Ruhende Flüssigkeiten (Hydrostatik)

Größe: px
Ab Seite anzeigen:

Download "Ruhende Flüssigkeiten (Hydrostatik)"

Transkript

1 Ruhende lüssigkeiten (Hydostatik) lüssigkeitsshihten sind fei gegeneinande veshiebba. Keine Rükstellkäfte bei Sheung, Tosion; Reibungskäfte möglih. Nu Volumenändeung liefet Rükstellkaft. Unte Duk p efolgt eine Volumenändeung: ΔV V κ p κ : Kompessibilität Ideale lüssigkeit: keine Reibung, keine Obefläheneffekte An de Obeflähe teten keine Tangentialkäfte auf. Die lüssigkeit hat eine Masse (Dihte); daduh Gewihtskäfte. An Wänden von Behälten teten keine Tangentialkäfte, abe Nomalkäfte auf. 71

2 Vesuh: Z mω N G mg G mg α N G + Z Ruhende Behälte Rotieende Behälte m tanα ω mg dz d z( ) z(0) 0 ω g d ω g Die Obeflähe ist ein Paaboloid. Anwendung: Hestellung von Paabolspiegeln 7

3 Kaft auf ein lüssigkeitselement: lüssigkeitselement: d V dx dy dz Die Kaft auf die linke Seite ist: x p dy dz z y Die Kaft auf die ehte Seite: x p p + dx dy dz x Summe beide Käfte: x p dx dy dz x Analog fü y und z-komponente (estmal ohne Shwekaft) x p x p p,, dv gad y z p dv De Duk ist eine skalae Göße! 73

4 Die lüssigkeit uht, wenn Gesamtkaft Null Es folgt gad p 0 (homogene Dihte) De Duk an alle Seitenflähen ist gleih. In eine shweelosen, uhenden lüssigkeit ist de Duk übeall gleih. Bei Duk p teten Käfte auf alle Gefäßwände auf. 1 3 p A1 p A p A Kompensationskäfte halten die Shiebe in Ruhe p Anwendung: Hydaulishe Pessen Pinzip: Hebel, Übesetzung 74

5 Kaft auf ein lüssigkeitselement mit Dihte ρ: Gesamtkaft auf das uhende Element kompensiet seine Gewihtskaft ( 0,0, g ρ dv ) gad p dv 0 g sei positiv Es folgt fü die z-komponente p ρ g z h z Integation liefet: 0 h z p dz z p( h) p( z) h z ρ g dz ρ g ( h z) p ( z) ρ g ( h z) + p( h) De Duk nimmt linea mit de Tiefe zu. E wikt auh auf die Seitenwände. 75

6 Hydodynamishes Paadoxon: Ein dünnes Steigöhhen ehöht den Duk in einem goßen Tank. Es ezeugt goße Käfte auf goße Außenflähen. Man kann abe niht viel Abeit damit leisten, da de Wassespiegel bei Veshiebung shnell sinkt. De Duk auf die Bodenflähe ist in beiden Behälten gleih 3 Die Kaft auf die Bodenflähe ist bei dem ehten Behälte göße. Die Kaft auf eine Waage ist abe bei beiden Behälten gleih! Gewihtskaft lüssigkeit Gesamtkaft auf alle Behältewände. 1 76

7 Auftieb De Duk auf linke/ehte und vodee/hintee Seite ist jeweils gleih (Käftegleihgewiht). De Duk auf obee Seite ist kleine als auf A die untee Seite. Dukdiffeenz: Δp ρl g H H ρ K Daduh Kaft nah oben: ρ g H A ρ l l gv (neg. Gewihtskaft de vedängten lüssigkeit) Dem entgegen wikt die Gewihtskaft des Köpes (nah unten): G ρ l G mg ρ K V g De esultieende Auftieb ist (nah oben): A ( ρl ρk ) V g 77

8 Obeflähen eale lüssigkeiten Beim Kondensieen eine lüssigkeit wid Enegie fei (Kondensationswäme) weil die Atome bzw. Moleküle sih anziehen. An de Obeflähe fehlen Nahbaatome. Daduh wid beim Hinzufügen eines Obeflähenatoms wenige Enegie abgegeben als beim Hinzufügen eines inneen Atoms. Die vebleibende Enegie po Atom ist also in de Obeflähe göße als im Innen. Vegößeung de Obeflähe kostet Enegie, d.h. es muss Abeit veihtet weden. 78a

9 Die Enegie po lähe heißt spezifishe Obeflähenenegie: ε ΔW Δ A Um die Obeflähe zu vegößen bauht man die Kaft: (Beahte: ilm hat zwei Obeflähen): ΔW Δs ε L Δs ε Δ A Die Zugspannung heißt Obeflähenspannung. σ ε L Δs L 78b

10 Duk in einem Wassetopfen: Obeflähenenegie: E ε A 4π ε Abeit bei Gößenändeung: ΔW Δs p AΔs p ΔV ΔW p 4π Δ Ändeung de Obeflähenenegie: ΔE 4π (( + Δ) )ε ΔE 4π (Δ + Δ{ ) ε Gleihsetzen liefet: ε p klein Bei Seifenblasen: wegen Innen+ Außenflähe doppelte Obeflähenenegie 4ε p 79

11 Obeflähen und Genzflähen: Wie bei Obeflähen titt auh bei Genzflähen eine Enegie auf. Die Bindungskäfte zum andeen Mateial sind göße ode kleine als in de lüssigkeit. Genzflähenspannungen : lüssigkeit-luft σ a Wand-lüssigkeit σ b Wand-Luft σ De Punkt A ist entlang de Wand veshiebba In Ruhe: Käfte-(Spannungs)-Gleihgewiht σ σ os ϕ σ σ 0 a osϕ + b σ σ b σ a Shwekaft venahlässigt A ϕ σ b σ a 80

12 Stabilitätsbetahtung: lüssigkeit-gas: σ > 0 sonst Vedampfen de lüssigkeit lüssigkeit-lüssigkeit: σ > 0 sonst Duhmishung de lüssigkeiten lüssigkeit-estköpe: σ beliebig Wenn Wenn σ > σ b ϕ < 90 σ < σ b ϕ > 90 σ σ > σ b a Wasse-Glas-Luft Queksilbe-Glas-Luft vollständige Benetzung de Wand Kapillawikung: In dünnen Röhen steigt lüssigkeit auf, wenn Käftegleihgewiht: Randkaft Gewihtskaft: R ( σ σ b) σ a osϕ h g ρ g ρ σ > σ b de π ( σ σ b) h g dh G π ρ G 81

Einführung in die Physik I. Mechanik deformierbarer Körper 1

Einführung in die Physik I. Mechanik deformierbarer Körper 1 Einfühung in die Physik I Mechanik defomiebae Köe O. von de Lühe und U. Landgaf Defomationen Defomationen, die das Volumen änden Dehnung Stauchung Defomationen, die das Volumen nicht änden Scheung Dillung

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik

Lehrstuhl für Fluiddynamik und Strömungstechnik Lehstuhl fü Fluiddynamik und Stömungstechnik Pof. D.-Ing. W. Fank Lösungen zu dem Aufgabenblatt Aufgabe 1 Gegeben: p =,981 ba (Duck fü z = ), T = 83 K (Tempeatu fü z = ), α = 6 1-3 K m -1, m = 9 kg/ kmol

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Magnetostatik. Ströme und Lorentzkraft

Magnetostatik. Ströme und Lorentzkraft Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentzkaft ii. Käfte zwishen Leiten iii. Kaft auf eine bewegte Ladungen i.

Mehr

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf.

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. 6.4 Phänomene an Flüssigkeitsgrenzflächen Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. effektive Kräfte nur in Grenzschichten. Oberflächenspannung Energie nötig, um Molekül von innen

Mehr

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf.

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. 6.4 Phänomene an Flüssigkeitsgrenzflächen Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. effektive Kräfte nur in Grenzschichten. Oberflächenspannung Energie nötig, um Molekül von innen

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

4.3 Magnetostatik Beobachtungen

4.3 Magnetostatik Beobachtungen 4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

8 Strömende Flüssigkeiten und Gase

8 Strömende Flüssigkeiten und Gase 8 Stömende Flüssigkeiten und Gase Gleiche Physik fü beide Phasen abe ρ fl >> ρ g, κ fl

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Kapitel 6 Reale feste und flü ssiige Körper 1

Kapitel 6 Reale feste und flü ssiige Körper 1 Kapitel 6 Reale festeund flüssige Köpe 1 Reale Köpe Mateie ist aufgebaut aus Atomken und Elektonen-Hülle Velauf von potentielle Enegie E p () p und Kaft F() zwischen zwei Atomen als Funktion des Kenabstands

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden:

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden: 6 ämeübetagung Bei de ämeübetagung kann man dei Tanspotvogänge voneinande untescheiden: ämeleitung ämeübegang / onvektion ämestahlung De ämetanspot duch Leitung ode onvektion benötigt einen stofflichen

Mehr

Vordiplom MT/BT Mechanik/Physik WS 2004/2005

Vordiplom MT/BT Mechanik/Physik WS 2004/2005 Vodiplo MT/BT Mechanik/Phsik WS 4/5 ufgabe a) Ein allgeeines Käftesste besteht aus folgenden Käften: F =79 N α =9 nsatzpunkt: (x,) = (3,7) F =8 N α =3 nsatzpunkt: (x,) = (-,) F 3 = N α 3 = nsatzpunkt:

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M. Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf Einführung in die Physik I Mechanik deformierbarer Körer O. von der Lühe und U. Landgraf Deformationen Deformationen, die das olumen ändern Dehnung Stauchung Deformationen, die das olumen nicht ändern

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

Warum? Elektrizitätslehre. Elektrische Erscheinungen. Logik des Aufbaues des Lehrstoffes der Elektrizitätslehre

Warum? Elektrizitätslehre. Elektrische Erscheinungen. Logik des Aufbaues des Lehrstoffes der Elektrizitätslehre lektizitätslehe aum? lektische scheinungen in lebende Mateie: Ruhepotential, Aktionspotential, KG, MG t lektische Geäte in de äztlichen Paxis: KG, MG, ltaschall, Defibillato, T, NMR, ämetheapie t Logik

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Vordiplom ET Mechanik/Physik WS 2004/2005

Vordiplom ET Mechanik/Physik WS 2004/2005 Vodiplom ET Mechanik/Phsik WS 4/5 ufgabe a) Ein allgemeines Käftesstem besteht aus folgenden Käften: F =5 N α =4 nsatzpunkt: (x,) = (3,7) F =38 N α =9 nsatzpunkt: (x,) = (-,) F 3 = N α 3 = nsatzpunkt:

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Physik II im Studiengang Elektrotechnik

Physik II im Studiengang Elektrotechnik Physik II im Studiengang Elektotehnik - Wellen - Pof. D. Ulih Hahn SS 008 Eigenshaften von Wellen Kette gekoppelte Oszillatoen: Auslenkung eines Oszillatos Nahban folgen mit zeitlihe Vezögeung Anegungszentum

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

G = m g. W = F h = F h cos( (F;h)) = G h = m g h. Cusanus-Gymnasium Wittlich. Potentielle Energie im Gravitationsfeld. h=0. Gravitationsbeschleunigung

G = m g. W = F h = F h cos( (F;h)) = G h = m g h. Cusanus-Gymnasium Wittlich. Potentielle Energie im Gravitationsfeld. h=0. Gravitationsbeschleunigung CusanusGymnasium Wittlich hysik Elektostatik otentielle Enegie im Gavitationsfeld F h m G h= W = F h = F h cos( (F;h)) h = G h = m g h G = m g G g = m Gavitationsbeschleunigung ode Gavitationsfeldstäke

Mehr

Diplomvorprüfung Technische Mechanik III

Diplomvorprüfung Technische Mechanik III INSTITUT FÜR MECHANIK Tehnishe Univesität Dastadt Diplovopüfung Tehnishe Mehanik III Pof. D. Goss Pof. P. Hagedon Pof. W. Hauge a 14. Mä 2002 Pof. R. Maket (BI) (Nae) (Vonae) (Mat.-N.) (Studiengang) Die

Mehr

Erhaltung der Masse. B = mb, für b = 1. sys. Die Masse des Systems bleibt bei Bewegung durch das Strömungsfeld konstant.

Erhaltung der Masse. B = mb, für b = 1. sys. Die Masse des Systems bleibt bei Bewegung durch das Strömungsfeld konstant. Ehaltng de Masse Die Masse des Sstems bleibt bei Beegng dch das Stömngsfeld konstant B mb, fü b dm ss dv tt KV KF n da 0 integale Fom diffeentielle Fom übe Gaßschen Sat ode am Element Zeitliche lokale

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

T = ( ) oder Druck ( )

T = ( ) oder Druck ( ) A Vektoanalsis efinieen bzw beehnen Sie folgende Gößen und ekläen Sie die Bedeutung: Skalafeld Funktionen on meheen Veändelihen im Raum f f (,,z), bei denen jedem Punkt ein Skala, also eine ungeihtete

Mehr

Standardbeispiele der Quantenmechanik

Standardbeispiele der Quantenmechanik Standadbeispiele de Quantenmechanik Visualisieung von Zuständen im Potenzialkasten hamonischen Oszillato Standadbeispiele de Quantenmechanik Folie 1 Gundlagen de Quantenmechanik De Zustand eines physikalischen

Mehr

Dynamik. 4.Vorlesung EP

Dynamik. 4.Vorlesung EP 4.Volesung EP I) Mechanik. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft Vesuche: Raketenvesuche: Impulsehaltung

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Inhalt

Inhalt Inhalt 1.. 3. 4. 5. 6. 7. 8. Kaft und Impuls Ehaltung des Impulses Das zweite und ditte Newtonsche Gesetz Beziehung zwischen Kaft und Beschleunigung Reibung Dynamik, gekümmte Bewegung Dehimpuls, Dehmoment

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Formelsammlung Felder und Wellen WS11/12

Formelsammlung Felder und Wellen WS11/12 . Otsvektoen Fosalung Fde und Wlen WS/ Katesische Koodinaten Zlindekoodinaten Kugkoodinaten = cos = sincos = sin = sinsin = = cos + = = sin actan = = = = cos + + = + = + actan = actan = actan = =. Koponenten

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Semina4 PHYS7357 Eletizitätslehe und Magnetismus (Physi, Witschaftsphysi, Physi Lehamt, Nebenfach Physi) Othma Mati, (othma.mati@uni-ulm.de) 3. 5. 9 Aufgaben. Das eletostatische Potential

Mehr

( ) ( ) ( ) ( ) 4. Arbeit, Leistung, Energie. W = F dr = F cos F dr dr. F = 0 ; F = 0 ; F = mg. W = F dr = mg dz. W mg z mg z z.

( ) ( ) ( ) ( ) 4. Arbeit, Leistung, Energie. W = F dr = F cos F dr dr. F = 0 ; F = 0 ; F = mg. W = F dr = mg dz. W mg z mg z z. 4. Abeit, Leistung, negie 4.. Abeit W = F d = F cos F d d Abeit de Schweaft F = ; F = ; F = g x y z z W = F d = g dz z z == = z > z W < ; z < z W > W g z g z z z Die Abeit W ist nu vo Anfangs- und ndpunt

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

2 B. Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II. Techn. Mechanik & Fahrzeugdynamik

2 B. Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik II. Techn. Mechanik & Fahrzeugdynamik Tehn. ehanik & Fahzeugdynamik T II Pof. D.-Ing. habil. Hon. Pof. (NUST) D. estle 4. Septembe 015 Püfungsklausu Tehnishe ehanik II Aufgabe 1 (9 Punkte) Die Kolben in einem oto weden übe eine Kubelwelle

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I 16. 03. 2016 1. Aufgabe (9 Punkte) Die Obefläche eines Teleskopspiegels soll duch Quecksilbe ealisiet weden. Das Quecksilbe befindet sich in

Mehr

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh.

Zur Erinnerung. = grade pot. 1 m F G = Stichworte aus der 5. Vorlesung: Konservatives Kraftfeld. Kraftfeld: Nullpunkt frei wählbar (abh. Zu inneung Stichwote aus de 5. Volesung: () Kaftfeld: Konsevatives Kaftfeld W d 0 Potentielle negie: Potential: eldstäke: Nullpunkt fei wählba (abh. von Masse m) bezogen auf Pobemasse (unabh. von Masse

Mehr

Zur Erinnerung Stichworte aus der 12. Vorlesung:

Zur Erinnerung Stichworte aus der 12. Vorlesung: Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Experimentalphysik I SS 2008 13-1 Hydrostatik

Mehr

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion 19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker. 4. Vorlesung Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch

PN 2 Einführung in die Experimentalphysik für Chemiker. 4. Vorlesung Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch PN 2 Einfühung in die alphysik fü Chemike 4. Volesung 9.5.08 Evelyn Plötz, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik Ludwig-Maximilians-Univesität München

Mehr

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2

N = kg m ] sec 2. F = γ m1m 2 r ˆr = r 1 r 2 r 1 r 2 Kpitel 5 Gvittionstheoie Ausgebeitet von G. Knup und H. Wlitzki 5. Gvittionskft - Gvittionsfeld Die Gundidee zu Gvittionstheoie stmmt von Newton (643-727): Die Kft, die einen Apfel fllen lässt, ist die

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

3.5 Potential an der Zellmembran eines Neurons

3.5 Potential an der Zellmembran eines Neurons VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 3.5 Potential an de Zellmemban eines Neuons Goldmann Gleichung fü mehee Ionen allgemein E R T F ln n k 1 n k 1 z z k k P k P k m [ X ] + z P[

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Experimentalphysik E1

Experimentalphysik E1 Expeimentalphysik E1 Hyoynamik viskose Flüssigkeiten, hyoynamische Wiestan, Wibel, eynolszahl Alle Infomationen zu Volesung unte : http://www.physik.lmu.e/lehe/volesungen/inex.html 30. Jan. 016 8 Stömene

Mehr

Theoretische Physik III (Elektrodynamik)

Theoretische Physik III (Elektrodynamik) Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. eldmann. Juni 203 Kurzzusammenfassung Vorlesung 3 vom 28.5.203 5. Zeitabhängige elder, Elektromagnetishe Strahlung Bisher: Elektrostatik und Magnetostatik

Mehr

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen,

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen, Kondensatoen & Dielektika Kapazität, Kondensatotypen, Schaltungen, Dielektika 9.6. Sanda Stein Kondensatoen Bauelement, das elektische Ladung speichen kann besteht aus zwei leitenden Köpen, die voneinande

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! hysik 1 / Klausu Ende SS 0 Heift / Kutz Name: Voname: Matikel-N: Unteschift: Fomeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenechne! Heftung nicht lösen! Kein zusätzliches

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

= 0. Wert von C hängt von den Anfangsbedingungen. (abb33.cw2)

= 0. Wert von C hängt von den Anfangsbedingungen. (abb33.cw2) 5. Genzzlen Schwingungen sind uns aus de Mechani beannt. Die Gleichung fü den haonischen Oszillato & = lässt sich in zwei lineae Diffeentialgleichungen. Odnung übefühen. Jacobi-Mati: = & = 0 A = 0 = &

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts (3) O. on de Lühe und U. Landgaf Beispiele zu Ipuls- und Enegiesatz - Rakete Eine Rakete it de Masse fliegt it de Geschindigkeit i leeen, käftefeien Rau

Mehr

TEIL 1 Untersuchung des Grundbereichs 2)

TEIL 1 Untersuchung des Grundbereichs 2) Matin ock, Düppenweilestaße 6, 66763 Dillingen / Saa lementa-physikalische Stuktu Wassestoff-Molek Molekülionlion ( + ) ) kläung ung des Velaufs de Gesamtenegie (( Ges fü den Σ g Zustand des -Molekülsls

Mehr

Kap. 8 Thermodynamik

Kap. 8 Thermodynamik Kap. 8 Themodynamik 1. Tempeatu und Wämeenegie 2. Wämeleitung und Diffusion 3. Hauptsätze de Themodynamik 4. Reale Gase M. zu Nedden / S. Kowaik Volesung 23 Mechanik und Themodynamik (Physik I) Seite 1

Mehr

ρ ε 1 d div r r r d d d r r d d Elektrizität und Magnetismus

ρ ε 1 d div r r r d d d r r d d Elektrizität und Magnetismus ektizität und Magnetismus ektizität: Mit eektischen Ladungen und eektischen Stömen veknüpfte ffekte und Phänomene. Maxwe ekannte: ektische und magnetische scheinungen hängen zusammen. Theoie des ektomagnetismus:

Mehr

6. Mechanik deformierbarer Körper

6. Mechanik deformierbarer Körper 6. Mechanik defomiebae Köpe Mateie ist aus tomen aufgebaut, die duch Bindungen zusammengehaten weden. Bei höheen Tempeatuen füht die themische Enegie de tome zum teiweisen ode vöigem Buch de Bindungen.

Mehr

Lösungen zum Übungsblatt 5 zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch

Lösungen zum Übungsblatt 5 zur Vorlesung Physikalische Chemie WS 2009/2010 Prof. Dr. Bartsch 1 Lösungen zum Übungsblatt 5 zu Volesung hysikalische Chemie WS 29/21 o. D. Batsch 5.1 L (5 unkte Geben Sie die Deinition de Enthalpie an und zeigen Sie, dass die bei konstantem Duck zwischen System und

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II xpeimentalphysik II (Kip SS 9) Inhalt e Volesung xpeimentalphysik II Teil : lektiitätslehe, lektoynamik. lektische Laung un elektische Fele. Kapaität 3. lektische Stom 4. Magnetostatik 5. lektoynamik 6.

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Formelsammlung zur Vorlesung. Baustatik 1. Version 2004/2005. korrigiert Kapitel 2: Einteilung und Aufbau von Stabtragwerken

Formelsammlung zur Vorlesung. Baustatik 1. Version 2004/2005. korrigiert Kapitel 2: Einteilung und Aufbau von Stabtragwerken 1 Fomesammung zu Voesung Baustatik 1 Vesion 2004/2005 koigiet 2011 Kapite 2: Einteiung und Aufbau von Stabtagweken Abzähkiteium fü den Gad de statischen Unbestimmtheit eines Stabtagweks: n =(a + e s) (k

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

6. Relativistische Mechanik

6. Relativistische Mechanik 6. Relativistishe ehanik 6.. Galilei-Tansfomation und Inetialsysteme 6.. Die Einsteinshen Postulate 6.3. Die oentztansfomation 6.4. Raum-Zeit-Diagamme 6.5. Impuls und Enegie 6.6. Beispiele atin zu Nedden

Mehr