6 Symmetrische Matrizen und quadratische Formen

Größe: px
Ab Seite anzeigen:

Download "6 Symmetrische Matrizen und quadratische Formen"

Transkript

1 Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn sie gleich ihrer Transponierten ist, wenn also A t = A gilt. Symmetrische Matrizen sind eine besonders häufig auftretende spezielle Sorte von Matrizen, die zugleich einige besonders günstige Eigenschaften haben. Ist A symmetrisch, so haben wir für alle Vektoren x, y R n stets (Ax y = x (A t y = x (Ay. Diese simple Beobachtung ergibt die folgende wichtige Tatsache: Eigenvektoren zu verschiedenen Eigenwerten einer symmetrischen Matrix stehen senkrecht aufeinander. Seien nämlich A eine symmetrische n n Matrix, λ, µ zwei verschiedene Eigenwerte von A und v E λ (A, w E µ (A zugehörige Eigenvektoren. Dann folgt λv w = (λv w = (Av w = v (Aw = v (µw = µv w = (λ µv w =, also v w = wegen λ µ. Tatsächlich gilt noch viel mehr: Satz 6. (Diagonalisierbarkeit symmetrischer Matrizen Sei A eine symmetrische n n Matrix. Dann gibt es eine aus Eigenvektoren von A bestehende Orthonormalbasis des R n. Insbesondere ist A diagonalisierbar, alle Eigenwerte von A sind reell und die Eigenräume zu verschiedenen Eigenwerten von A stehen senkrecht aufeinander. Weiter existiert eine orthogonale Matrix S mit S t AS = λ... λ n, wobei λ,..., λ n die mit Vielfachheit aufgezählten Eigenwerte von A sind. Beweis: Dass A diagonalisierbar mit reellen Eigenwerten ist wollen wir hier glauben. Die Aussage über die Orthogonalität der Eigenräume haben wir oben eingesehen. Ist nun u,..., u n eine aus Eigenvektoren von A bestehende Orthonormalbasis des R n, so haben wir S AS = λ... λ n, 9-

2 Mathematik für Ingenieure II, SS 9 Freitag 9.6 wobei S die Transformationsmatrix von der Basis u,..., u n zur kanonischen Basis des R n ist. Nach Satz ist S eine orthogonale Matrix und somit gilt S = S t. Es gibt nicht nur eine aus Eigenvektoren bestehende Orthonormalbasis des R n, wir können auch eine berechnen. Die Berechnung einer solchen Orthonormalbasis des R n ist mit uns schon bekannten Rechenverfahren einfach möglich. Die Rechnung läuft in den folgenden Schritten ab: Gegeben: Eine symmetrische n n Matrix A. Gesucht: Eine aus Eigenvektoren von A bestehende Orthonormalbasis des R n, beziehungsweise eine orthogonale Matrix S so, dass S t AS eine Diagonalmatrix ist. Diese beiden Aufgaben sind gleichwertig, die Spalten der Matrix S bilden die gesuchte Orthonormalbasis und umgekehrt. Verfahren: Die Rechnung läuft in den folgenden Schritten ab:. Berechne die Eigenwerte λ,..., λ s von A. Diese sind alle reell.. Für jeden Eigenwert λ = λ i ( i s löse das homogene lineare Gleichungssystem (λ Ax = und bestimme eine Basis v i,..., v ini seines Lösungsraums. Anders gesagt soll eine Basis des Eigenraums E λ (A berechnet werden. Dies kann man beispielsweise wie üblich durch Gauß Elimination tun.. Wende auf jede der in Schritt ( gefundenen Basen v i,..., v ini ( i n der jeweiligen Eigenräume das Gram Schmidtsche Orthonormalisierungsverfahren an, und erhalte eine Orthonormalbasis u i,..., u ini des Eigenraums E λi (A. 4. Setze die in Schritt ( für λ = λ i, i =,..., s gefundenen Basen zu einer Orthonormalbasis u,..., u n,..., u s,..., u srs des R n zusammen. Dies ist die gesuchte Orthonormalbasis u,..., u n. Die Matrix S deren Spalten die Vektoren u,..., u n sind ist orthogonal und S t AS ist eine Diagonalmatrix. Da dieses Verfahren sich nur aus uns schon bekannten Einzelschritten zusammensetzt, wollen wir hier nur ein Beispiel rechnen, nämlich die symmetrische Matrix A =

3 Mathematik für Ingenieure II, SS 9 Freitag 9.6 Wir suchen eine aus Eigenvektoren von A bestehende Orthonormalbasis des R 4. Zur Bestimmung der Eigenwerte berechnen wir das charakteristische Polynom x 9 χ A (x = x 9 x 9 x 9 x 9 x 9 x 8 x 8 = x 8 x 8 x 8 x 8 = x 8 x 8 x 8 x 8 x 9 x 9 x 9 x 8 x 8 x 9 x 8 x 8 5 x = (x 8 = (x 8 x 9 x 9 = (x 8 (x 9 x 9 + x 8 x 8 5 x = (x 8 ((x 9 x 8 5 x = (x 8 ((x x = (x 8 (x x + 96 = (x 8 (x. Wir haben also zwei Eigenwerte λ = 8 und λ =. Beginnen wir mit λ =. Die Gauß Elimination läuft dann als Die Lösungsmenge ist also gegeben durch und somit u = v, y = v, x = y + u + v = v E (A = Zur Orthonormalisierung muss dieser Basisvektor nur normiert werden, also u 4 :=. 9-

4 Mathematik für Ingenieure II, SS 9 Freitag 9.6 Dass wir nur einen Eigenvektor zu normieren haben, ist glücklicherweise der Normalfall, wir bereits mehrfach erwähnt hat eine zufällig gewählte Matrix in der Regel lauter verschiedene Eigenwerte, die damit alle einen eindimensionalen Eigenraum haben. Für λ = 8 ergibt sich für den Eigenraum dagegen = x = y + u v. Eine Basis des Eigenraums E 8 (A ist gegeben durch v =, v =, v = Hier sind wir also im untypischen Fall und müssen noch etwas weiter rechnen. Auf die Vektoren v, v, v müssen wir nun die Gram Schmidt Orthonormalisierung anwenden. Diesmal suchen wir dabei keine Orthonormalbasis des gesamten R 4 sondern nur eine Orthormalbasis des von v, v, v aufgespannten Teilraums. Wir rechnen w := v =, w w =, w = v w = w = v + w + w =., w w =,, w w = 4 und normieren u =, u = w = 6 6 6, u = w =. Damit haben wir die gesuchte Orthonormalbasis des R 4 berechnet. Mit der orthogonalen Matrix 6 8 S = 6 6 ist also St AS =

5 Mathematik für Ingenieure II, SS 9 Freitag Quadratische Funktionen und die Hauptachsentransformation Wie schon angekündigt wollen wir die bisher vorgestellte Theorie nun zur Untersuchung quadratischer Funktionen in mehreren Variablen nutzen, also Funktionen wie beispielsweise f(x, y = x + y xy x y +. Allgemein ist eine quadratische Funktion in n Variablen eine Funktion der Form f : R n R; x n a ij x i x j + b i x i + c i,j n i= mit Konstanten a ij, b i, c R ( i, j n. Für n = sieht die allgemeine quadratische Funktionen also ausgeschrieben wie folgt aus a x + a xy + a yx + a y + b x + b y + c x y Für unsere obige Beispielfunktion könnten wir etwa a = a = c =, a = b = b = und a = setzen. Da die definierende Summenformel etwas unhandlich ist, geht man nun zu einer Matrixbeschreibung der quadratischen Funktion f über. Hierzu setzt man A := und hat für jedes x R n i,j n a ij x i x j = a a n..... a n a nn und b := ( n n a ij x i x j = j= i= b. b n n (A t x j x j = (A t x y und n i= b ix i = b x. Die quadratische Funktion f in n Variablen können wir damit in der kompakten Form f(x = (A t x x + b x + c schreiben. Für i, j n mit i j taucht das Produkt x i x j zweimal auf, einmal als a ij x i x j und ein anderes Mal als a ji x j x i = a ji x i x j. Diese beiden Summanden können wir zusammenfassen und als j= a ij x i x j + a ji x j x i = (a ij + a ji x i x j = a ij + a ji 9-5 x i x j + a ij + a ji x j x i 4

6 Mathematik für Ingenieure II, SS 9 Freitag 9.6 schreiben. Diese neuen Koeffizienten (a ij + a ji / sind ssymmetrisch in i und j. Damit können wir immer erreichen, dass die Matrix A symmetrisch ist. In unserer Beispielfunktion werden ( ( A = und b =. Die offizielle Definition einer quadratischen Funktion wird jetzt zu: Definition 6.: Sei n N. Eine quadratische Funktion in n Variablen ist eine Funktion der Form f : R n R; x (Ax x + b x + c wobei A eine symmetrische n n Matrix ist, b R n ein Vektor ist und c R eine reelle Zahl ist. Ist dabei b = und c =, so nennt man f auch eine quadratische Form. Zum besseren Verständnis von f ist es hilfreich sich die Niveaumengen M t := {x R n f(x = t} für verschiedene Werte von t anzuschauen. Für unsere Beispielfunktion f(x, y = x + y xy x y + haben diese Mengen die Form.5 y.5.5 y x.5.5 x Niveaumengen Die Niveaumenge f(x, y = Wie Sie sehen sind die Niveaumengen hier allesamt Ellipsen. Für die Niveaumenge M haben wir auch die beiden Hauptachsen der Ellipse eingezeichnet, d.h. die Achsen auf denen die Ellipse minimalen oder maximalen Abstand von ihrem Schwerpunkt hat. Als Hauptachsentransformation bezeichnet man jetzt die Koordinatentransformation bei der der Nullpunkt des Koordinatensystems in den Schwerpunkt der Ellipse gelegt wird und die beiden Hauptachsen der Ellipse als Koordinatenachsen verwendet werden. Bezüglich eines Koordinatensystem mit Schwerpunkt im Mittelpunkt bei dem die 9-6

7 Mathematik für Ingenieure II, SS 9 Freitag 9.6 beiden Hauptachsen die Koordinatenachsen sind, hat eine Ellipse mit den Halbradiien a, b > die Form b a x a + y b =. Wir suchen also ein Koordinatensystem in dem unsere Niveaumenge M diese Form annimmt. Insbesondere können wir dann auch die beiden Halbradien unserer Ellipse berechnen. Es stellt sich heraus, dass man dann auch für allgemeinere quadratische Funktionen eine Hauptachsentransformation durchführen kann, dass das ganze also im Allgemeinen mit Ellipsen eigentlich nichts zu tun hat. Kommen wir allzu zur Situation f(x = (Ax x + b x + c in n Variablen zurück. Als erstes Ziel wollen wir den Nullpunkt unserer angestrebten Hauptachsentransformation finden. Wir untersuchen dazu erst einmal wie sich das Verschieben des Nullpunkts auf die quadratische Funktion auswirkt. Nehmen wir einmal an wir legen den Nullpunkt in den Punkt u R n. Sei x R n. Denken wir uns x bezüglich des neuen Koordinatenursprungs u, so sind die Koordinaten von x bezüglich des alten Nullpunkts gleich x + u. Setzen wir dies in die quadratische Funktion ein, so wird f(x + u = (A(x + u (x + u + b (x + u + c = (Ax + Au (x + u + b (x + u + c Setzen wir also = (Ax x + (Ax u + (Au x + (Au u + b x + b u + c = (Ax x + (Au + b x + c + (Au u + b u. b := Au + b und c := c + (Au u + b u = f(u, so wird f(x := f(x + u = (Ax x + b x + c. Wie müssen wir u wählen damit f möglichst einfach wird? Hier gibt es zwei mögliche Fälle, die wir gleich durchgehen werden. Fall. Es ist b Bild A. Dann können wir ein u R n mit Au = b = b = Au + b = 9-7

8 Mathematik für Ingenieure II, SS 9 Freitag 9.6 wählen und haben den linearen Anteil eliminiert. Fall. Es ist b / Bild A. Dann zerlegen wir den Vektor b in eine Summe b = b + b mit einem Teil b Bild(A und einem Vektor b der senkrecht auf dem Bild von A steht. Dann wählen wir u R n mit Au = b = b = Au + b = b, und wir haben den linearen Anteil senkrecht zum Bild von A gemacht. Weiter vereinfachen können wir in diesem Fall leider nicht, zumindest nicht durch Wahl des Koordinatenursprungs. Untersuchen wir einmal die Situation in unserem Beispiel f(x, y = x + y xy x y +. Hier ist die Matrix A invertierbar mit A = ( und für den Nullpunkt u erhalten wir u = A b = = A = 4 ( ( ( = Der Vektor u ist also tatsählich genau der Mittelpunkt unserer Ellipse, wie man im obigen Bild der Niveaumenge M tatsächlich sehen kann.. Wegen f(u = wird damit (. f(x = (Ax x beziehungsweise f(x, y = x + y xy. Bei der Transformation auf die Hauptachsen der Ellipse als Koordinatenachsen bleibt der Nullpunkt unverändert. Da der konstante Term keine Rolle spielt, müssen wir also nur noch eine quadratische Form f(x = (Ax x mit einer symmetrischen n n Matrix A betrachten. Nach Satz existiert eine orthogonale n n Matrix S mit λ S t AS =... =: D wobei λ,..., λ n die Eigenwerte von A sind. Diese Matrix existiert nicht nur, sondern wir hatten auch gesehen wie man sie ausrechnen kann. Die Matrix S ist die Transformationsmatrix von einer aus Eigenvektoren von A bestehenden Orthonormalbasis u,..., u n zur kanonischen Basis. In diesen transformierten Koordinaten wird die quadratische Form zu f(x := f(sx = (ASx (Sx = (S t ASx x = (Dx x = λ x + + λ n x n. An dieser Formel sehen wir insbesondere das die geometrische Form der quadratischen Funktion von den Vorzeichen der Eigenwerte der Matrix A bestimmt wird. Nehmen wir einmal das zweidimensionale Beispiel f(x, y = λ x + λ y. λ n 9-8

9 Mathematik für Ingenieure II, SS 9 Freitag x 6 8 y x λ, λ > λ λ < y Sind beide Eigenwerte λ, λ positiv, so haben wir bis auf Skalierungen der x- und y- Achse das Rotationparaboloid f(x, y = x +y. Sind λ, λ beide negativ, so liegt analog ein nach unten geöffnetes Rotationsparaboloid vor. Haben λ und λ verschiedene Vorzeichnen, also λ λ <, so hat unsere Funktion nach Umskalieren und eventuellen Spiegeln an der Diagonalen die Form von f(x, y = x y, ist also eine Sattelfläche. 9-9

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS Freitag 4.6 $Id: quadrat.tex,v.8 /6/4 4:44:39 hk Exp hk $ 6 Symmetrische und hermitesche Matrizen 6. Prä-Hilberträume Wir sind gerade mit der Diskussion der sogenannten Ausgleichsgerade

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS 7 Freitag 3.6 $Id: quadrat.tex,v.3 7/6/3 :8:3 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6. Symmetrische und hermitesche Matrizen Wir kommen jetzt zu den symmetrischen

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Dienstag $Id: jordantex,v 8 9// 4:48:9 hk Exp $ $Id: quadrattex,v 9// 4:49: hk Exp $ Eigenwerte und die Jordansche Normalform Matrixgleichungen und Matrixfunktionen Eine

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.48 2017/06/14 15:16:10 hk Exp $ $Id: jordan.tex,v 1.26 2017/06/16 10:59:58 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Zum Abschluss dieses Kapitels behandeln

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra I, WS 10/11 Ingo Blechschmidt 13. März 2011

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra I, WS 10/11 Ingo Blechschmidt 13. März 2011 Hier eine kurze Erklärung zu der. Als Grundlage diente teilweise eine Beschreibung von Markus Göhl vom Sommersemester 00. Quadriken Definition. Eine Quadrik ist die Nullstellenmenge eines quadratischen

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

6 Metrische Klassifikation der Quadriken

6 Metrische Klassifikation der Quadriken 6 Metrische Klassifikation der Quadriken A Wiederholung von Kap V, 5 Sei A = (a ij ) eine symmetrische n n Matrix. n x 1 q(x) := x t Ax = a ij x i x j, x =. i,j=1 ist dann ein quadratisches Polynom in

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 28 Dienstag 29.5 $Id: vektor.tex,v.46 28/5/29 6:4: hk Exp $ Analytische Geometrie und Grundlagen.6 Bewegungen und Kongruenzbegriffe Am Ende der letzten Sitzung hatten wir bereits

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Musterlösungen zur Linearen Algebra II Hauptklausur

Musterlösungen zur Linearen Algebra II Hauptklausur Musterlösungen zur Linearen Algebra II Hauptklausur Aufgabe. Q ist unitär genau dann, wenn gilt Q Q = I n. Daraus folgt, dass a) und c) richtig sind. Die -Matrix A := (i) zeigt, dass i.a. A A t, d.h. b)

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler. Musterlösung 8. i=1. w 2, w 2 w 2 =

D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler. Musterlösung 8. i=1. w 2, w 2 w 2 = D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler Musterlösung 8 1. Wir konstruieren eine Orthogonalbasis aus der Basis (v 1, v 2, v ) mit dem Gram- Schmidt-Verfahren. Wir wenden die Formel

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

5.4 Hauptachsentransformation

5.4 Hauptachsentransformation . Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems.

Mehr

Kapitel 3 Quadratische Formen und symmetrische Matrizen

Kapitel 3 Quadratische Formen und symmetrische Matrizen Kapitel 3 Quadratische Formen und symmetrische Matrizen 3.1 Skalarprodukte und Normen Das übliche Skalarprodukt für Vektoren aus dem R ist folgendermassen erklärt: ( ) ( ) x1 x v w = := x 1 x +y 1 y. y

Mehr

5 Diagonalisierbarkeit

5 Diagonalisierbarkeit 5 Diagonalisierbarkeit Sei V ein K Vektorraum mit einer Basis B = (v 1,..., v n ) Wiederholung aus 2: Sei f : V V K linear. Stelle f(v j ) für j = 1,..., n dar in der Form a 1j Das n Tupel a j =. a nj

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25. A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name:.......................................

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Motivierendes eispiel Lineare Abbildungen werden durch Matrizen dargestellt: Abbildung : Spiegelung A =. Abbildung A = : Verzerrung. ei der Spiegelung wird ~e auf sich selbst

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Zurück Stand 4.. 6 Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Im Allgemeinen werden Vektoren durch Multiplikation mit einer Matrix gestreckt und um einen bestimmten Winkel gedreht. Es gibt jedoch

Mehr

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i TU Dresden Fakultät Mathematik Institut für Numerische Mathematik Lösung zur Aufgabe (b des Übungsblattes Ermitteln Sie on der folgenden Matrix alle (komplexen Eigenwerte und zu jedem Eigenwert einen zugehörigen

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Kapitel 3 Quadratische Formen und symmetrische Matrizen

Kapitel 3 Quadratische Formen und symmetrische Matrizen Kapitel 3 Quadratische Formen und symmetrische Matrizen 3.1 Skalarprodukte und Normen Das übliche Skalarprodukt für Vektoren aus dem R ist folgendermassen erklärt: ( ) ( ) x1 x v,w =, := x 1 x +y 1 y.

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.2 27/7/5 :59:6 hk Exp $ $Id: orthogonal.tex,v.5 27/7/5 2::22 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6. Quadratische Formen und Hauptachsentransformation In der letzten Sitzung

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra II, WS 11/12 Ingo Blechschmidt 27. Februar 2012

Quadriken. Quadriken und Hauptachsentransformation. Lineare Algebra II, WS 11/12 Ingo Blechschmidt 27. Februar 2012 Hier eine kurze Erklärung zu der. Als Grundlage diente größtenteils eine Beschreibung von Markus Göhl vom Sommersemester 00. Quadriken Definition. Eine Quadrik ist die Nullstellenmenge eines quadratischen

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 0 Tom Ilmanen Musterlösung 2. Falls b := (v,,v n ) eine Orthonormalbasis von V ist, dann lassen sich die Komponenten von einem Vektor v = n i= t i v i bezüglich

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $ Mathematische Probleme, SS 25 Donnerstag 8.6 $Id: quadratisch.tex,v. 25/6/8 5::2 hk Exp $ 4 Kegelschnitte Am Ende der letzten Sitzung haben wir mit der Diskussion der Kegelschnitte begonnen. Gegeben sind

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

10. Übung zur Linearen Algebra II -

10. Übung zur Linearen Algebra II - 0. Übung zur Linearen Algebra II - Lösungen Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 7 Der ( linearen ) Abbildung ϕ : R R sei bzgl. der kanonischen Basis die Matrix zugeordnet.

Mehr

9 Lineare Differentialgleichungen

9 Lineare Differentialgleichungen Mathematik für Ingenieure III, WS 29/2 Mittwoch.2 $Id: linear.tex,v.4 2/2/ :7:45 hk Exp hk $ 9 Lineare Differentialgleichungen 9.3 Differentialgleichungen mionstanten Koeffizienten Während sich allgemeine

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr