchsprotokoll Betreuer: Heinz Lehmann 1. Einleitung Der im Praktikum durchgeführte Zugversuch

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

1 Beispiel: Bemessung eines Freileitungsmastes (40P)

1 Beispiel: Bemessung eines Freileitungsmastes (40P) Prüfungsgegenstand 30.06. 4 / 10 Praktischer Prüfungsteil (67 P) 1 Beispiel: Bemessung eines Freileitungsmastes (40P) Angabe Aufgabe ist es einen Endmasten einer Freileitung zu dimensionieren. Abbildung

Mehr

Spannungs-Dehnungskurven

Spannungs-Dehnungskurven HVAT Metalle Paul H. Kamm Tillmann R. Neu Technische Universität Berlin - Fakultät für Prozesswissenschaften Institut für Werkstoffwissenschaften und -technologien FG Metallische Werkstoffe 01. Juli 2009

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 Grundsatz Geschossbauten müssen gegen Horizontallasten ausgesteift sein. Aussteifende Bauteile können sein: Wandscheiben, Kerne, Rahmen, Verbände Bauformen Schotten- oder Wandbau, meist im Wohnungsbau.

Mehr

Friedrich U. Mathiak. Festigkeitslehre

Friedrich U. Mathiak. Festigkeitslehre Friedrich U. Mathiak Festigkeitslehre 1 1 Seile und Ketten, Stützlinienbögen Aufgabe 1-1 An einem als masselos angenommenen Seil ist ein waagerecht hängender Balken befestigt. Bestimmen Sie: a) die Gleichung

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Einfeldträger mit Auskragung

Einfeldträger mit Auskragung Vorlesung und Übungen 1. Semester B rchitektur IT Universität des andes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Schnittgrößen Beispiel 13.1.010 Dipl.-Ing.

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

Sessionsprüfung Stahlbeton I+II. Sommer Donnerstag, 22. August 2013, Uhr, HIL F61

Sessionsprüfung Stahlbeton I+II. Sommer Donnerstag, 22. August 2013, Uhr, HIL F61 Sessionsprüfung Stahlbeton I+II Sommer 2013 Donnerstag, 22. August 2013, 14.00 17.00 Uhr, HIL F61 Name, Vorname : Studenten-Nr. : Bemerkungen 1. Für die Raumlast von Stahlbeton ist 25 kn/m 3 anzunehmen.

Mehr

Zugversuch. 1. Aufgabe. , A und Z! Bestimmen Sie ihre Größe mit Hilfe der vorliegenden Versuchsergebnisse! Werkstoffkennwerte E, R p0,2.

Zugversuch. 1. Aufgabe. , A und Z! Bestimmen Sie ihre Größe mit Hilfe der vorliegenden Versuchsergebnisse! Werkstoffkennwerte E, R p0,2. 1. Aufgabe An einem Proportionalstab aus dem Stahl X3CrNi2-32 mit rechteckigem Querschnitt im Messbereich (a 6,7 mm; b 3 mm; L 8mm) wurde in einem das dargestellte Feindehnungs- bzw. Grobdehnungsdiagramm

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

Statische Berechnung

Statische Berechnung Ing.-Büro Klimpel Stapel - Gitterbox - Paletten Seite: 1 Statische Berechnung Tragwerk: Stapel - Gitterbox - Paletten Rack 0,85 m * 1,24 m Herstellung: Scafom International BV Aufstellung: Ing.-Büro Klimpel

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 23. September 2016 Aufgabe 1 (12 Punkte) Ein Wanderer (Gewicht G ) benutzt in unebenem Gelände einen Wanderstab

Mehr

Zugversuch. Der Zugversuch gehört zu den bedeutendsten Versuchen, um die wichtigsten mechanischen Eigenschaften von Werkstoffen zu ermitteln.

Zugversuch. Der Zugversuch gehört zu den bedeutendsten Versuchen, um die wichtigsten mechanischen Eigenschaften von Werkstoffen zu ermitteln. Name: Matthias Jasch Matrikelnummer: 2402774 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 26. Mai 2009 Betreuer: Vera Barucha Zugversuch 1 Einleitung Der Zugversuch gehört zu den

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Zusammenfassung. Reale feste und flüssigekörper

Zusammenfassung. Reale feste und flüssigekörper Zusammenfassung Kapitel l6 Reale feste und flüssigekörper 1 Reale Körper Materie ist aufgebaut aus Atomkern und Elektronen-Hülle Verlauf von potentieller Energie E p (r) p und Kraft F(r) zwischen zwei

Mehr

Beispiel 4: Theorie II. Ordnung

Beispiel 4: Theorie II. Ordnung Titel: Theorie II. Ordnung Blatt: Seite 1 von 10 Beispiel 4: Theorie II. Ordnung Nachweis: Stabilität des Systems nach Theorie II. Ordnung. Schnittgrößen nach Theorie I. Ordnung, ohne Imperfektion F Ed

Mehr

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h

Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h 1. Kraft und ihre Wirkungen KA 22h Energie, Umwelt, Mensch 8h 2. Projekt Physik Klasse 7 3. Elektrische Leitungsvorgänge KA 20h 4. Naturgewalten Blitz und Donner 3h Kraft und ihre Wirkungen Lies LB. S.

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1) Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)

Mehr

Protokoll zum Versuch: Zugversuch

Protokoll zum Versuch: Zugversuch Protokoll zum Versuch: Zugversuch Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 18.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3 Versuch 2 3.1

Mehr

Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig."

Kommt ein Vektor zur Drogenberatung: Hilfe ich bin linear abhängig. Stephan Peter Wirtschaftsingenieurwesen WS 15/16 Mathematik Serie 8 Vektorrechnung Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig." Aufgabe 1 Gegeben sind die Vektoren a = b = 1 graphisch

Mehr

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur. Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur.  Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen Kräfte Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

Praktikum Materialwissenschaft II. Zugversuch

Praktikum Materialwissenschaft II. Zugversuch Praktikum Materialwissenschaft II Zugversuch Gruppe 8 André Schwöbel 132837 Jörg Schließer 141598 Maximilian Fries 147149 e-mail: a.schwoebel@gmail.com Betreuer: Herr Lehmann 5.12.27 Inhaltsverzeichnis

Mehr

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER 1) Definition für statisch bestimmte Systeme 2) Auflagerreaktionen beim einfachen Balken 3)

Mehr

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 0.0.00 Name: Vorname: Matr.-Nr.: (bitte deutlich schreiben!) (9-stellig!) Aufgabe 5 6 7 8 9 Summe mögliche Punkte 7 5 5 6 0 8 0 6 0 erreichte Punkte

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I

Baustatik und Holzbau. Übungen Technische Mechanik I Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1

Mehr

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik KG-Oberkurs 011 Vorlesungen: Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon 1 Allgemeines Biomechanik Biologie Mechanik Ziel der Vorlesung: Mechanische Grundlagen in anschaulicher Form aufzufrischen.

Mehr

Sylodyn Werkstoffdatenblatt

Sylodyn Werkstoffdatenblatt NF Sylodyn Werkstoffdatenblatt Werkstoff geschlossenzelliges Polyetherurethan Farbe violett Sylodyn Typenreihe Standard-Lieferformen, ab Lager Dicke:, mm bei Sylodyn NF mm bei Sylodyn NF Rollen:, m breit,,

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten Inhalt (Abschnitte, die mit * gekennzeichnet sind, enthalten Übungsaufgaben) 1 Einführung... 1 1.1 Begriffe und Aufgaben der Statik... 2 1.1.1 Allgemeine Begriffe 1.1.2 Begriffe für Einwirkungen... 4 1.1.3

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Prüfung von direkt erdverlegten Armaturen EN488. Ing. Roland Silberbauer

Prüfung von direkt erdverlegten Armaturen EN488. Ing. Roland Silberbauer Prüfung von direkt erdverlegten Armaturen EN488 Ing. Roland Silberbauer EN488 Anforderungen direkt erdverlegte Absperrarmaturen Die aktuelle Version ist aus dem Jahr 2011. EN488:2011+A1:2014 Die Vorgängerversion

Mehr

TECHNISCHE MECHANIK. Übungen zur Elastostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer

TECHNISCHE MECHANIK. Übungen zur Elastostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer TECHNISCHE MECHANIK Übungen zur Elastostatik Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer Fachhochschule München Fachbereich 06 - Feinwerk- und Mikrotechnik Technische

Mehr

Elastizitätslehre. Verformung von Körpern

Elastizitätslehre. Verformung von Körpern Baustatik II Seite 1/7 Verformung von Körpern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Elastische Verformungen 3 4.1 Allgemeines 3 4.2 Achsiale Verformungen und E-Modul 3

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Musterlösungen Serie 9

Musterlösungen Serie 9 D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden

Mehr

STATISCHE BERECHNUNG vom 20.04.2012

STATISCHE BERECHNUNG vom 20.04.2012 Projekt : 1020-12 Frank Blasek Beratender Ingenieur Heinestraße 1 D-33142 Büren Tel. +49 2951-937 582-0 Fax +49 2951-937 582-7 info@ifb-blasek.de Ingenieurbüro Frank Blasek Beratender Ingenieur Heinestraße

Mehr

11.2. Lineare Differentialgleichungen erster Ordnung

11.2. Lineare Differentialgleichungen erster Ordnung 112 Lineare Differentialgleichungen erster Ordnung Dynamische Entwicklung von Populationen Entwickelt sich eine bestimmte Größe, zb die einer Population oder eines einzelnen Organismus, nicht nur proportional

Mehr

1 Über die allgemeine komplexe und reelle Lösung

1 Über die allgemeine komplexe und reelle Lösung Lösen von Differentialgleichungen Inhaltsverzeichnis 1 Über die allgemeine komplexe und reelle Lösung 1 2 Integrierender Faktor 5 2.1 Eine Beispielrechnung.................... 5 2.2 Das allgemeine Vorgehen..................

Mehr

V.M. knowledge. Mit Ground-Support Riggs sind Systeme gemeint, bei denen Traversenrahmen auf Stützen stehen und zur Aufnahme von

V.M. knowledge. Mit Ground-Support Riggs sind Systeme gemeint, bei denen Traversenrahmen auf Stützen stehen und zur Aufnahme von Eine Frage der Aussteifung Der sechste Teil der Artikelserie zum Thema Statik in der Veranstaltungstechnik widmet sich dem Thema Riggs, die auf dem Boden aufgebaut werden: den Ground Support Riggs. Viele

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Statisch bestimmte Tragsysteme

Statisch bestimmte Tragsysteme Statisch bestimmte Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Statisch

Mehr

ATJ Vordach LIVO. Statischer Nachweis der Überkopfverglasung und Ermittlung der Dübellasten

ATJ Vordach LIVO. Statischer Nachweis der Überkopfverglasung und Ermittlung der Dübellasten Statischer Nachweis der Überkopfverglasung und Ermittlung der Dübellasten Projekt: P-25-02 Bericht: P-25-02 Datum: 10. Januar 2003 PSP Technologien im Bauwesen GmbH Lagerhausstraße 27 D-52064 Aachen Tel.:

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L

Zugversuch. Zugversuch. Vor dem Zugversuch. Verlängerung ohne Einschnürung. Beginn Einschnürung. Probestab. Ausgangsmesslänge L 0 L L L L Zugversuch Zugversuch Vor dem Zugversuch Verlängerung ohne Einschnürung Beginn Einschnürung Bruch Zerrissener Probestab Ausgangsmesslänge L 0 Verlängerung L L L L Verformung der Zugprobe eines Stahls mit

Mehr

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur.

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur. 5. Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu BI - I Tragsysteme

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 14 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 0. 0. 009 1 Aufgaben

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr