Verschachtelte Wurzeln oder

Größe: px
Ab Seite anzeigen:

Download "Verschachtelte Wurzeln oder"

Transkript

1 Verschachtelte Wurzel oder Vo der Kust Eifaches kompliziert auszudrücke arti Rheiläder Istitut für Agewadte athematik Uiversität Heidelberg Vortragsfolie mit zusätzliche Kommetare Vo der Kust Eifaches kompliziert auszudrücke I ältere Tete fidet ma häufig Badwurmsätze, die sich durch die mehrmalige Verschachtelug vo Nebesätze über viele Zeile erstrecke ud machmal gaze Absätze fülle. Dadurch läßt sich die Aussage solcher Sätze oft selbst ach der zweite ud dritte Lektüre ur schwer erfasse. Zumidest ergeht dies de meiste heutige Leser so ud ma fragt sich, ob Leser i frühere Zeite die Sperrigkeit übermäßig läger Sätze icht gaz ählich empfude habe müßte. Immer och müsse sich auch mache wisseschaftliche Disziplie die berechtigte Kritik gefalle lasse, durch eie Hag zu uötig verklausulierte Formulieruge ud Fachtermii Außestehede aufgrud der vermeitlich schwere Verstädlichkeit Respekt abverlage zu wolle. Die bevorzugte ud agestrebte Ausdrucksweise i der atheatik ist eigetlich vo Natur aus klar ud präzise, obgleich auch hier Ausahme die Regel bestätige möge. Die gelegetliche Darstellug eifacher Zahle durch uübersichtlich verkettete Terme hat wohl vor allem eie spielerische, uterhaltede oder scherzhafte Charakter, ( ( 5 ). z.b.: cosh log( si( ) cos( ) ) Die Auflösug ist trivial, sofer die Eigeschafte gewisser elemetarer Fuktioe bekat sid. Demgegeüber gestaltet sich das Vereifache uedlich oft verschachtelter Wurzel deutlich schwieriger ud bedarf zur saubere Begrüdug eies Beweises. Dabei ergebe sich eiige verblüffede Beobachtuge: Weder ergibt geschweige de rei reell eie Si. aber scho! ivolviert eigetlich ur eie eizige Wurzel. Die Grezfuktio vo ( ) ( ) ist sogar affi liear. Fast ei philosophisches Problem: oder doch (aus Stetigkeitsgrüde)? Bei der Kust des Lehres (Didaktik) geht es bekatlich icht darum, zu erklärede Zusammehäge durch umstädliche Erläuteruge zu verschleier. Vielmehr besteht das Ziel dari, auch für schwierige Sachverhalte eie eigägige, möglichst eifache aber deoch zutreffede Erklärug zu fide. Wozu da badwurmartige Formelugetüme wie verschachtelte Wurzelterme i eier Didaktikverastaltug? Tatsächlich ist die Beschäftigug damit lehrreicher als ma zuächst deke mag. Wem das icht als otivatio geügt, de überzeugt vielleicht die kleie achfolgede (freilich etwas überspitzte) Geschichte aus der Schule. a beachte, daß sich im Grezwert auch vieles vereifache ka. So ist ggf. eie uedlich oft verschachtelte Wurzel eifacher zu bereche als eie zehfach verschachtelte Wurzel.

2 Aufhäger: ysteriöser Wurzelterm i der Schule Vormittags i der athestude vertieft ma meist die Rechekude. Kokret steht diesmal auf dem Programm, daß ma Wurzel egativer Zahle icht ziehe ka, solage ma ur das Reelle betrachtet ud Komplewertiges icht beachtet. Doch dies ist i der Schule kei Thema, wichtig ist hier vor allem das Schema. Am Beispiel erklärt der Lehrer, wie es geht, isbesodere wo das iuszeiche steht. Wurzel vo mius Vier macht keie Si, doch schreibt ma das ius vor die Wurzel hi, so ergibt sich gaz zweifelsfrei das Negative der Zwei. Die Ubesoeheit der Schüler ahed, wiederholt der Lehrer ochmals mahed: Setzt das iuszeiche iemals i die Wurzel hiei, de diese Fehler werd ich icht verzeih. Wurzel egativer Zahle sid icht erklärt, wer sie deoch schreibt, macht s verkehrt. Da fragt er zur Kotrolle, ob jemad de Stoff rekapituliere wolle. Normalerweise wird es mucksmäusche still, we der Lehrer etwas wisse will. Diesmal aber sid Carl ud Fritz am Schwätze; ei solches Verhalte weiß der Pauker icht zu schätze. Wer aber de Uterricht derart stört, der hat meist auch icht zugehört. So fragt er Carl mit List, was die Wurzel vo mius Eiviertel ist. Dieser atwortet ud spricht: Herr Lehrer, die gibt es icht. Doch gaz uumwude, wir habe etwas erkwürdiges gefude. Dabei reicht er ei Blatt mit eiem lage Term. Diese sieht der Lehrer gar icht ger, ist er doch ziemlich irritiert, diese Reaktio hatte er icht atizipiert. Wie ka das ur gelige, we s de zugeht mit rechte Dige? Nu blickt der Lehrer fraged drei, was ka des Rätsels Lösug sei? Beispiel Iterierte Wurzel als rekursive Folge w :? Verallgemeierug: w( ) : zuächst Defiitio als Folge, um Püktche-Notatio zu präzisiere: spezielle Iitialisierug allgemeie Iitialisierug w ) : ( w ) : ( s w ) : ( w ) : s ( w ) : ( w ) : s ( w ) : ( w ) : s ( Rekursive Defiitio der Folge (w ()) für : w ( ) : s w ( ) : w ( ) Kovergez? Falls ja, hägt Grezwert w( ) : lim w ( ) vom Startwert s ab?

3 Beispiel ootoieverhalte ootoie: i) ii) w ( ) < w ( ) w ( ) < w ( ) Kovergezkriterium: ootoie & Beschräktheit Kovergez w ( ) < w ( ) > iii) w ( ) w ( ) w ( ) w ( ) w ( ) < w ( ) w ( ) < w ( ) N : N : N : w ( ) < w w ( ) > w w ( ) w ( ) ( ) ( ) Nachweis per Iduktio Iduktiosafag ist durch die jeweilige Voraussetzug gegebe. Iduktiosschritt: Fall i) Iduktiosvoraussetzug w ( ) < w ( ) Iduktiosbehauptug ootoie der Wurzelfuktio Folge ist streg mooto wachsed Folge ist streg mooto falled Folge ist kostat Fall ii) & Fall iii) ergebe sich völlig aalog durch Ersetze des Größer-Zeiches. w ( ) w ( ) < Beispiel Formale Berechug des Grezwertes Herleitug eier Gleichug für de Grezwert w() aus der Rekursiosgleichug uter der Aahme vorhadeer Kovergez: w( ) lim w ( ) lim w ( ) lim w ( ) w( ) w ( ) w( ) w ( ) w( ) Stetigkeit der Wurzelfuktio Grezwert ergibt sich als Fipukt der Iteratiosfuktio: Beachte: Allerdigs {, } w( ) w( ) I : w a Die egative Nullstelle der quadratische Gleichug für w() ist zu verwerfe. s, > N : w ( ) > w( ) {, }. Keie der beide öglichkeite ist à priori ausgeschlosse. Sofer ei Grezwert eistiert, hägt dieser für > icht vom Startwert s ab soder ur vo. Ausahme für : falls s w() falls s> Falls s : keie Vertauschbarkeit der Grezwerte : lim lim w ( ) lim lim w ( ) w Aus demselbe Grude wie: lim lim lim lim

4 Beispiel Beschräktheit Formal ermittelter Grezwert als obere bzw. utere Schrake (bei etsprecheder Iitialisierug). i) > w ( ) N: > w ( ) ii) < w ( ) N: < w ( ) iii) w ( ) N: w ( ) Nachweis per Iduktio Iduktiosafag ist durch die jeweilige Voraussetzug gegebe. Iduktiosschritt: Fall i) > Iduktiosvoraussetzug Iduktiosbehauptug w ( ) > w ( ) > w ( ) > w ( ) Fall ii) ud iii) werde aalog behadelt. ( ) ( ) > w ( ) w ) ( > w ( ) Beispiel Startwert & Kovergez Wie hägt ootoieverhalte vom Startwert w () s> ab? Bereits gezeigt: w ( ) s < s w ( ) (w ()) streg mooto wachsed w ) s > s w ( ) (w ()) streg mooto falled ( Wie ist s zu wähle, damit s kleier bzw. größer sqrt(s) ist? Es gilt: i) ii) iii) s s < s < s s > s > s s s Beachte: ootoieverhalte ud Beschräkug ach ute bzw. obe ergäze eiader, um stets Kovergez zu erzwige! Somit folgt: Zusammefassug der Resultate: Im Fall i) kovergiert (w ()) vo ute Im Fall ii) kovergiert (w ()) vo obe mooto gege. Im Fall iii) ist die Folge kostat. s etspricht im Prizip der Iitialisierug s sqrt() mit verschobee Idizes.

5 Beispiel Ausgagsbeispiel iterierte Wurzel mit < Die iterierte Wurzel ka als Grezwert eier rei reellwertige Folge (w ( /)) verstade werde, falls diese mit eiem Startwert s / iitialisiert wird. Zeige dazu N: i) w ( /) / w ( /) / ii) w ( /) w ( /) ad i) w ( ) ( ) ( ) w w ad ii) aalog zum Nachweis des vorherige Beispiels. Aus i) folgt: alle Folgeglieder bleibe reell. Außerdem ist die Folge durch / ach ute beschräkt ud ach ii) fällt sie mooto. Somit eistiert ei Grezwert, der sich wiederum als Fipukt der Iteratiosfuktio zu / ergibt. (w ( /)) kovergiert gege /. Beispiel Alterativer Zugag: Fuktioalgleichug w( ) : Ohe die Wohldefiiertheit vo w zu diskutiere, liefert formales Quadriere: w( ) w ( ) w( ) Fuktioalgleichug für w Auflöse der quadratische Gleichug ach w: (uter Berücksichtigug der Positivität vo w für >) w( ) A priori ist icht klar, daß die gefudee Lösug der Fuktioalgleichug auch tatsächlich dem Wurzelterm etspricht, de die Lösug eier Fuktioalgleichug muß icht eideutig sei. Hier etspricht die Fuktioalgleichug der (quadrierte) Rekursiosgleichug im Grezwert. Der Zugag über Fuktioalgleichuge mag auch da fuktioiere, we eie Rekursiosgleichug icht zur Verfügug steht (siehe folgede Beispiele). Die hiesige Fuktioalgleichug ivolviert ur Werte vo w a eier eizige Stelle. Überlicherweise werde durch eie Fuktioalgleichug Werte a verschiedee Stelle miteiader verküpft. Da ist das Auflöse i der Regel deutlich schwerer. 5

6 Beispiel Beschräktheit (ohe Rückgriff auf Grezwert) Beschräktheit: Falls w () s < gilt für alle N: w ( ) < Beweis per Iduktio Iduktiosafag klar ach Voraussetzug. Iduktiosschritt: w ( ) < w ( ) < Iduktiosvoraussetzug w ( ) < w ( ) < w ( ) < Somit ist die Eistez eies Grezwertes gesichert. Iduktiosbehauptug Beachte, daß isbesodere für alle die Stadardiitialisierug w () sqrt() der Bedigug kleier geügt. Alterativ ka ma zeige, daß die Folge durch ihre Grezwert beschräkt ist. a beachte, daß der Grezwert, sofer er eistiert, uabhägig vo der Iitialisierug ist, egal wie diese gewählt ist. Beispiel 6

7 Beispiel z s lim z z z Beispiel Detail z z 7

8 Verschachtelte Wurzel II Ausgagsproblem u :? Läßt sich die verschachtelte Wurzel als Grezwert eier Folge darstelle? Defiitio eier geeigete rekursive Folge, d.h. v als Fuktio vo v, ist icht ersichtlich! u u u u Alterative: Betrachte Folge abgeschitteer verschachtelter Wurzel. u 5 u : lim u Verschachtelte Wurzel II Formale Herleitug eier Fuktioalgleichug u : Verallgemeierug für beliebiges : ( ) ( ) ( ) W ( ) : u W() Ageomme W() ist sivoll defiiert, da gilt: W ( ) ( ) ( ) ( ) W geügt der Fuktioalgleichug W ( ) W ( ) ( ) Defiitio vo W() bzw. Fuktioalgleichug W(). W() ka icht mittels der Fuktioalgleichug aus W() berechet werde. W() köte jedoch mittels der Fuktioalgleichug aus W() ermittelt werde. 8

9 Verschachtelte Wurzel II Iitialisierug der Fuktioalgleichug Beobachtug: Sehr sesitiv gegeüber Afagswerte. Verschachtelte Wurzel II Auffide eier Lösug Gesucht ist eie eplizite Darstellug eier (stetig differezierbare) möglicherweise icht eideutig bestimmte Fuktio w:(, ) R, welche die Fuktioalgleichug ( ) löst, d.h.: w( ) w( ) Versuche polyomiale Asatz für w. Bestimme zuächst deg w : deg l ( ) deg( id wo S ) deg w deg w deg w w Eisetze des Asatzes w() a b: ( a b) ( a a b) ( a b) a ab b a Koeffizietevergleich: : : b : a a a b b b b w() {, } Steht icht im Widerspruch zu de beide voragehede Gleichuge. Resultat legt folgede Vermutug ahe: u W () w()! 9

10 Verschachtelte Wurzel II Wohldefiiertheit & Gleichheit Frage ) Ist W wohldefiiert? W ) : ( ( ) W ( ) : ( ) ( ) W ( ) : ( ) ( ) ( ) W ( ) : ( ) ( ) W ( ) : lim W ( ) falls der Grezwert eistiert. Frage ) Gilt w W? Geauer, gibt es mit? ( ) ( ) ( ) für? Verschachtelte Wurzel II Beweis der Wohldefiiertheit Eie (reelle) mootoe Folge kovergiert geau da, we sie beschräkt ist. Die Folge (W ()) ist für alle > streg mooto wachsed. ( ) < ( ) ( ) ( ) ( ) < ( ) ( ) ( ) ootoie der Wurzel etc. ( ) < ( ) ( ) W ( ) < W ( ) Außerdem gilt W () < W() < () für alle (siehe ute). Folglich ist (W ()) beschräkt ud somit koverget. W() ist also wohldefiiert.

11 Verschachtelte Wurzel II Beweis der Gleichheit Ageomme c (, ] ud C [, ) : c ( ) W ( ) C ( ) für W ( ) für Beweis: c c c ( ) W ( ) C( ) ( ) W ( ) C( ) ( ) W ( ) C( ) c c ( ) W ( ) C( ) ( ) W ( ) C ( ) -fach wiederholte Ausführug der Rechug liefert: k k Wege lim c lim C k k folgt mit ( ) W ( ) C( ) c W ( ) für Verschachtelte Wurzel II, c>, : W ( ) c( ) beutze: Abschätzug vo W ach ute, r, N : r ( ) r Beweis: ( ) ( ) W ( ) ( ) ( ) ( ) 8 Es sei z > : z Also: z ( ) z ( ) : : W ( ) z Problem: sqrt() läßt sich icht i der erste Wurzel faktoriell abspalte, da dies eie Vergrößerug bewirkt. z z

12 Verschachtelte Wurzel II Für alle : W() () beutze: Abschätzug vo W ach obe, r, N : ( ) r ( )r Beweis: ( ) ( ) W ( ) Awedug der Hilfsugleichug für ( ) ( ) ( ) Awedug der Hilfsugleichug für ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ) ( ) ( ) ( ) ( ) Verschachtelte Wurzel II Resumé Ist z >, so gilt: ( ) W ( ) ( ) für alle z z W ( ) w( ) für [, ) z Wege W() w() ud für z folgt: W ( ) w( ) für [, ) Isbesodere läßt sich u die Vermutug bestätige: u : W () w()

13 Verschachtelte Wurzel III Aufgabestellug? v : ) : ( V ) ( V ) ( ) ( V V Verallgemeierug für : Fuktioalgleichug: Verschachtelte Wurzel III Kovergezvergleich

14 Verschachtelte Wurzel III Vorhersage mittels Fuktioalgleichug direkte Berechug als (geäherter) Grezwert Berechug mittels Fuktioalgleichug basiered auf V() Bestimme durch Berechug des Grezwerts V ( ) v Iitialisiere Fuktioalgleichug mit V(). Vergleiche u: V() V () 5 V ()! V () 5 6 V () V () V ()!! Zusammefassug

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr

Kapitel 3 Folgen von reellen Zahlen

Kapitel 3 Folgen von reellen Zahlen Wolter/Dah: Aalysis Idividuell 4 Kapitel 3 Folge vo reelle Zahle Wir befasse us i diesem Abschitt mit Zahlefolge, die u.a. zur Eiführug ud 3/0/0 Behadlug des für die Aalysis äußerst wichtige Grezwertbegriffes

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C " a " a 1. c D lim. R. Plato 27

II Analysis Folgen Konvergenz von Folgen. a 2. a 4. a C  a  a 1. c D lim. R. Plato 27 R. Plato 7 II Aalysis 4 Folge 4. Kovergez vo Folge Differeziatio ud Itegratio sid grudlegede mathematische Kozepte, dee ifiitesimale Prozesse zu Grude liege. Die geaue Beschreibug solcher Prozesse erfordert

Mehr

Modulabschlussprüfung Analysis Musterlösung

Modulabschlussprüfung Analysis Musterlösung Bergische Uiversität Wuppertal Fachbereich C Mathematik ud Naturwisseschafte Prof. Dr. N. Shcherbia SoSe 204 Modulabschlussprüfug Aalysis 2.07.204 Musterlösug. Utersuche Sie folgede Reihe auf Kovergez

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst für Iformatik Modellierug ud Verifikatio vo Software Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Lösug - Übug 3 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80

KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80 KAPITEL 3 Zahlereihe 3. Geometrische Reihe......................... 7 3.2 Kovergezkriterie......................... 72 3.3 Absolut kovergete Reihe.................... 80 Lerziele 3 Eigeschafte der geometrische

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:...

Probeklausur zur Analysis I WS 11/12 Prof. Dr. G. Wang Dr. A. Magni. Beginn: 8:15 Uhr. Name:...Vorname:... Matr.Nr.:...Studiengang:... Probeklausur zur Aalysis I WS / Prof. Dr. G. Wag 3.. Dr. A. Magi Begi: 8:5 Uhr Ede: Name:..........................Vorame:............................ Matr.Nr.:........................Studiegag:.........................

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Lösungen zur Präsenzübung 6

Lösungen zur Präsenzübung 6 Lösuge zur Präsezübug 6 Mirko Getzi Uiversität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keie Gewähr auf eie vollstädige Richtigkeit der Lösuge zu de Übugsaufgabe. Das Dokumet hat jedoch

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

3. Anwendungen der Differentialrechnung

3. Anwendungen der Differentialrechnung Talorsche Formel ud Mittelwertsatz 4 Aweduge der Differetialrechug Talorsche Formel ud Mittelwertsatz Die Gleichug der Tagete = f ( ( a die Kurve = f( im Pukt (, liefert eie grobe Näherug für die Fuktio

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 0.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie l x 50

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewadte Mathematik ud Programmierug Eiführug i das Kozept der objektorietierte Aweduge zu wisseschaftliche Reches mit C++ ud Matlab SS03 Orgaisatorisches Dozete Gruppe: Ago (.50), Ludger Buchma(.50) Webseite:

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 08.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie x l x

Mehr

Anhang A: Die Gamma-Funktion

Anhang A: Die Gamma-Funktion O. Forster: Zetafuktio ud Riemasche Vermutug Ahag A: Die Gamma-Fuktio A.. Defiitio. Die Gamma-Fuktio ist für eie komplee Variable z mit Rez > durch das Euler-Itegral Γz := t z e t defiiert. Da mit := Rez

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2017

HM I Tutorium 2. Lucas Kunz. 3. November 2017 HM I Tutorium 2 Lucas Kuz 3. November 2017 Ihaltsverzeichis 1 Theorie 2 1.1 Reelle Zahle.................................. 2 1.2 Itervalle..................................... 2 1.3 Beträge.....................................

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr