Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n-

Größe: px
Ab Seite anzeigen:

Download "Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n-"

Transkript

1 I. Lineare Algebra Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung 1. Determinanten (siehe Fischer/Kaul I, S ) Matrix. Determinanten von 2 2- und 3 3-Matrizen. Alternierende Multilinearformen und Determinantenform. Eigenschaften der Determinante: Laplacescher Entwicklungssatz. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n- Determinante der Inversen und der Transponierten einer Matrix. Determinante des Produktes von Matrizen. Determinante ähnlicher Matrizen. Adjunkte einer Matrix. Formel für die Inverse. Cramersche Regel. 2. Eigenwerte und Eigenvektoren (siehe Fischer/Kaul I, S ) Motivation: lineares Differentialgleichungssystem für 2 gekoppelte Pendel. Diagonalisierbarkeit und Eigenwertproblem für quadratische Matrizen. Diagonalisierbarkeit und Eigenwertproblem bei linearen Operatoren. Eigenwert, Eigenvektor, Eigenraum. Beispiele: identische Abbildung, Null-Abbildung. Drehung im R 2. Ableitungsoperator T = (d 2 /dx 2 ). Lineare Unabhängigkeit von Eigenvektoren. Charakteristisches Polynom einer Matrix. Charakteristisches Polynom eines linearen Operators. Algebraische und geometrische Vielfachheit. Summe und Produkt von Eigenwerten. Diagonalisierbarkeit von linearen Operatoren. Beispiele: Eigenwerte und Eigenräume einer 3x3-Matrix. 3. Skalarprodukte und Orthonormalsysteme (siehe Fischer/Kaul I, S ) Skalarprodukte. Eigenschaften. Beispiel: Folgenraum l 2. Natürliche Norm. Cauchy-Schwarz-Ungleichung. Dreiecks-Ungleichung. Orthogonalität. Orthogonales Komplement. Orthonormalsysteme. Beispiele: R n. C([ π, π]), bzgl. des Skalarproduktes u, v := π uv dx. π {v n : n = 0, 1,...} mit v 0 (x) = (2π) 1/2, v 2k 1 (x) = (π) 1/2 sin(kx), v 2k (x) = (π) 1/2 cos(kx), bilden ein Orthonormalsystem.

2 Darstellung bzgl. einer Orthonormalbasis. Orthogonale Projektion. Besselsche Ungleichung. Parsevalsche Gleichung. Beste Approximation im quadratischen Mittel. Beispiel. Orthogonalisierungsverfahren von Gram-Schmidt. Beispiel: Legendresche Polynome. Unitäre Abbildungen und Isometrien, Parallelogrammgleichung, Polarisierungsgleichung, adjungierte Matrix, orthogonale Matrix. Basiswechsel zwischen ONBen. Beispiel: Unitäre Abbildungen im R 2 und R 3. Matrix- und Transformationsgruppen, lineare Gruppe, unitäre Gruppe U n, orthogonale Gruppe O n, spezielle orthogonale Gruppe SO n, Kreisgruppe, Translationsgruppe, längentreue Abbildungen. 4. Symmetrische Operatoren und quadratische Formen (siehe Fischer/Kaul I, S ) quadratische Form, Beispiele. Polarisierungsgleichung. Matrizen quadratischer Formen, Koeffizientenmatrix einer quadratischen Form bzgl. einer Basis. Transformationsmatrix des Basiswechsels. Symmetrische Operatoren, Eigenschaften, zugehörige quadratische Form und symmetrische Matrix. Diagonalisierbarkeit symmetrischer Operatoren, Eigenschaften der Eigenwerte und Eigenvektoren. Hauptachsentransformation, Kurven und Flächen zweiter Ordnung. Positive und positiv definite symmetrische Operatoren und quadratische Formen. II. Analysis mehrerer Veränderlicher 1. Normierte Räume (siehe Fischer/Kaul I, S ) Norm und Abstand. Offene Kugel B ε (x). Beispiele: R n : p, (1 p + ). C[a, b]: Supremumsnorm. Konvergenz. Eigenschaften konvergenter Folgen. Äquivalente Normen. Offene und abgeschlossene Mengen. Eigenschaften. Inneres, Äusseres, Abschluss und Rand von Mengen. Häufungspunkte.

3 Eigenschaften. Beispiele. Dichte Teilmengen. Beispiel: Q is dicht in R. Vollständige normierte Räume. Beispiele: R n, C[a, b]. Kompaktheit. Kompakte Mengen eines normierten Raumes sind abgeschlossen und beschränkt. Satz von Bolzano-Weierstrass. Im R n sind beschränkte, abgeschlossene Mengen kompakt. Satz von Heine-Borel. 2. Stetige Funktionen (siehe Fischer/Kaul I, S ) Definition stetiger Funktionen auf normierten Räumen. Beispiele: lineare Abbildungen, Skalarprodukte. Komposition stetiger Abbildungen. Urbilder abgeschlossener und und offener Mengen bei stetigen Funktionen. Stetige Funktionen auf kompakten Mengen. Satz vom Maximum und vom Minimum. Gleichmässige Stetigkeit auf kompakten Mengen. Zusammenhängende Mengen, Wege. Gebiete im R n. 3. Differentialrechnung im R n (siehe Fischer/Kaul I, S ) Definition der Differenzierbarkeit und Ableitung. Beispiele: Ableitung affiner Abbildungen und quadratischer Formen. Stetigkeit differenzierbarer Funktionen. Partielle Ableitungen. Ableitung und Jacobi-Matrix. Hauptkriterium für Differenzierbarkeit. Rechenregeln für differenzierbare Funktionen. Kettenregel. Beispiele. Die Räume C r (Ω, R m ). Vertauschbarkeit der partiellen Ableitungen. Gradient und Richtungsableitung. Hauptsatz der Differential- und Integralrechnung im R n. Satz von Taylor im R n. Beispiel. Lokale Extrema. Beispiele. Graph von Funktionen auf dem R 2. Tangentenvektoren, Tangentialebene. Diffeomorphismen. Umkehrsatz. Beispiele. Auflösung nichtlinearer Gleichungen. Satz über implizite Funktionen. Beispiele. 4. Gleichungsdefinierte Mannigfaltigkeiten (siehe auch Skript zur Vorlesung) Mannigfaltigkeiten. Tangential- und Normalvektoren. Tangential- und Normalraum. Tangentialebene. Beispiele.

4 Lokale Extrema mit Nebenbedingungen. Notwendige Bedingungen für Extrema, Lagrangesche Multiplikatoren. Beispiele: Youngsche Ungleichung. Matrix. Hinreichende Bedingen für Extrema. Eigenwerte einer reellen symmetrischen 5. Gleichmässige Konvergenz von Funktionenfolgen (siehe Fischer/Kaul I, S ) Gleichmässige Konvergenz von Funktionenfolgen und Reihen. Beispiele. Majorantenkriterium zur gleichmässigen Konvergenz. Eine Potenzreihe ist in jeder koimpakten Teilmenge ihres Konvergenzkreises gleichmässig konvergent. Der Limes einer gleichmässig konvergenten Folge von stetigen Funktionen ist stetig. Vertauschbarkeit von Grenzübergang mit Differentiation bzw. Integration. Beispiel: ln(1 + x) = x n n=1 n ( 1)n 1. IV. Gewöhnliche Differentialgleichungen (siehe Skript zur Vorlesung; W. Walter: Gewöhnliche DGLen, 1991; H. Heuser: Gewöhnliche DGLen, 1991) 1. Terminologie DGL n-ter Ordnung, implizite und explizite DGL, Integral einer DGL, allgemeine Lösung, Linienelement, Richtungsfeld, Anfangswertproblem (AWP), Existenzintervall. 2. Elementar integrierbare DGLen erster Ordnung DGlen des Typs y = f(x) und y = g(y). DGL mit getrennten Variablen: y = h(x)g(y). Nichteindeutigkeit gewisser AWPe. Beispiel: y = y, y(0) = ( 0. DGLen der Typen y = f(ax + by + c), y = f(y/x) und y = f ax+by+c αx+βy+γ Lineare DGL erster Ordnung. Homogene und inhomogene Gleichung. Superpositionsprinzip. Bernoullische DGL. Riccatische DGL. 3. Exakte DGLen und integrierende Faktoren DGLen für Kurvenscharen, symmetrische Form von DGLen erster Ordnung. Exakte DGLen, vollständiges Differential, Stammfunktion, Integrabilitätsbedingungen. Beispiel. ).

5 Integrierende Faktoren. Beispiel. 4. Existenz und Eindeutigkeit der Lösung von AWPen Sätze von Picard Lindelöf und Peano. Beispiele. 5. Lineare DGL n-ter Ordnung Lösungsstruktur im homogenen und inhomogenen Fall, Fundamentalssystem, Wronski Determinante, Superpositionsprinzip. Beispiel. Reduktionsmethode von d Alembert. Der Fall n = 2. Beispiel. Lineare homogene DGL n-ter Ordnung mit konstanten Koeffizienten, charakteristisches Polynom, reelles Fundamentalsystem. Beispiel. Variation der Konstanten. Der Fall n = 2. Beispiel. Methode der unbestimmten Koeffizienten. Beispiele.

0 Grundbegriffe. Mengen, Teilmengen, Äquivalenzrelationen, Abbildungen, injektiv/bijektiv/surjektiv,

0 Grundbegriffe. Mengen, Teilmengen, Äquivalenzrelationen, Abbildungen, injektiv/bijektiv/surjektiv, Die folgende Übersicht ist eine Zusammenstellung der Inhalte der Vorlesung. In der Prüfung wird nicht verlangt, Beweise für die namentlich erwähnten Sätze zu geben. Die Prüfungskandidat(inn)en können individuell

Mehr

Stoffplan für die Vorlesung Mathematik für Studierende der Physik

Stoffplan für die Vorlesung Mathematik für Studierende der Physik Stoffplan für die Vorlesung Mathematik für Studierende der Physik 1. Semester *) I. Vektoren (8) I.1 Zahlen ( N, Q, R, C ) I.2 R n, Zahlen und skalare Multiplikation, Skalarprodukt. I.3 Vektorräume. II.

Mehr

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge 1 1 Check-Liste Analysis 1.1 Mengen und Abbildungen Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? kompakt? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge von R? Was

Mehr

Mathematik für das Bachelorstudium I

Mathematik für das Bachelorstudium I Matthias Plaue / Mike Scherfner Mathematik für das Bachelorstudium I Grundlagen, lineare Algebra und Analysis Spektrum k-/± AKADEMISCHER VERLAG Inhaltsverzeichnis I Grundlagen 1 1 Elementare Logik und

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Fach: Mathematik 2 Autorin: Dr. Anja Pruchnewski

Fach: Mathematik 2 Autorin: Dr. Anja Pruchnewski Fach: Mathematik 2 Autorin: Dr. Anja Pruchnewski block detail Anwendung 29. Lineare Gleichungssysteme Einstieg, allgemeiner Lösungsalgorithmus 30. Matrizen Definition, Rechnen mit Matrizen, Matrizen und

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Definition 1 1.2 Mengenoperationen 2 1.3 Potenzmenge 3 1.4 Mengensysteme 3 1.5 Mengengesetze 4 1.6 Geordnetes Paar 4 1.7 Relation 5 1.8 Äquivalenzrelation 5 2 Inferenzregeln

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 CAROLINE LASSER Inhaltsverzeichnis 1. Euklidische Vektorräume 2 1.1. Skalarprodukte und Normen (26.4.) 2 1.2. Orthonormalisierung (3.5.) 2 1.3.

Mehr

Analysis Kompaktseminar 2003

Analysis Kompaktseminar 2003 Analysis Kompaktseminar 2003 Stand: 11. März 2003 Plan Vormittags und nachmittags findet jeweils eine Session von 3 Stunden statt. In den ersten anderthalb Stunden werden in Vierergruppen (d.h. 3 Gruppen

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Inhalte der Vorlesung "Mathe für Ingenieure" Semester 1 und 2

Inhalte der Vorlesung Mathe für Ingenieure Semester 1 und 2 Inhalte der Vorlesung "Mathe für Ingenieure" Dies ist eine Inhaltsangabe der Vorlesung Mathe für Ingenieure, wie sie im WS2017ff von Oliver Sander gehalten wird. Es besteht keine Gewähr, dass diese Inhaltsangabe

Mehr

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Probleme? Höhere Mathematik!

Probleme? Höhere Mathematik! Hans LTrinkaus Probleme? Höhere Mathematik! Eine Aufgabensammlung zur Analysis, Vektor- und Matrizenrechnung Zweite, unveränderte Auflage Mit 307 Abbildungen Springer-Verlag Berlin Heidelberg New York

Mehr

Kontrollfragen und Aufgaben zur 3. Konsultation

Kontrollfragen und Aufgaben zur 3. Konsultation 1 Technische Universität Ilmenau Fakultät für Mathematik und Naturwissenschaften Institut für Mathematik Prof. Dr. Michael Stiebitz Kontrollfragen und Aufgaben zur 3. Konsultation Termin: Ort: Determinante

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Mathematik I/II für Verkehrsingenieurwesen 2007/08/09

Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Prof. Dr. habil. M. Ludwig Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Inhalt der Vorlesung Mathematik I Schwerpunkte: 0 Vorbetrachtungen, Mengen 1. Lineare Algebra 1.1 Matrizen 1.2 Determinanten

Mehr

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die

Mehr

VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG

VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG VORLESUNGEN ÜBER DIFFERENTIAL- UND INTEGRALRECHNUNG A. OSTROWSKI PROFESSOR AN DER UNIVERSITÄT BASEL Zum Gebrauch bei akademischen Vorträgen sowie zum Selbststudium ZWEITER BAND Differentialrechnung auf

Mehr

Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005

Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 Ina Kersten Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 TgX-Bearbeitung von Ben Müller und Christian Kierdorf Universitätsdrucke Göttingen 2004 Zahlen und Abbildungen 10 1

Mehr

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München IngolfTerveer Mathematik- Formeln Wirtschaftswissenschaften UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Inhalt 1 Grundlegende Begriffe 11 1.1 Zahlbereiche 11 1.1.1 Reelle Zahlen 11 1.1.2

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME HOCHSCHULBÜCHER FÜR MATHEMATIK HERAUSGEGEBEN VON H. GRELL, K. MARUHN UND W. RINOW BAND 60 EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME VON H.BOSECK MIT 14 ABBILDUNGEN Zweite^ berichtigte Auflage

Mehr

LINEARE ALGEBRA I JÜRGEN HAUSEN

LINEARE ALGEBRA I JÜRGEN HAUSEN LINEARE ALGEBRA I JÜRGEN HAUSEN Anstelle eines Vorwortes... Der vorliegende Text entstand aus einer einführenden Vorlesung Lineare Algebra im Rahmen des Mathematikstudiums. Ich habe mich um knappe Darstellung

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Konrad Königsberger. Analysis 1. Fünfte, neu bearbeitete Auflage mit 161 Abbildungen und 250 Aufgaben samt ausgearbeiteten Lösungen.

Konrad Königsberger. Analysis 1. Fünfte, neu bearbeitete Auflage mit 161 Abbildungen und 250 Aufgaben samt ausgearbeiteten Lösungen. Konrad Königsberger Analysis 1 Fünfte, neu bearbeitete Auflage mit 161 Abbildungen und 250 Aufgaben samt ausgearbeiteten Lösungen Springer Inhaltsverzeichnis J 1 Natürliche Zahlen und vollständige Induktion

Mehr

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann Ina Kersten Analytische Geometrie und Lineare Algebra 1 L A TEX-Bearbeitung von Stefan Wiedmann Universitätsverlag Göttingen 2005 Voraussetzungen 11 1 Einige Grundbegriffe 12 1.1 Die komplexen Zahlen 12

Mehr

Klaus Jänich. Mathematik 1. Geschrieben für Physiker. Springer

Klaus Jänich. Mathematik 1. Geschrieben für Physiker. Springer Klaus Jänich Mathematik 1 Geschrieben für Physiker / Springer Inhaltsverzeichnis 1. Funktionen 1.1 Der Funktionsbegriff 1 1.2 Neue Funktionen aus alten 4 1.3 Notationsfragen 7 1.4 Erste Beispiele von Funktionen

Mehr

Inhaltsverzeichnis EINLEITUNG 2 KAPITEL 1: MENGENLEHRE 2. Aussagenlogik 2. Mengen 3 Schreibweisen und Symbole 3

Inhaltsverzeichnis EINLEITUNG 2 KAPITEL 1: MENGENLEHRE 2. Aussagenlogik 2. Mengen 3 Schreibweisen und Symbole 3 Inhaltsverzeichnis EINLEITUNG 2 KAPITEL 1: MENGENLEHRE 2 Aussagenlogik 2 Mengen 3 Schreibweisen und Symbole 3 Seite Operationen mit Mengen 4 Darstellungsweise 4 Die leere Menge 4 Teilmengen 4 Gleichheit

Mehr

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München

Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim OldenbourgVerlag München Inhaltsverzeichnis I 1 2 3 3.1 11 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 5.6 Grundlagen Logik 3 Mengen 7 Relationen

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN I"., ' '--. _... DIFFERENTIALGLEICHUNGEN i. GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN VON DR.E.KAMKE f EHEMALS O. PROFESSOR AN DER UNIVERSITÄT TÜBINGEN MIT 38 FIGUREN 6. AUFLAGE, UNVERÄNDERTER NACHDRUCK DER

Mehr

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort

Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Rechenmethoden der Physik I (WS )

Rechenmethoden der Physik I (WS ) Rechenmethoden der Physik I (WS 2009-2010) Vektoren Allgemeines: Kartesische Koordinaten. Komponenten, Vektoraddition, Einheitsvektoren Skalarprodukt: geometrische Bedeutung, Orthogonalität, Kronecker-Delta

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis 237

Inhaltsverzeichnis. Inhaltsverzeichnis 237 Inhaltsverzeichnis 237 Inhaltsverzeichnis 1 Analysis in einer Variablen 4 1 Die reellen Zahlen.................................. 4 1.1 Die gängigen Zahlbereiche......................... 4 1.1.1 Beschreibung

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

Wolfgang Pavel Ralf Winkler Mathematik für Naturwissenschaftler

Wolfgang Pavel Ralf Winkler Mathematik für Naturwissenschaftler Wolfgang Pavel Ralf Winkler Mathematik für Naturwissenschaftler ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Mathematik

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische G rundlagen... 2 1.2 Grundlagen der M engenlehre... 8 1.3 Abbildungen... 15 1.4 Die natürlichen Zahlen und die vollständige Induktion... 16 1.5 Ganze, rationale

Mehr

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Aufgaben für das Seminar und zum selbständigen Üben 22. Januar 2018 Vorbereitende Übungen Aufgabe 1: Bestimmen Sie die Isoklinen zu den folgenden Differentialgleichungen

Mehr

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16

LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 LINEARE ALGEBRA I (LEHRAMT GYMNASIUM) WINTERSEMESTER 2015/16 CAROLINE LASSER Inhaltsverzeichnis 1. Matrizen 2 1.1. Eliminationsverfahren (13.04.) 2 2. Euklidische Vektorräume 3 2.1. Skalarprodukte und

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

REPETITORIUM HÖHERE MATHEMATIK. Repetitio est mater studiorum. Gerhard Merziger Thomas Wirth

REPETITORIUM HÖHERE MATHEMATIK. Repetitio est mater studiorum. Gerhard Merziger Thomas Wirth REPETITORIUM HÖHERE MATHEMATIK Repetitio est mater studiorum Gerhard Merziger Thomas Wirth INHALTS VER ZEICHSIS Inhaltsverzeichnis F1 Formelsammlung F2 Formelsammlung Alphabete 11 Zeichen index 12 1 Grundbegriffe

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

BWL-Crash-Kurs Mathematik

BWL-Crash-Kurs Mathematik Ingolf Terveer BWL-Crash-Kurs Mathematik UVK Verlagsgesellschaft mbh Vorwort 9 1 Aufgaben der Linearen Wirtschaftsalgebra 13 Aufgaben 17 2 Lineare Gleichungssysteme 19 2.1 Lineare Gleichungssysteme in

Mehr

Mathematik für Informatik und Biolnformatik

Mathematik für Informatik und Biolnformatik M.P.H. Wolff P. Hauck W. Küchlin Mathematik für Informatik und Biolnformatik Springer Inhaltsverzeichnis 1. Einleitung und Überblick... 1 1.1 Ziele und Entstehung des Buchs... 1 1.2 Wozu dient die Mathematik

Mehr

Mathematik für Ingenieure

Mathematik für Ingenieure A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsæter Peter Hammond mit Arne Strøm Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte Auflage Übersetzt und fachlektoriert durch Dr. Fred Böker Professor für

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

8.1 Begriffsbestimmung

8.1 Begriffsbestimmung 8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen 8.1 Begriffsbestimmung Wir betrachten nur Differentialgleichungen für Funktionen einer (reellen) Variablen. Definition: Für eine

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

DIFFERENTIALGLEICHUNGEN REELLER FUNKTIONEN

DIFFERENTIALGLEICHUNGEN REELLER FUNKTIONEN ' - DIFFERENTIALGLEICHUNGEN REELLER FUNKTIONEN VON DR. E. KAMKE O. PROFESSOR AN DER UNIVERSITÄT TÜBINGEN MIT 43 FIGUREN DRITTE, UNVERÄNDERTE AUFLAGE % i.,. i, LEIPZIG 1956 AKADEMISCHE VERLAGSGESELLSCHAFT

Mehr

Differentialrechnung. Bibliographisches Institut Mannheim/Wien/Zürich B. I.-Wissenschaftsverlag

Differentialrechnung. Bibliographisches Institut Mannheim/Wien/Zürich B. I.-Wissenschaftsverlag Differentialrechnung von Henri Cartan Prof an der Faculte des Sciences, Paris mit Übungsaufgaben, zusammengestellt von C. Buttin, F. Rideau und J.-L. Verley Bibliographisches Institut Mannheim/Wien/Zürich

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis Vorwort v 1 Grundlagen 1 1.1 Mengenlehre 1 1.1.1 Mengenbegriff 2 1.1.2 Mengenoperationen 4 1.1.3 Abbildungen 7 1.2 Logik 12 1.2.1 Aussagenlogik 12 1.2.2 Prädikatenlogik 18 1.2.3 Beweise

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Mathematica-Befehle. A Algebra 'SymbolicSum, 25,94 Apart 128. C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312. D D 70,71,74,209,215 Div 315

Mathematica-Befehle. A Algebra 'SymbolicSum, 25,94 Apart 128. C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312. D D 70,71,74,209,215 Div 315 324 Mathematica-Befehle A Algebra 'SymbolicSum, 25,94 Apart 128 C Calculus 'Vectoranalysis' 297 CrossProduct 305 Curl 312 S Series 142,167,235 SetCoordinates 297 Sum 26,94,167,184 T Table 211 D D 70,71,74,209,215

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure Kerstin Rjasanowa ISBN 3-446-40479-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40479-1 sowie im Buchhandel 7 1 Arithmetik reeller Zahlen 11 1.1

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

PRÜFUNG AUS ANALYSIS F. INF.

PRÜFUNG AUS ANALYSIS F. INF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Modulhandbuch. Studiengang Lehramt Haupt-/Mittelschule Mathematik LPO 2012, Version ab WS 2015 Lehramt. Gültig ab Wintersemester 2015/2016

Modulhandbuch. Studiengang Lehramt Haupt-/Mittelschule Mathematik LPO 2012, Version ab WS 2015 Lehramt. Gültig ab Wintersemester 2015/2016 Universität Augsburg Modulhandbuch Studiengang Lehramt Haupt-/Mittelschule Mathematik LPO 2012, Version ab WS 2015 Lehramt Gültig ab Wintersemester 2015/2016 Stand: WS15/16 - Gedruckt am 18.11.2015 Inhaltsverzeichnis

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr