5.2 Logische Gültigkeit, Folgerung, Äquivalenz

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5.2 Logische Gültigkeit, Folgerung, Äquivalenz"

Transkript

1 5.2 Logische Gültigkeit, Folgerung, Äquivalenz Durch Einsetzung von PL1-Formeln für die Metavariablen in AL-Gesetzen erhält man PL1-Instanzen von AL-Gesetzen. Beispiele: φ φ AL PL1-Instanzen: Pa () Pa () xpx ( ) xpx ( ) xpx [ ( ) Qx ( )] xpx [ ( ) Qx ( )] φ ψ ψ φ AL PL1-Instanzen: Pa () Rab (, ) Rab (, ) Pa () xpx ( ) yqy () yqy () xpx ( ) Mit der Erweiterung von AL zu PL1 wird auch die Menge der logischen Gesetze Johannes Dölling: Logik für Linguisten. WiSe 2012/13 1

2 durch spezielle PL1-Gesetze erweitert. Die Semantik von PL1 liefert eine allgemeine Definition der logischen Gültigkeit, logischen Folgerung und logischen Äquivalenz. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 2

3 D5.9 Logische Gültigkeit Eine Formel φ ist logisch gültig (logisch wahr, eine Tautologie) gdw für M jedes M gilt: φ = 1. (alternativ: gdw für jedes M gilt: M φ) Notation: φ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 3

4 Beispiele: xpx ( ) xpx ( ) xpx ( ) Pa () xpx ( ) x Px ( ) xpx [ ( ) Qx ( )] xpx ( ) xqx ( ) Johannes Dölling: Logik für Linguisten. WiSe 2012/13 4

5 Logische Gesetze (1) xφ φτ [ / x] Gesetz der universellen Instanziierung (2) φτ [ / x] xφ Gesetz der existenziellen Generalisierung (3) xφ xφ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 5

6 Gesetze der Quantorenalternation: (4) xφ x φ (5) xφ x φ (6) xφ x φ (7) xφ x φ? Gib natürlichsprachliche Beispiele für die Gesetze (4) (7) an. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 6

7 Gesetze der Quantorendistribution: (8) x[ φ ψ] xφ xψ Beispiel: Dass alle Leute sowohl klug als auch fleißig sind, ist genau dann der Fall, wenn alle Leute klug sind und alle Leute fleißig sind. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 7

8 (9) x[ φ ψ] xφ xψ (10) xφ xψ x[ φ ψ] (11) x[ φ ψ] xφ xψ Beispiel: Wenn es jemanden gibt, der betrunken und übermütig ist, dann gibt es jemanden der betrunken ist und jemanden, der übermütig ist. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 8

9 (12) x[ φ ψ] ( xφ xψ) Beispiel: Wenn alle Optimisten fröhlich sind, dann sind, wenn alle Optimisten sind, auch alle fröhlich. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 9

10 (13) ( xφ xψ) x[ φ ψ] (14) x[ φ ψ] ( xφ xφ)? Gib ein natürlichsprachliches Beispiel für Gesetz (14) an. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 10

11 Gesetze der Quantoren(un)abhängigkeit: (15) x yφ y xφ Abkürzung für x y φ: xyφ (16) x yφ y xφ Abkürzung für x y φ: xyφ (17) x yφ y xφ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 11

12 Gesetze der Quantorenbewegung: (18) φ xψ x[ φ ψ], vorausgesetzt, dass x nicht frei in φ vorkommt. (19) φ xψ x[ φ ψ], vorausgesetzt, dass x nicht frei in φ vorkommt. (20) xφ ψ x[ φ ψ], vorausgesetzt, dass x nicht frei in ψ vorkommt. (21) xφ ψ x[ φ ψ], vorausgesetzt, dass x nicht frei in ψ vorkommt. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 12

13 Berechnung der logischen Gültigkeit von Formeln Beispiele: xφ xφ (Methode: direkter Beweis) Annahme: Gegeben sei ein beliebiges Modell M, so dass M xφ = 1. für jedes g gilt: Mg, xφ = 1 Mgx d = für jedes d D: φ, [ ] 1 Mgx d = für mindestens ein d D: φ, [ ] 1 für jedes g gilt: Mg, xφ = 1 für M gilt: xφ = 1 M Also: xφ xφ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 13

14 x[ φ ψ] xφ xψ (Methode: indirekter Beweis) M Annahme: Sei M ein Modell, so dass xφ [ ψ ] = 1 und M xφ xψ] = 0. für jedes g gilt: xφ [ ψ] Mg, = 1 und xφ xψ, für jedes g gilt: Mg xφ, = 0 und xψ Mg, = 0 für jedes d D gilt: Mg ] = 0 Mgx,[ d] Mgx φ = 0 und,[ d ψ ] = 0 Mgx d für jedes d D gilt: φ ψ,[ ] = 0 xφ [ ψ] = 1, gibt es mindestens ein d D, für das gilt: Mgx,[ d φ ψ ] = 1 weil aber für jedes g gilt:, Widerspruch: Mg Johannes Dölling: Logik für Linguisten. WiSe 2012/13 14

15 Mgx d 1. für jedes d D gilt: φ ψ,[ ] = 0, damit gibt es kein d D, für das gilt: Mgx,[ d φ ψ ] = 1 2. es gibt mindestens ein d D, für das gilt: Mgx,[ d φ ψ ] = 1 Es gibt kein Modell M mit xφ [ ψ] M = 1 und Also: x[ φ ψ] xφ xψ M xφ xψ] = 0. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 15

16 ? Zeige, dass x[ φ ψ] xφ xψ. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 16

17 Umgekehrt lässt sich auch nachweisen, dass bestimmte Formeln nicht gültig sind. Beispiel: xφ xψ x[ φ ψ] Verfahren: Angabe eines Modells M, so dass M x φ xψ = 1 und xφ [ ψ] M = 0 Johannes Dölling: Logik für Linguisten. WiSe 2012/13 17

18 Mg, Annahme: Seien M und g derart, dass x φ xψ = 1. Mg, Mg, xφ = 1 und xψ = 1 Mgx d = für mindestens ein d' D: φ, [ '] 1 und für mindestens ein d'' D: ψ Mgx, [ d''] = 1 Es ist nicht zwingend, dass d' = d''. Es ist nicht zwingend, dass für mindestens ein Mgx d D:, [ d φ ψ ] = 1. Es ist nicht zwingend, dass Mg, xφ [ ψ] = 1. Also: Es gilt nicht, dass xφ xψ x[ φ ψ]. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 18

19 Venn-Diagramme für Formeln von PL1 Die Gültigkeit von Formeln, in denen nur 1-stellige PK vorkommen, lässt sich geometrisch wie folgt überprüfen: (1) x[ Px ( ) Qx ( )] x[ Px ( ) Qx ( )] (2) xpx [ ( ) Qx ( )] xpx ( ) xqx ( ) P Q Johannes Dölling: Logik für Linguisten. WiSe 2012/13 19

20 (3) xpx [ ( ) Qx ( )] x [ Px ( ) Qx ( )] P Q Johannes Dölling: Logik für Linguisten. WiSe 2012/13 20

21 (4) xpx [ ( ) Qx ( )] xpx [ ( ) Qx ( )] xqx [ ( ) Px ( )] (5) xpx [ ( ) Qx ( )] xpx [ ( ) Qx ( )] P Q? Gilt dagegen eine der folgenden Behauptungen? xpx [ ( ) Qx ( )] xpx [ ( ) Qx ( )] xpx [ ( ) Qx ( )] xpx [ ( ) Qx ( )] Johannes Dölling: Logik für Linguisten. WiSe 2012/13 21

22 (6) xpx [ ( ) Qx ( )] xpx ( ) xqx ( ) P Q Johannes Dölling: Logik für Linguisten. WiSe 2012/13 22

23 (7) xpx ( ) xpx [ ( ) Qx ( )] xqx ( ) (8) xpx [ ( ) Qx ( )] [ xpx ( ) xqx ( )] P Q Johannes Dölling: Logik für Linguisten. WiSe 2012/13 23

24 D5.10 Kontradiktion Eine Formel φ ist kontradiktorisch (logisch falsch) gdw für jedes M gilt: M φ = 0. (alternativ: gdw für kein M gilt: M φ) Beispiel: xpx [ ( ) Px ( )] Johannes Dölling: Logik für Linguisten. WiSe 2012/13 24

25 D5.11 Logische Folgerung (logische Implikation) Aus φ,..., φ 1 n folgt logisch ψ gdw für jedes M gilt: M M M Wenn φ = 1,..., φ 1 1 n =, dann ψ = 1. (alternativ: gdw für jedes M gilt: Wenn M φ,..., M φ 1 n, dann M ψ) Notation: Spezialfall: φ,..., φ 1 n ψ (alternativ: φ,..., φ 1 n ψ) (falls n= 1: φ ψ) ψ, d.h. logische Gültigkeit von ψ (Bedingung:{ φ,..., φ } 1 n = ) Johannes Dölling: Logik für Linguisten. WiSe 2012/13 25

26 Beispiele: (1) xφ φτ [ / x] (2) φτ [ / x] xφ (3) xφ xφ (4) x[ φ ψ] xφ xψ (5) x[ φ ψ], xφ xψ (6) x[ φ ψ], φτ [ / x] ψτ [ / x] Johannes Dölling: Logik für Linguisten. WiSe 2012/13 26

27 Metatheoreme über die Beziehung zwischen logischer Folgerung und logischer Gültigkeit: φ ψ gdw φ ψ φ,..., φ 1 n ψ gdw φ... φ 1 n ψ gdw φ... φ 1 n ψ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 27

28 D5.12 Logische Äquivalenz M φ und ψ sind logisch äquivalent gdw für jedes M gilt: φ = 1 gdw M ψ = 1. (alternativ: gdw für jedes M gilt: M φ gdw M ψ) Notation: φ ψ (alternativ: φ ψ) Johannes Dölling: Logik für Linguisten. WiSe 2012/13 28

29 Beispiele: (1) x φ xφ (2) xφ x φ (3) xφ x φ (4) x φ xφ (5) x[ φ ψ] xφ xψ (6) x[ φ ψ] xφ xψ (7) x yφ y xφ (8) x yφ y xφ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 29

30 Berechnung der logischen Äquivalenz von Formeln Beispiel: x φ xφ Mg, Annahme: x φ = 1 Mgx d für jedes d D: φ, [ ] = 1 Mgx d = für jedes d D: φ, [ ] 0 Mgx d = für kein d D: φ, [ ] 1 Mg, es gilt nicht: xφ = 1 Mg, xφ = Mg, 0 xφ = 1 Also: x φ xφ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 30

31 Metatheoreme über die Beziehung zwischen logischer Äquivalenz und logischer Gültigkeit bzw. zwischen logischer Äquivalenz und logischer Folgerung: φ ψ gdw φ ψ φ ψ gdw φ ψ und ψ φ Johannes Dölling: Logik für Linguisten. WiSe 2012/13 31

32 Logisch äquivalente Umformungen Für eine Formel χψ [ / φ ], die man aus χ durch Substitution von ψ für φ erhält, gilt: Wenn φ ψ, dann χ χψ [ / φ] (Substitutionsprinzip). Logisch äquivalente Formeln können in einer beliebigen Formel gegeneinander ersetzt werden, ohne dass sich der Wahrheitswert der betreffenden Formel ändert. Beispiel: x Px ( ) xpx ( ), also x Px ( ) yqy () xpx ( ) yqy () Johannes Dölling: Logik für Linguisten. WiSe 2012/13 32

33 Pränexe Normalformen Durch die Ersetzung von logisch äquivalenten Teilformeln können insbesondere PL1-Formeln in ihre pränexe Normalform überführt werden. D5.13 Eine Formel φ hat pränexe Normalform (PNF) gdw φ die Gestalt Q γ...q ' 1 1 nγnφ hat, wobei Q γ...q 1 1 n γ n mit Variablen besetzte Quantoren und sind und φ ' eine Formel ist, die keine Quantoren enthält. Dabei wird Q γ...q 1 1 n γ n das Präfix und φ ' die Matrix von φ genannt. Die Überführung einer Formel in ihre PNF kann zu einer wesentlichen Vereinfachung führen. Johannes Dölling: Logik für Linguisten. WiSe 2012/13 33

34 Beispiel: xpx ( ) xqx ( ) 1. Schritt Gebundene Umbenennung von x in y in der Teilformel xqx ( ), so dass x nicht mehr im Skopus verschiedener Quantoren vorkommt: xpx ( ) yqy () 2. Schritt Der Negationsoperator wird mit Hilfe des Gesetzes (6) der Quantorenalternation so nach innen gezogen, dass er nur noch vor einer atomaren Formel steht: x Px ( ) yqy () Johannes Dölling: Logik für Linguisten. WiSe 2012/13 34

35 3. Schritt Der -Quantor wird mit Hilfe des Gesetzes (18) der Quantorenbewegung nach außen gezogen: [ ( ) ()] y x Px Qy 4. Schritt Der -Quantor wird mit Hilfe der Gesetzes (21) der Quantorenbewegung nach außen gezogen und dabei in einen -Quantor überführt: [ ( ) ()] y x Px Qy Johannes Dölling: Logik für Linguisten. WiSe 2012/13 35

(1) (a) Hans ist verheiratet oder nicht verheiratet. (b) Hans ist verheiratet oder Hans ist nicht verheiratet.

(1) (a) Hans ist verheiratet oder nicht verheiratet. (b) Hans ist verheiratet oder Hans ist nicht verheiratet. 3.3 Quantoren? Sind folgende Sätze jeweils synonym? (1) (a) Hans ist verheiratet oder nicht verheiratet. (b) Hans ist verheiratet oder Hans ist nicht verheiratet. (2) (a) Jeder ist verheiratet oder nicht

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

3 Prädikatenlogik der 1. Stufe (PL1) Teil I

3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3.3 Quantoren [ Gamut 70-74 McCawley 23-44 Chierchia 113-117 ]? Sind folgende Sätze jeweils synonym? (1) (a) Hans ist verheiratet oder nicht verheiratet. (b)

Mehr

2.6 Natürliches Schließen in AL

2.6 Natürliches Schließen in AL 2.6 Natürliches Schließen in AL Bisher wurde bei der Überprüfung der Gültigkeit von Schlüssen oder Schlussschemata insofern ein semantisches Herangehen verfolgt, als wir auf die Bewertung von Formeln mit

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck. 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

3.5 Semantische Repräsentation mit PL1

3.5 Semantische Repräsentation mit PL1 3.5 Semantische Repräsentation mit PL1 PL1 kann man als Formalismus zur Darstellung der Bedeutung natürlichsprachlicher Sätze verwenden. Solche Darstellungen werden als semantische Repräsentationen der

Mehr

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform 2 Normalformen 2.1 Äquivalenz und Folgerung Definition 2.1 Äquivalenz, Folgerung). Seien ϕ, ψ FO[σ]. a) ϕ und ψ heißen äquivalent kurz: ϕ ψ, bzw. ϕ = ψ), wenn für alle zu ϕ und ψ äquivalent passenden σ-interpretationen

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

Logik Vorlesung 9: Normalformen

Logik Vorlesung 9: Normalformen Logik Vorlesung 9: Normalformen Andreas Maletti 19. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Ein adäquater Kalkül der Prädikatenlogik

Ein adäquater Kalkül der Prädikatenlogik Ein adäquater Kalkül der Prädikatenlogik Teil 1 Der Shoenfield-Kalkül für PL: Axiome und Regeln, Korrektheit, Zulässige Regeln Mathematische Logik (WS 2010/11) Shoenfields Kalkül der PL 1 / 45 Der Shoenfield-Kalkül

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 22 Quantoren Till Mossakowski Logik 2/ 22 Quantoren: Motivierende Beispiele x Cube(x)

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen.

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen. 2 Aussagenlogik (AL) 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren [ Gamut 28-35, Partee -6 ] Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungssätze bringen das Zutreffen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Motivation Die ist eine Erweiterung

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y)))

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) Prädikatenlogik Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) symmetrische Relation x y (R(x, y) R(y, x)) Das Zeichen bezeichnen wir als Existenzquantor

Mehr

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.6 Prädikatenlogik ohne Gleichheit Der Sequenzenkalkül 138 Der Sequenzenkalkül Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül

Mehr

Kapitel 1.2. Aussagenlogik: Semantik. Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57

Kapitel 1.2. Aussagenlogik: Semantik. Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57 Kapitel 1.2 Aussagenlogik: Semantik Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57 Übersicht 1.2.1 Interpretationen der al. Formeln 1.2.2 Zentrale semantische Begriffe 1.2.3

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik Prädikatenlogiken Mathematische Logik Vorlesung 7 Alexander Bors 6. & 27. April 2017 1 Prädikatenlogiken Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) (Abgeleitete) Axiome

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

Formale Grundlagen der Informatik II

Formale Grundlagen der Informatik II Formale Grundlagen der Informatik II FO: Axiome und Theorie (de-)motivierendes Beispiel: S=(+,0) Strukturen ({0,1}*,,ε) Strukturen (P(X),, ) Formale Grundlagen der Informatik II Interessieren uns für alle

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Die ist eine Erweiterung

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik Mathematische Logik Vorlesung 6 Alexander Bors 30. März & 6. April 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) 2 Erinnerung Letztes Mal haben wir begonnen, ein

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

3.2 Prädikatenlogik. WS 06/07 mod 321

3.2 Prädikatenlogik. WS 06/07 mod 321 3.2 Prädikatenlogik WS 06/07 mod 321 Prädikatenlogik umfasst Aussagenlogik mit atomaren Aussagen, Variablen, Junktoren. Zusätzliche Konzepte: A = (τ, Σ) sei die so genannte Termalgebra (mit Variablen,

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

Namen von Objekten des Diskursbereichs (z. B. Substantive des natürlichsprachlichen Satzes)

Namen von Objekten des Diskursbereichs (z. B. Substantive des natürlichsprachlichen Satzes) Prädikatenlogik Aussagen wie Die Sonne scheint. die in der Aussagenlogik atomar sind, werden in der Prädikatenlogik in Terme (sonne) und Prädikate (scheint) aufgelöst und dann dargestellt als z.b. Terme

Mehr

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe Syntax der Prädikatenlogik: Variablen, Terme Formeln Eine Variable hat die Form x i mit i = 1, 2, 3.... Ein Prädikatensymbol hat die Form Pi k und ein Funktionssymbol hat die Form fi k mit i = 1, 2, 3...

Mehr

Kapitel 1.2. Semantik der Aussagenlogik. Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60

Kapitel 1.2. Semantik der Aussagenlogik. Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60 Kapitel 1.2 Semantik der Aussagenlogik Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60 Übersicht 1.2.1 Interpretationen der al. Formeln 1.2.2 Zentrale semantische Begriffe

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Mathematische Logik (Stand: Ende Jan 09)

Mathematische Logik (Stand: Ende Jan 09) II In diesem Abschnitt wird die behandelt gleichbedeutend zum Begriff sind die Begriffe Prädikatenlogik und Logik erster Stufe. Die erweitert die Aussagenlogik, indem sie nicht mehr nur Aussagen als Ganzes

Mehr

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt Dr. V. Klebanov, Dr. M. Ulbrich, C. Scheben Formale Systeme, WS 2013/2014 Lösungen zu Übungsblatt 5 Dieses

Mehr

Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Literaturhinweis Literaturhinweis

Mehr

Prädikatenlogik. Quantoren. Quantoren. Quantoren. Quantoren erlauben Aussagen über Mengen von Objekten des Diskursbereichs, für die ein Prädikat gilt

Prädikatenlogik. Quantoren. Quantoren. Quantoren. Quantoren erlauben Aussagen über Mengen von Objekten des Diskursbereichs, für die ein Prädikat gilt Prädikatenlogik Aussagen wie Die Sonne scheint. die in der Aussagenlogik atomar sind, werden in der Prädikatenlogik in Terme (sonne) und Prädikate (scheint) aufgelöst und dann dargestellt als z.b. scheint(sonne)

Mehr

1 Prädikatenlogik. 1.1 Signaturen und Strukturen

1 Prädikatenlogik. 1.1 Signaturen und Strukturen 1 Prädikatenlogik Die Constraint-logische Programmierung basiert auf der Prädikatenlogik: Constraints sind prädikatenlogische Formeln und logische Sprachen wie prolog machen einen Ausschnitt der Prädikatenlogik

Mehr

Logik Vorlesung 2: Semantik der Aussagenlogik

Logik Vorlesung 2: Semantik der Aussagenlogik Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation Widerspruchsbasiertes Kalkül Ziel: Zeige dass gilt: x 1 x s (B 1 B n ) Mittel: Negiere so dass: B 1 B n Resultate: Widerspruch Variablenbindungen [y/5.6.17.22.nil] für sort(17.22.6.5.nil,y) Präinterpretation

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform

Mehr

KAPITEL 5. Logik Aussagenlogik

KAPITEL 5. Logik Aussagenlogik KAPITEL 5 Logik "Wenn man Charaktere oder Zeichen finden könnte, die geeignet wären, alle unsere Gedanken ebenso rein und streng auszudrücken, wie die Arithmetik die Zahlen oder die analytische Geometrie

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

7 Bedeutung und Logik

7 Bedeutung und Logik 7 Bedeutung und Logik 7.1 Logische Eigenschaften von Sätzen 7.2 Logische Beziehungen zwischen Sätzen 7.3 Logische Beziehungen und Bedeutungsbeziehungen 7.4 Formale Semantik Johannes Dölling: Semantik und

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

2.1 Lineare Temporallogiken: LTL

2.1 Lineare Temporallogiken: LTL 2.1 Lineare Temporallogiken: LTL N bezeichne die Menge der nicht-negativen ganzen Zahlen (inklusive der Null). Sei Σ ein Alphabet. Ein endliches Wort ü b e r Σ ist eine endliche Folge a 1 a 2...a n,sodassa

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 31 Die Logik der Quantoren Till Mossakowski Logik 2/ 31 Wahrheitsfunktionale Form

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Zur Semantik der Junktorenlogik

Zur Semantik der Junktorenlogik Zur Semantik der Junktorenlogik Elementare Logik I Michael Matzer Inhaltsverzeichnis 1 Präliminarien 2 2 Tautologien, Kontradiktionen und kontingente Sätze von J 2 2.1 Tautologien von J................................

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

3.5 Semantische Repräsentation mit PL1

3.5 Semantische Repräsentation mit PL1 3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3.5 Semantische Repräsentation mit PL1 [ Gamut 78-83 ] PL1 kann man als Formalismus zur Darstellung der Bedeutung natürlichsprachlicher Sätze verwenden. Solche

Mehr

Die Sprache der Prädikatenlogik, Überlegungen zu Modellen

Die Sprache der Prädikatenlogik, Überlegungen zu Modellen Die Sprache der Prädikatenlogik, Überlegungen zu Modellen Dr. Uwe Scheffler [Technische Universität Dresden] November 2011 Die Formeldefinition der Prädikatenlogik 1. Wenn f n eine n-stellige Prädikatenkonstante

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U

Mehr

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C 3. Prädikatenlogik 3.1 Motivation In der Aussagenlogik interessiert Struktur der Sätze nur, insofern sie durch "und", "oder", "wenn... dann", "nicht", "genau dann... wenn" entsteht. Für viele logische

Mehr

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März

Mehr

Syntax der Prädikatenlogik: Komplexe Formeln

Syntax der Prädikatenlogik: Komplexe Formeln Syntax der Prädikatenlogik: Komplexe Formeln Σ = P, F eine prädikatenlogische Signatur Var eine Menge von Variablen Definition: Menge For Σ der Formeln über Σ Logik für Informatiker, SS 06 p.10 Syntax

Mehr

Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil)

Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil) Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil) Inhaltsverzeichnis 1. Warum eine mächtigere Sprache? 1.1. Einleitung 1.2. Definitionen 2. Prädikatenlogik als formale Sprache 2.1. Terme

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5 Teil 2: FO Syntax und Semantik FO 2 Spielsemantik Semantik-Spiel Satz: A = ψ[a] V hat Gewinnstrategie in Position (ψ, a. Teil 2: FO Syntax und Semantik FO 2 das Konzept der Gleichung in der Algebra Robert

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 3 12.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Semantik Semantik geben bedeutet für logische Systeme,

Mehr

Logik erster Stufe FO

Logik erster Stufe FO Logik erster Stufe FO Sonderstellung als die Logik für die Grundlegung der Mathematik natürliche Semantik (Tarski) und große Ausdrucksstärke vollständige Beweiskalküle (Gödelscher Vollständigkeitssatz)

Mehr

Beachte: Mit n = 0 sind auch Konstanten Terme.

Beachte: Mit n = 0 sind auch Konstanten Terme. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.2 Prädikatenlogik ohne Gleichheit Syntax und Semantik 107 Terme Ab sofort wird Signatur τ als festgelegt angenommen. Sei V = {x, y,...} Vorrat

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 14. Dezember 2016 Die formale Sprache der Prädikatenlogik: Zeichen Benutzt werden

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

SS Juli Übungen zur Vorlesung Logik Blatt 11

SS Juli Übungen zur Vorlesung Logik Blatt 11 SS 2011 06. Juli 2011 Übungen zur Vorlesung Logik Blatt 11 Prof. Dr. Klaus Madlener Abgabe bis 13. Juli 2011 10:00 Uhr 1. Aufgabe: [Axiomatisierung, Übung] 1. Definieren Sie eine Formel A n der Prädikatenlogik

Mehr

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik Ralf Möller, TUHH Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem Lernziele: Beweisverfahren für Prädikatenlogik Danksagung Bildmaterial: S. Russell, P. Norvig, Artificial

Mehr