Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3"

Transkript

1 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design

2 Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können? (Also: mehrere Bits kippen von auf bzw. von auf ) Wie erzeuge ich Codes, bei denen Einfachfehler korrigiert und Zweifachfehler erkannt werden können? Es könnte ein Fehler aufgetreten sein! Welches ist das korrekte Codewort? 2

3 Hamming-Distanz Welche Hamming-Distanz ist erforderlich, um eine geforderte Anzahl von Fehlern erkennen bzw. korrigieren zu können? Satz: Zusammenhang zwischen HD min und Anzahl erkennbarer / korrigierbarer Fehler a.) Sei X {, } n ein Code mit HD min (X) = d Dann sind bis zu (d )-Fehler erkennbar! b.) Sei HD min (X) = d = 2e + Dann sind bis zu e = ((d ) / 2)-Fehler korrigierbar! 3

4 Hamming-Distanz Beweis: Zu a.): Bei bis zu (d ) gleichzeitigen Fehlern ist man sicher, dass kein gültiges Codewort vorliegt, da alle gültigen Codewörter mindestens Hammingdistanz d haben per Definition. Zu b.): Jedes empfangene Codewort CW i mit höchstens e (<=e) Fehlern unterscheidet sich vom gesendeten Codewort CW j an höchstens e Stellen, d.h. von jedem anderen gültigen Codewort CW k X unterscheidet sich CW i an mindestens d - e =(2e + ) e >= 2e + e = e + Binärstellen Also: HD ik >= e +, d.h. das ursprünglich gesendete Codewort CW j ist eindeutig aus dem empfangenen (ggf. fehlerhaften) CW i zuzuordnen! 4

5 Hamming-Distanz Beispiel : X {,} 3 und HD min (X)=3 x 2 x Korrektur 2-Fehler erkennen. Fehler 2. Fehler Erkennungsgrenze 2. Fehler. Fehler oder -Fehler korrigieren Korrekturgrenze Erkennungsgrenze Korrektur Fehler Fehler Achtung: Die beiden Möglichkeiten sind alternativ! 5

6 Hamming-Distanz Beispiel 2: HD min (X)=6 Variante I: 5-Fehler erkennen Erkennungsgrenze.Fehler 2.Fehler 3.Fehler 4.Fehler 5.Fehler Erkennungsgrenze 5.Fehler 4.Fehler 3.Fehler 2.Fehler.Fehler Variante II: -Fehler korrigieren und bis zu 4-Fehler erkennen Korrektur Erkennungsgrenze.Fehler 2.Fehler 3.Fehler 4.Fehler 4.Fehler 3.Fehler 2.Fehler.Fehler Erkennungsgrenze 6 Korrektur

7 Hamming-Distanz Beispiel 2: HD min (X)=6 Variante III: 2-Fehler korrigieren und bis zu 3-Fehler erkennen Korrektur Erkennungsgrenze Korrektur.Fehler 2.Fehler 3.Fehler 3.Fehler 2.Fehler.Fehler Erkennungsgrenze Achtung: die drei Varianten sind alternativ! 7

8 Erhöhung des Hamming-Abstandes Erhöhung der min. Hamming-Distanz durch Paritätsbildung Bsp: Problem: Das Verfahren ist nicht trivial durch weitere Prüfstellen erweiterbar! Bsp: HD = 2 HD = 2 Hier keine Erhöhung des Hamming-Abstandes durch zusätzliche Prüfbits! 8

9 Fehlerkorrektur Wie erzeuge ich Codes X, bei denen Einfachfehler korrigiert und Zweifachfehler erkannt werden können? d.h. HD min (X) = 3 Trick: Generiere Prüfsummen nur auf Teilwörtern. Beispiel: Die 4 Bit Binärzahl X=(x 4,, x 2, x ) soll durch den Prüfvektor Y=(y 3, y 2, y ) -Fehler korrigierbar gemacht werden. X (X,Y) (X',Y') X Kanal Prüfbitgenerator Fehlerkorrektur 9

10 Fehlerkorrektur Überdeckung der Stellen x i durch Prüfbits x y y 2 x 2 x 4 y 3 Jedes Element x i wird durch eine eindeutige Kombination von Prüfbits gesichert. Beispiel: ein Einzelfehler an der Stelle x verändert genau die Prüfbits y und y 2. Einzelfehler von Prüfbits sind auch erkennbar. y = x 4 x 2 x y 2 = x 4 x y 3 = x 4 x 2 XOR ist, wenn ungerade Anzahl an Argumenten den Wert haben y j entspricht Paritätsbit der überprüften Stellen bei gerader Parität

11 Fehlerkorrektur Kanal Prüfbitgenerator Fehlerkorrektur X (X,Y) (X',Y') X x 4 x 2 x = (X,Y) = (, ) Prüfbitgenerator: y = x 4 x 2 x y 2 = x 4 x y 3 = x 4 x 2 x y y 2 x 2 x 4 y 3

12 Fehlerkorrektur -Fehler Kanal Prüfbitgenerator Fehlerkorrektur X (X,Y) (X',Y') X (X,Y) = (, ) (X,Y ) = (, ) y x y 2 x 2 x 4 y 3 Y * ( )= Vergleich: y * 3 y * 2 y * = y 3 y 2 y = Änderung von y * 2 und y * ist Indikator für den Fehler an Stelle x, also X =. 2

13 Konstruktion von Hamming-Codes Zuordnung der Informationsstellen x i zu den Prüfstellen y j Die Stellen x i und y j lassen sich gemeinsam in einem Schema darstellen, das der Binärdarstellung ab dem Wert entspricht ( duale Kennzahlen ). Beispiele: Eintrag (), Eintrag (6) (in der Tabelle von unten gelesen) x 4 (7) (6) x 2 (5) y 3 (4) x (3) y 2 (2) y () () 3

14 Konstruktion von Hamming-Codes Zuordnung der Informationsstellen x i zu den Prüfstellen y j Prüfstellen y j besitzen nur eine einzige in einer Spalte. Alle anderen Spalten stellen (von rechts beginnend) die Stellen x i da. Eine Prüfstelle y j überprüft alle Informationsstellen x i, die in der Zeile, in der y j den Wert besitzt, selbst eine in der Tabelle haben. Beispiel: y 2 überprüft x 4, und x. x 4 x 2 y 3 x y 2 y (7) (6) (5) (4) (3) (2) () 4

15 Hamming-Codes Beispiel: y = x 4 x 2 x y 2 = x 4 x y 3 = x 4 x 2 Codewort x 4 x 2 x y 3 y 2 y Dezimal. CW 2. CW 3. CW 4. CW 5. CW 6. CW 7. CW 8. CW 9. CW. CW. CW 2. CW 3. CW 4. CW 5. CW 6. CW Informationsstellen (m = 4) Prüfstellen (k = 3)

16 Konstruktion von Hamming-Codes Zuordnung der Informationsstellen Erweiterung des Schemas x (5) x (4) x 9 (3) x 8 (2) x 7 () x 6 () x 5 (9) y 4 (8) x 4 (7) (6) x 2 (5) y 3 (4) x (3) y 2 (2) y () () Allgemein: Bei m Informationsstellen x i werden k Prüfstellen y j zur Bildung des Hamming-Codes (HD min =3) benötigt: 2 k - k - m Beispiele: m k

17 Prüfbare und korrigierbare Codes Notwendige Anzahl von Prüfstellen k in Abhängigkeit der Anzahl der Informationsstellen m, um minimale Hamming-Distanz HD min = d zu erhalten k m 7

18 Fehlerkorrektur x x 2 x 4 y = x x 2 x 4 X (X,Y) y 2 = x x 4 (X',Y') X y 3 = x 2 x 4 Kanal XOR ergibt dann wenn eine ungerade Anzahl an Argumenten den Wert haben 8 X Y Prüfbitgenerierung x x 2 x 4 y Prüfbitgenerator Fehlerkorrektur

19 Fehlerkorrektur Kanal Prüfbitgenerator Fehlerkorrektur X (X,Y) (X',Y') X x' x' 2 x' 3 x' 4 Korr. Korr. Korr. Korr. X y* y* 2 y*=y' y*=y' x y x 2 y x x 4 3 x 2 y* 3 y*=y' y 3 y' y' 2 y' 3 Vergleiche berechnetes Prüfbit mit dem Übertragenen 9

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung 60 3 Codierung 3 Codierung... 3.3 Code-Sicherung Oft wählt man absichtlich eine redundante Codierung, so dass sich die Code-Wörter zweier Zeichen (Nutzwörter) durch möglichst viele binäre Stellen von allen

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Fehlerschutz durch Hamming-Codierung

Fehlerschutz durch Hamming-Codierung Versuch.. Grundlagen und Begriffe Wesentliche Eigenschaften der Hamming-Codes für die Anwendung sind: der gleichmäßige Fehlerschutz für alle Stellen des Codewortes und die einfache Bildung des Codewortes

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

(Prüfungs-)Aufgaben zu Schaltnetzen

(Prüfungs-)Aufgaben zu Schaltnetzen (Prüfungs-)Aufgaben zu Schaltnetzen 1) Gegeben sei die binäre Funktion f(a,b,c,d) durch folgende Wertetabelle: a b c d f(a,b,c,d) 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 a) Geben Sie die disjunktive Normalform

Mehr

Datensicherung Richard Eier

Datensicherung Richard Eier Datensicherung Richard Eier Stand vom 25.01.01. Kapitel 5 Bewertung der Sicherungsverfahren 5.3 Entscheidungsbaum für die Fehlerbehandlung 18.01.02 14:46 Inhaltsverzeichnis 5 Bewertung der Sicherungsverfahren

Mehr

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten?

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten? Arbeitsblatt I 1. Sind folgende EAN gültig? a. 3956966784248 b. 3900271934004 2. Berechne händisch die Prüfziffer zu folgender Nummer: 100311409310 Tipp: Du kannst dir die Sache einfacher machen, wenn

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

KNX TP1 Telegramm. KNX Association

KNX TP1 Telegramm. KNX Association KNX TP1 Telegramm Inhaltsverzeichnis 1 TP1 Telegramm allgemein...3 2 TP1 Telegramm Aufbau...3 3 TP1 Telegramm Zeitbedarf...4 4 TP1 Telegramm Quittung...5 5 Kapitel Telegramm: Informativer Anhang...6 5.1

Mehr

Fehlererkennung und Fehlerkorrektur in Codes

Fehlererkennung und Fehlerkorrektur in Codes Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner 1 Informationsdarstellung im Rechner Wintersemester 12/13 1 Informationsdarstellung 2 Was muss dargestellt werden? Zeichen (Buchstaben, Zahlen, Interpunktionszeichen, Steuerzeichen, grafische Symbole,

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I Von Strichcode bis ASCII 9 Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I von Anita Dorfmayr, Wien An Hand der einfachen Codes EAN Strichcode und ISBN können schon in der Sekundarstufe

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes*

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Andrea Kraft andreakraft@gmx.at Elisabeth Pilgerstorfer elisabeth_pilg@hotmail.com Johannes Kepler Universität Linz

Mehr

m.e.g. GmbH Zeiterfassung smart time plus - Basisschulung Teil I Inhalt

m.e.g. GmbH Zeiterfassung smart time plus - Basisschulung Teil I Inhalt m.e.g. GmbH Zeiterfassung smart time plus - Basisschulung Teil I Inhalt 1. Mitarbeiter am Terminal aktivieren 2. Mitarbeiterstammsätze verwalten 3. Urlaubskonto verwalten 4. Stundenkonten korrigieren 5.

Mehr

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes:

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes: Codes () Beispiele für die Bedeutung eines n-bit-wortes: Befehl (instruction) Zahl (number) Zeichen (character) Bildelement (pixel) Vorlesung Rechnerarchitektur und Rechnertechnik SS 24 Codes (2) ASCII

Mehr

Designziele in Blockchiffren

Designziele in Blockchiffren Designziele in Blockchiffren Konstruiere Verschlüsselungsfunktion die sich wie eine zufällige Funktion verhalten soll. Konfusion: Verschleiern des Zusammenhangs zwischen Klartext und Chiffretext. Diffusion:

Mehr

Fehlerkorrektur in der Datenübertragung

Fehlerkorrektur in der Datenübertragung oder Was machen Irving Reed und Gustave Solomon auf dem Ochsenkopf? Alfred Wassermann Universität Bayreuth 28. November 2008 Hamming- WirlebenineinerInformationsgesellschaft FehlerfreieNachrichtenübertragungistvongrosser

Mehr

Thema: Hamming-Codes. Titelblatt anonymisiert

Thema: Hamming-Codes. Titelblatt anonymisiert Thema: Hamming-Codes Titelblatt anonymisiert Hamming-Codes.Einführung in die Kodierungstheorie... 3. Grundlegendes über Codewörter... 3. Matrizen... 4.3 Die maßgebliche Stelle... 5.Grundlegende Ideen...5

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Serielle Schnittstellen

Serielle Schnittstellen Serielle Schnittstellen Grundbegriffe Seriell, Parallel Synchron, Asynchron Simplex, Halbduplex, Vollduplex Baudrate, Bitrate Serielle Datenübertragung Senden von Daten Bit für Bit 1 0 1 1 Serielle Datenübertragung

Mehr

Die allerwichtigsten Raid Systeme

Die allerwichtigsten Raid Systeme Die allerwichtigsten Raid Systeme Michael Dienert 4. Mai 2009 Vorbemerkung Dieser Artikel gibt eine knappe Übersicht über die wichtigsten RAID Systeme. Inhaltsverzeichnis 1 Die Abkürzung RAID 2 1.1 Fehlerraten

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

Übung Sensornetze (für 18. November 2004)

Übung Sensornetze (für 18. November 2004) Übung Sensornetze (für 18. November 2004) Vorlesung 1: Motivation Aufgabe 1.1: Abschätzung der Lebenszeit eines Knotens Folgende Daten seien für einen Knoten gegeben: Grundverbrauch im Sleep-Modus: Grundverbrauch

Mehr

- - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2 off 3 3.0 4 2.0 5 off 6 1 8 20.0 9 60 C 7 4.0 10 80 C 1 38 C 12 8 k 13 on 14 30.0 15 10 16 - - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

ARBEITSBLATT ZU SCHALTUNGEN (I)

ARBEITSBLATT ZU SCHALTUNGEN (I) ARBEITSBLATT ZU SCHALTUNGEN (I) Aufgabe 1: An einem Stromnetz sind 4 Verbraucher angeschlossen, die folgende Leistung benötigen: Verbraucher a b c d kw 20 15 10 5 Maximal ist jedoch lediglich eine Leistung

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Ι. Einführung in die Codierungstheorie

Ι. Einführung in die Codierungstheorie 1. Allgemeines Ι. Einführung in die Codierungstheorie Codierung: Sicherung von Daten und Nachrichten gegen zufällige Fehler bei der Übertragung oder Speicherung. Ziel der Codierung: Möglichst viele bei

Mehr

Die Begriffe analog und digital stammen aus der Rechentechnik:

Die Begriffe analog und digital stammen aus der Rechentechnik: November 968 I. Einführung in die Digitalelektronik Grundbegriffe, Wahrheitstabellen: Die Begriffe analog und digital stammen aus der Rechentechnik: Analog-Rechner benötigt zur Darstellung von Zahlenwerten

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

Erratum zur Technischen Dokumentation zur BQS-Spezifikation für QS-Filter-Software 12.0

Erratum zur Technischen Dokumentation zur BQS-Spezifikation für QS-Filter-Software 12.0 Erratum zur Technischen Dokumentation zur BQS-Spezifikation für QS-Filter-Software 12.0 29.10.2009 Version 12.0 gültig ab 01.01.2009 BQS Bundesgeschäftsstelle Qualitätssicherung ggmbh Kanzlerstr. 4 40472

Mehr

Kapitel 3 Kanalcodierung

Kapitel 3 Kanalcodierung Kapitel 3 Kanalcodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen)

Übungsaufgaben für Grundlagen der Informationsverarbeitung (mit Lösungen) Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen). Erläutern Sie die Begriffe Bit, Byte und Wort bezogen auf einen 6 Bit Digitalrechner. Bit: Ein Bit ist die kleinste, atomare,

Mehr

Kurzanleitung. Toolbox. T_xls_Import

Kurzanleitung. Toolbox. T_xls_Import Kurzanleitung Toolbox T_xls_Import März 2007 UP GmbH Anleitung_T_xls_Import_1-0-5.doc Seite 1 Toolbox T_xls_Import Inhaltsverzeichnis Einleitung...2 Software Installation...2 Software Starten...3 Das Excel-Format...4

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

Stichpunktezettel fürs Tutorium

Stichpunktezettel fürs Tutorium Stichpunktezettel fürs Tutorium Moritz und Dorian 11. November 009 1 Kleiner Fermat Behauptung. Seien a, b N relativ prim und b eine Primzahl. Dann ist a b 1 = 1. Beweis. Wir definieren die Funktion f

Mehr

Information und Codierung

Information und Codierung Richard W. Hamming Information und Codierung Technische Universität Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK Invantar-Nr.: Sachgebiete:. Standort: VCH Inhalt Vorwort zur 1. Auflage der Originalausgabe

Mehr

Fehler-korrigierende Codes

Fehler-korrigierende Codes Fehler-korrigierende Codes Prof. Dr. Thomas Risse Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB 8. April 2013 Nummerierung der Kapitel und Abschnitte in [15] sind beibehalten,

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Kapitel 5. Kapitel 5 Fehlererkennende Codes

Kapitel 5. Kapitel 5 Fehlererkennende Codes Fehlererkennende Codes Inhalt 5.1 5.1 Grundlagen: Was Was sind sind Vehler? 5.2 5.2 Vertuaschungsfehler 5.3 5.3 Der Der ISBN-Code 3-406-45404-6 5.4 5.4 Der Der EAN-Code ( Strichcode ) Seite 2 5.1 Grundlagen:

Mehr

Anleitung SEPA Umstellung

Anleitung SEPA Umstellung Anleitung SEPA Umstellung Finanzsoftware VR NetWorld 1 Konvertierung von Aufträgen aus dem internen Datenbestand 1.1 Überweisungen 1.2 Lastschriften 2 Konvertierung von Aufträgen aus DTA-Dateien 2.1 Überweisungen

Mehr

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass f O g und auch g O f. Wähle zum Beispiel und G. Zachmann Informatik

Mehr

P (x i ) log 2 = P (x. i ) i=1. I(x i ) 2 = log 1. bit H max (X) = log 2 MX = log 2 2 = 1. Symbol folgt für die Redundanz. 0.9 = 0.

P (x i ) log 2 = P (x. i ) i=1. I(x i ) 2 = log 1. bit H max (X) = log 2 MX = log 2 2 = 1. Symbol folgt für die Redundanz. 0.9 = 0. 7. Diskretes Kanalmodell I 7. a Aussagen über das digitale Übertragungsverfahren Bis auf die bereitzustellende Übertragungsrate [vgl. c)] sind keine Aussagen über das digitale Übertragungsverfahren möglich.

Mehr

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit Übung 1 Achtung: ld(x) = Logarithmus dualis: ld(x) = log(x)/log(2) = ln(x)/ln(2)! Aufgabe 1 Frage: Wie gross ist der Informationsgehalt einer zufällig aus einem Stapel von 52 Bridgekarten gezogenen Spielkarte?

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Betriebssysteme K_Kap11C: Diskquota, Raid

Betriebssysteme K_Kap11C: Diskquota, Raid Betriebssysteme K_Kap11C: Diskquota, Raid 1 Diskquota Mehrbenutzer-BS brauchen einen Mechanismus zur Einhaltung der Plattenkontingente (disk quotas) Quota-Tabelle enthält Kontingenteinträge aller Benutzer

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Bedienungsanleitung zum Abrechnungsund Präsenzerfassungs-Tool

Bedienungsanleitung zum Abrechnungsund Präsenzerfassungs-Tool Kanton St.Gallen Bildungsdepartement Amt für Volksschule Bedienungsanleitung zum Abrechnungsund Präsenzerfassungs-Tool Stand 13. Januar 2015 INHALT 1. Überblick 3 2. Erste Schritte mit dem Tool 4 2.1.

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Identifikationssysteme und Automatisierung

Identifikationssysteme und Automatisierung VDI-Buch Identifikationssysteme und Automatisierung Bearbeitet von Michael Hompel, Hubert Büchter, Ulrich Franzke 1. Auflage 2007. Buch. x, 310 S. Hardcover ISBN 978 3 540 75880 8 Format (B x L): 15,5

Mehr

Binär-Codes. Informationen zu Grundlagen digitaler Systeme (GDS) 1 Codes. 2 Binärcodes 2.1 1-Bit-Codes. 2.2 4-Bit-Codes (Tetradencodes)

Binär-Codes. Informationen zu Grundlagen digitaler Systeme (GDS) 1 Codes. 2 Binärcodes 2.1 1-Bit-Codes. 2.2 4-Bit-Codes (Tetradencodes) (GDS) Lothar Müller Beuth Hochschule Berlin Codes Als Code bezeichnet man allgemein die Zuordnung der Zeichen eines Zeichenvorrats zu Werten eines Wertebereichs oder -vorrats. Beispiele für Codes sind

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Die (Un-)Sicherheit von DES

Die (Un-)Sicherheit von DES Die (Un-)Sicherheit von DES Sicherheit von DES: Bester praktischer Angriff ist noch immer die Brute-Force Suche. Die folgende Tabelle gibt eine Übersicht über DES Kryptanalysen. Jahr Projekt Zeit 1997

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Übungen zur Vorlesung Diskrete Strukturen

Übungen zur Vorlesung Diskrete Strukturen Abt. Reine Mathematik SS 06 Blatt 1 Di., 02.05.2006 um 14:15 Uhr vor Beginn der Vorlesung 1. Beweisen Sie: Ist n N mit n > 4 keine Primzahl, so gilt (n 1)! 0 mod n. 2. Berechnen Sie den größten gemeinsamen

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Korrigierte Daten. Stand: 25.04.2016. Fehlermeldungen für Print- und Online-Gemeinschaftsveröffentlichungen. Erster Veröffentlichungstermin

Korrigierte Daten. Stand: 25.04.2016. Fehlermeldungen für Print- und Online-Gemeinschaftsveröffentlichungen. Erster Veröffentlichungstermin Stand: 25.04.2016 Fehlermeldungen für Print- und Online-Gemeinschaftsveröffentlichungen Integrierte Schulden der Gemeinden Bruttoinlandsprodukt, Bruttowertschöpfung in den Ländern der Bundesrepublik Deutschland

Mehr

Dienste der Sicherungsschicht

Dienste der Sicherungsschicht Einleitung Dienste der Sicherungsschicht Unbestätigter, verbindungsloser Dienst Bestätigter, verbindungsloser Dienst Betsätigter, verbindungsorientierter Dienst Einleitung Methoden in der Sicherungsschicht

Mehr

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 13.10.2016 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Codierung Aspekte der Binär-Codierung Binärcode Codetabellen

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Kapitel 3. Codierung von Text (ASCII-Code, Unicode)

Kapitel 3. Codierung von Text (ASCII-Code, Unicode) Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0

Mehr

9. Elektronische Logiksysteme ohne Rückführung, kombinatorische Schaltungen

9. Elektronische Logiksysteme ohne Rückführung, kombinatorische Schaltungen Fortgeschrittenenpraktikum I Universität Rostock - Physikalisches Institut 9. Elektronische Logiksysteme ohne Rückführung, kombinatorische Schaltungen Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski

Mehr

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes Inhalt: 1.1 Einführung 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes 1.1 Einführung In In der der Codierungstheorie unterscheidet man man Quellcodierung und und Kanalcodierung.

Mehr

NAME_TO_CODES("PETER") = [80,69,84,69,82]

NAME_TO_CODES(PETER) = [80,69,84,69,82] 146 5 Codierungstheorie Was haben genetischer Code, Pincode, Barcode, EAN-Code, ASCII-Code und die Hieroglyphen gemeinsam? Sie alle dienen dazu, Informationen kurz und möglichst eindeutig weiterzugeben.

Mehr

Wählen Sie eine Menüoption, um weitere Informationen zu erhalten:

Wählen Sie eine Menüoption, um weitere Informationen zu erhalten: Verwenden Sie das, um Einstellungen für Druckaufträge zu ändern, die über die serielle Schnittstelle an den Drucker gesendet werden (entweder Standard Seriell oder Seriell Option ). Wählen Sie eine

Mehr

EIB-Telegrammaufbau. in der Praxis anderer Signalverlauf durch Leitungskapazität (max.200nf)

EIB-Telegrammaufbau. in der Praxis anderer Signalverlauf durch Leitungskapazität (max.200nf) EIB-Telegrammaufbau 1. Spannung und Signale - jede Linie hat eigene Spannungsversorgung kein Totalausfall möglich auch Bereichs und Hauptlinien benötigen je eigene Spannungsversorgung - Un = 28V DC - maximale

Mehr