GRUNDPRINZIPIEN statistischen Testens

Größe: px
Ab Seite anzeigen:

Download "GRUNDPRINZIPIEN statistischen Testens"

Transkript

1 Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit? Empirisches Signifikanzniveau (). Entscheide Wie groß sind die Fehler, wenn man sich für oder gegen bestimmte Hypothesen entscheidet? Fehler. und. Art Beobachtet: Unterschied zwischen zwei Raten? pˆ A > pˆ B pa > pb Skeptiker: Zufallsbefund! Berechnen Sie die Wahrscheinlichkeit p für ein zufälliges Ergebnis in der Stichprobe, mit einem gleichen oder noch größeren Unterschied, unter der Annahme, dass kein wahrer Unterschied vorliegt (d.h. falls die Nullhypothese gilt). Problem: Wie argumentieren Sie gegen den Skeptiker, dass es sich doch um einen realen Unterschied handeln könnte? Statistischer Schluss Ansatz: Angenommen, der Skeptiker hätte Recht: Kein realer Unterschied (Nullhypothese) : p = p A B dann müsste die Beobachtung als bloßer Zufallseffekt zu interpretieren sein. Je kleiner p, desto unplausibler der Einwand des Skeptikers Nullhypothese verwerfen? 3 4 n Frage: Zufallseffekt oder systematischer Effekt? Skeptische Grundhaltung Man glaubt (zunächst) nicht an einen systematischen Effekt Sondern versucht die Beobachtungen allein durch einen Zufallseffekt zu erklären (Nullhypothese) Erinnerung: Beim Ziehen von Stichproben sind zusammengesetzte Zielgrößen wie zb: - Anzahl von Erfolgen - Mittelwerte selbst Zufallsvariable Wie wahrscheinlich ist eine solche (oder noch extremere) Beobachtung, wenn sie nur zufallsbedingt zustande käme? Grundidee des Testens Man kann die Zufallsverteilungen solcher Größen unter vorgegebenen Prüf-Hypothesen berechnen (genauer Verteilungen von n) und mit den Beobachtungen vergleichen 5 6

2 Hypothesen fixieren Prüfverteilungen Eine Hypothese im statistischen Sinne ist eine Annahme darüber, dass ein Zufallsprozess sich nach einer bestimmten Zufallsverteilung der verhält Sprechweise Unter der Hypothese liegt die Verteilung der relevanten zu prüfenden Zufallsgröße fest (d.h. die Verteilung der ) Die Frage ist, wo nun der Prüfwert der konkreten Stichprobe in Bezug zu dieser Prüfverteilung unter der Nullhypothese (H 0 ) liegt? Beispiel Forschungshypothese Sportstudenten lernen aufgrund ihrer motorischen Erfahrungen eine neue Sportart (bzw. neue Technik) in geringerer Zeit als Studenten anderer Fachrichtungen Beispiel: Tiefe Rollwende beim Kraulschwimmen Nullhypothese H 0 : mittlere Zeitdauer = mittlere Zeitdauer bei Sportstudenten bei Studenten anderer Fachrichtungen 7 8 Statistische Hypothese Empirische Daten Nullhypothese H 0 : mittlere Zeitdauer = mittlere Zeitdauer bei Sportstudenten bei Studenten anderer Fachrichtungen μ Sportstudenten = μ andere Studenten Konkrete Daten einer Stichprobe: =0 0 = 3 h [ ] 0 =5h 0 =8h Sportstudenten, Studenten andere Fachrichtungen = Frage: Ist die Differenz auf Zufallsschwankungen zurückzuführen? μ Sportstudenten μ andere Studenten 9 0 Theoretische Annahme (H 0 ) ermöglicht die Konstruktion einer Prüfverteilung. Diese zeigt alle möglichen Mittelwertsdifferenzen zweier Stichproben, wenn diese aus Populationen mit identischem Mittelwert μ stammen würden. s 0-0 N ( 0, ) t-verteilung f x 0,3 0, 0, n = 40 n = 4 n = 0 x x -,0 -,0 0,0,0 x Bestimmung der Wahrscheinlichkeit für die beobachtete Mittelwertsdifferenz. x x Standardisierung : t = t-verteilt SE x x t n,α : symmetrisch zu Null für kleine n: breit und flach n N 0, für ( )

3 Hypothesentestung. Die Hypothese legt eine Prüfverteilung fest je nach Art der Hypothesentestung. Die Stichprobe führt zu Beobachtungen, die mehr oder weniger im Zentrum der Prüfverteilung liegen und mit der Hypothese vereinbar sind Prüfverteilung unter H 0 (d.h. Erwartung des Skeptikers) z.b.: t-verteilte Prüfverteilung unter H 0 (d.h. Erwartung des Skeptikers) z.b.: t-verteilte n der Stichproben Beobachtete n aus Stichproben 3 4 Nullhypothese Nullhypothese Sir Fisher s Antwort Wie wahrscheinlich ist es, unter der vorgegebenen Nullhypothese noch extremere Stichproben zu erhalten, als diejenige, die man beobachtet hat? empirisches Signifikanzniveau Stichprobe ist unter H 0 nicht extrem nicht als Indiz gegen H 0 verwendbar Stichprobe ist unter H 0 ziemlich extrem spricht eher gegen H 0 Hinweis für eine nicht zufällige, d.h. systematische Abweichung Wenn die Prüfverteilung festliegt (d.h. unter H 0 ), kann die Wahrscheinlichkeit berechnet werden, ein noch extremeres Ergebnis zufällig zu erhalten, als beobachtet. 5 6 p - Wert Empirisches Signifikanzniveau Überschreitungswahrscheinlichkeit Empirisches Nominelles Signifikanzniveau Das Empirische Signifikanzniveau ist eines der wesentlichen Konzepte in der angewandten Statistik Beobachtetes "" Gibt an, mit welcher Wahrscheinlichkeit unter der Annahme der Nullhypothese eine weitere Stichprobe einen Prüfwert liefern würde, der noch extremer ist als der bereits beobachtete. Der ist die Wahrscheinlichkeit -bei einer Wiederholung des Experimentes unter identischen Bedingungen (frequentistisches Paradigma) -unter Gültigkeit der Nullhypothese (und der aus ihr resultierenden Wahrscheinlichkeitsverteilung) noch extremere Ergebnisse zu erzielen, als in der beobachteten Stichprobe e sind eine Quantifizierung des Ausmaßes an Information gegen des Skeptiker - kleine e argumentieren gegen H

4 Testentscheidungen Testentscheidung Testen als Entscheidung für oder gegen die Null-Hypothese Dichte der Verschieden starke Skeptiker werden diese Entscheidung vom Maß des es abhängig machen α-wert z.b. 0,05 z.b. 0,003 Keine feste Regel! Konventionen (historisch begründet Sir Fisher) BISHER wurde keine Entscheidung getroffen, ob man die Null- Hypothese (d.h. Zufallseffekt als Erklärungsmodell) akzeptieren soll, oder ob man seinen Standpunkt zugunsten eines systematischen Effektes aufgeben soll. Annahmebereich der H 0 Stichprobe Entscheidungsgrenze Ablehnbereich der H 0 Signifikanzniveau (Irrtumswahrscheinlichkeit) α : 0,05 oder 0,0 9 0 Unterscheide: Entscheidungsverfahren Irrtumswahrscheinlichkeit α (vorgegebenes Signifikanzniveau α) Festlegung a priori unabhängig von Daten Vorgabe für die Testentscheidung bzgl. Annahme /Ablehnung basierend auf klinischen und ethischen Abwägungen (empirisches Signifikanzniveau) Errechnet sich a posteriori aus der konkreten Stichprobe Quantifizierung der Wahrscheinlichkeit, eine noch extremere Stichprobe aus der GG zu ziehen, wenn H 0 gilt! Fällt die Realisierung der Stichprobe a) in den Annahmebereich, so wird die Nullhypothese nicht verworfen, sondern beibehalten b) in den Ablehnbereich, so wird die Nullhypothese als unzutreffend verworfen und [statt dessen die Alternativ- Hypothese angenommen], d.h. Erkenntnisgewinn H 0 ist falsifiziert - Es gibt einen systematischen Effekt - ABER: Dieser Schluss ist mit Wahrscheinlichkeit α falsch! Irrtumswahrscheinlichkeit Schlussweise statistischer Tests Typische Fehl-Schlussweise Das Verwerfen der Nullhypothese entspricht der Erkenntnis, dass ein Untersuchungsgang systematisch stärker von einem vermuteten Ergebnis abweicht, als durch zufällige Effekte zu erwarten war. Folglich liegt ein Erkenntnisgewinn vor. Hingegen kann man derartiges nicht schlussfolgern, wenn H 0 nicht abgelehnt wurde, denn Im Rahmen einer kontrollierten randomisierten Studie wurden Trainingsmethoden geprüft. Ein statistischer Test ergab, dass die Nullhypothese (gleicher Effekt) nicht verworfen werden konnte. Also sind die beiden Trainingsmethoden äquivalent. Diese Schlussfolgerung ist. Es kann sein, dass wirklich kein systematischer Effekt vorliegt, oder. Er ist durch andere systematische oder zufällige Effekte verdeckt. Das heißt: Es liegen nicht genug Informationen vor ( weiß nicht ) Richtig Aufgrund der in der Stichprobe vorliegenden Information lässt sich kein ausreichend großer Unterschied nachweisen, der erlauben würde, die Nullhypothese abzulehnen. Gründe Stichprobe zu klein Keine Information Effekt ist wirklich sehr klein Schätzen! 3 4 4

5 Zwischenbilanz statistisches Testen Zum Beispiel: Mögliche Fehlentscheidungen Testentscheidung wahre Situation (Grundgesamtheit) aufgrund Stichprobe H 0 richtig H A richtig Verteilung unter H 0 α Fehler. Art = (Irrtumswahrscheinlichkeit) H 0 beibehalten H 0 verwerfen und H A annehmen richtig α falsch positiv α Fehler. Art falsch negativ β Fehler. Art richtig β (POWER) ] p < α Grenze Fehler. Art: Fälschliches Verwerfen der Nullhypothese Fehler. Art: Fälschliches Beibehalten der Nullhypothese 5 6 Wovon ist die POWER eines Tests abhängig? Die POWER eines Tests - d.h. die Fähigkeit zur korrekten Ablehnung der Null Hypothese H 0 steigt, wenn. der Stichprobenumfang erhöht wird. 3. der aufzudeckende Unterschied größer gewählt wird Wahl der Alternativ-Hypothese H A das Irrtumsniveau α größer gewählt wird Ablaufschema für statistische Tests () Festlegung der Zielsetzung (Was will man wissen?) - Zielgröße - Fragestellung () Stichproben (Versuchsplanung) - Anzahl - Auswahl (Randomisation) - Paarung (3) Formulierung der Hypothesen H 0 und H A (4) Wahl des vorzugebenden Signifikanzniveaus α (5) Auswahl der (aus - 4) und der dazugehörigen Testverteilung - Durchführung der Studie - Datenerhebung 7 8 Ablaufschema für statistische Tests (ff) (6) Prüfung von Testvoraussetzungen - Verteilungsannahmen - Anwendbarkeit [ ] - ggf. Modifikation von (5) (7) Ermittlung des Annahmebereiches (8) Berechnung der aus der Stichprobe (9) Testentscheidung - Angabe des es: Vergleich mit α - Vergleich der berechneten mit dem Quantil der Prüfverteilung (0) Interpretation der Ergebnisse mit Angabe von p 9 5

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser Kolmogorov-Smirnov-Test Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz 1 Kolmogorov- Smirnov Test Andrei Nikolajewitsch Kolmogorov * 25.4.1903-20.10.1987 2 Kolmogorov-

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Statistische Signifikanz versus Klinische Relevanz der Sch(l)uss von der Studie in die Realität

Statistische Signifikanz versus Klinische Relevanz der Sch(l)uss von der Studie in die Realität Institut für Medizinische Biometrie und Epidemiologie Statistische Signifikanz versus Klinische Relevanz der Sch(l)uss von der Studie in die Realität Zum Nacharbeiten Die TonoPen-Studie Dissertationsprojekt

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;...

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;... Hypothesentest ================================================================== Fehler 1. und 2.Art Ein Pilzsammler findet einen Pilz der giftig sein könnte. a) Welchen Fehler kann er bei der Überprüfung

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Wie man zwei Kekssorten auf Unterschiede testet

Wie man zwei Kekssorten auf Unterschiede testet Wie man zwei Kekssorten auf Unterschiede testet von Rhonda C. Magel, North Dakota State University, Fargo, USA. 1 übersetzt von Klaus Krug, Bamberg Zusammenfassung: Dieser Aufsatz stellt zwei Kursprojekte

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Zur Statistik im neuen Genehmigungsantrag

Zur Statistik im neuen Genehmigungsantrag Zur Statistik im neuen Genehmigungsantrag 21. Essener Informationstreffen, 12. März 2014 PD Dr. Nicole Heussen nheussen@ukaachen.de Institut für Medizinische Statistik RWTH Aachen Zur Statistik im neuen

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Statistische Auswertung in der Betriebsprüfung

Statistische Auswertung in der Betriebsprüfung Dr. Harald Krehl Der Einsatz verteilungsbezogener Verfahren Der Einsatz verteilungsbezogener Verfahren etwa des Benford- Newcomb Verfahrens oder der Normalverteilung bzw. der LogNormalverteilung in der

Mehr

Zweite Bestimmung. des Bundesversicherungsamtes. nach 273 Abs. 2 Satz 5 SGB V. zur kassenübergreifenden Auffälligkeitsprüfung

Zweite Bestimmung. des Bundesversicherungsamtes. nach 273 Abs. 2 Satz 5 SGB V. zur kassenübergreifenden Auffälligkeitsprüfung Zweite Bestimmung des Bundesversicherungsamtes nach 273 Abs. 2 Satz 5 SGB V zur kassenübergreifenden Auffälligkeitsprüfung im Rahmen der Sicherung der Datengrundlagen für den Risikostrukturausgleich (RSA)

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs tatistik für Wirtschaftswissenschaften Lösungen UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Brückenkurs tatistik für Wirtschaftswissenschaften: Lösungen

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

Deduktive und induktive Aspekte statistischer Methoden

Deduktive und induktive Aspekte statistischer Methoden Deduktive und induktive Aspekte statistischer Methoden Wissenschaftshistorische und -philosophische Grundlagen Felix Günther Institut für Statistik Ludwig-Maximilians-Universität München Prof. Seising

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Vorlesung L6: Statistische Tests

Vorlesung L6: Statistische Tests Vorlesung L6: Statistische Tests Dr. Eva Hoster Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie Ludwig-Maximilians-Universität Email: Eva.Hoster@med.uni-muenchen.de Lernziele

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Erläuterung des Vermögensplaners Stand: 3. Juni 2016

Erläuterung des Vermögensplaners Stand: 3. Juni 2016 Erläuterung des Vermögensplaners 1 Allgemeines 1.1. Der Vermögensplaner stellt die mögliche Verteilung der Wertentwicklungen des Anlagebetrags dar. Diese verschiedenen Werte bilden im Rahmen einer bildlichen

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

1. Lösungen zu Kapitel 4

1. Lösungen zu Kapitel 4 1. Lösungen zu Kapitel 4 Übungsaufgabe 4.1 a) Falsch! Die Identifikationsstrategie des Vorher-Nachher-Vergleichs beruht auf der Idee, die Untersuchungseinheiten vor und nach der Intervention mit sich selbst

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

27. Statistische Tests für Parameter. Was ist ein statistischer Test?

27. Statistische Tests für Parameter. Was ist ein statistischer Test? 27. Statistische Tests für Parameter Wenn du eine weise Antwort verlangst, musst du vernünftig fragen Was ist ein statistischer Test? Ein statistischen Test ist ein Verfahren, welches ausgehend von Stichproben

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Kapitel 3: Der t-test

Kapitel 3: Der t-test Kapitel 3: Der t-test Durchführung eines t-tests für unabhängige Stichproben 1 Durchführung eines t-tests für abhängige Stichproben 4 Durchführung eines t-tests für eine Stichprobe 6 Vertiefung: Vergleich

Mehr

Gründungsquoten von über 70% fanden wir bei Dienstleistern (70%), freien Berufen (72%), Handwerk (72 %) und Handelsvertretern (77%).

Gründungsquoten von über 70% fanden wir bei Dienstleistern (70%), freien Berufen (72%), Handwerk (72 %) und Handelsvertretern (77%). Seite 15 8.2 Unterschiede zwischen den Branchen Gründungsquoten von über 70% fanden wir bei Dienstleistern (70%), freien Berufen (72%), Handwerk (72 %) und Handelsvertretern (77%). Im Vergleich zu unserer

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK

LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK LM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK III. In einer Region haben 60 % der Haushalte einen Internetanschluss. Das Diagramm veranschaulicht die Anteile der Zugangsgeschwindigkeiten unter den Haushalten

Mehr

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind?

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind? Modul G 20.12.2007 Zur Hausaufgabe 3 Erkläre die folgenden Plots und Berechnungen zu Wahrscheinlichkeiten aus technischer und statistischer Sicht. a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen,

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Qualitäts- und Prozesskontrolle gedruckter Interferenzeffektfarben erster Generation

Qualitäts- und Prozesskontrolle gedruckter Interferenzeffektfarben erster Generation Qualitäts- und Prozesskontrolle gedruckter Interferenzeffektfarben erster Generation Dr.-Ing. Heike Hupp VDD-Seminarvortrag 1 Interferenzeffektpigmente der ersten Generation Effekte natürlicher Perlen

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 7: Varianzanalyse mit Messwiederholung Nach dem Starten von GPower müssen Sie für Varianzanalysen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Definition: Gedächtnis einer Zeitreihe

Definition: Gedächtnis einer Zeitreihe Lang- und Kurzzeitgedächtnis Definition: Gedächtnis einer Zeitreihe k = M = ρ( k) Eine Zeitreihe hat kurzes Gedächtnis M < Arten von Kausalitätsbeziehungen Beziehung Eigenschaften der Kreuzkorrelation

Mehr

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

Institut für Medizinische Biometrie, Epidemiologie und Informatik WIE ENTSTEHT WISSEN? EVIDENZBASIERTE MEDIZIN

Institut für Medizinische Biometrie, Epidemiologie und Informatik WIE ENTSTEHT WISSEN? EVIDENZBASIERTE MEDIZIN WIE ENTSTEHT WISSEN? EVIDENZBASIERTE MEDIZIN 1 Gliederung Wieso EbM? Was ist EbM? Organisatorisches Wieso EbM? Frau Müller, 37y inflammatorisches MammaCa nach 1y: Progress wünscht sich Zellkernklärung

Mehr

Die Optimalität von Randomisationstests

Die Optimalität von Randomisationstests Die Optimalität von Randomisationstests Diplomarbeit Elena Regourd Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Düsseldorf im Dezember 2001 Betreuung: Prof. Dr. A. Janssen Inhaltsverzeichnis

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick Mehrfeldertabellen und Zusammenhangsmaße 1. Mehrfeldertabellen und Zusammenhangsmaße:

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

KLINISCHE PRÜFUNG EINE EINFÜHRUNG. ATA Conference 2003 - Elke Vogt-Arendt

KLINISCHE PRÜFUNG EINE EINFÜHRUNG. ATA Conference 2003 - Elke Vogt-Arendt KLINISCHE PRÜFUNG EINE EINFÜHRUNG ATA Conference 2003 - Elke Vogt-Arendt Was ist eine klinische Prüfung? Überprüfung von Wirkung, Nebenwirkung, Dosierung usw. eines neuen Arzneimittels vor Markteinführung.

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Auswertung von Messungen Teil III

Auswertung von Messungen Teil III Auswertung von Messungen Teil III 1. Nichtlineare Regression 1.1 Mehrfach-lineare Regression 1. Allgemeines Vorgehen bei nichtlinearen Funktionen. Entscheidungstheorie.1 Signifikanzzahl Signifikanzniveau.

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

2.1 Die Normalverteilung

2.1 Die Normalverteilung . INFERENZSTATISTIK Inferenzstatistik bedeutet übersetzt schließende Statistik. Damit ist der Schluss von den erhobenen Daten einer Stichprobe auf Werte in der Population gemeint..1 Die Normalverteilung

Mehr

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird.

Der Provider möchte möglichst vermeiden, dass die Werbekampagne auf Grund des Testergebnisses irrtümlich unterlassen wird. Hypothesentest ================================================================== 1. Ein Internetprovider möchte im Fichtelgebirge eine Werbekampagne durchführen, da er vermutet, dass dort höchstens 40%

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Institut für Physik Physikalisches Grundpraktikum. Einführung in die Messung, Auswertung und Darstellung experimenteller Ergebnisse in der Physik

Institut für Physik Physikalisches Grundpraktikum. Einführung in die Messung, Auswertung und Darstellung experimenteller Ergebnisse in der Physik Institut für Physik Physikalisches Grundpraktikum Einführung in die Messung, Auswertung und Darstellung experimenteller Ergebnisse in der Physik (Fortsetzung) Schätzung von Messunsicherheiten für eine

Mehr

Herzlich willkommen zum Thema SPSS

Herzlich willkommen zum Thema SPSS Herzlich willkommen zum Thema SPSS (SUPERIOR PERFORMING SOFTWARE SYSTEM) Qualitative und quantitative Forschungsmethoden Qualitative Methoden: Qualitative Verfahren werden oft benutzt, wenn der Forschungsgegenstand

Mehr

Studiendesign und Statistik: Interpretation publizierter klinischer Daten

Studiendesign und Statistik: Interpretation publizierter klinischer Daten Studiendesign und Statistik: Interpretation publizierter klinischer Daten Dr. Antje Jahn Institut für Medizinische Biometrie, Epidemiologie und Informatik Universitätsmedizin Mainz Hämatologie im Wandel,

Mehr

Six Sigma Six Sigma (6σ)

Six Sigma Six Sigma (6σ) Six Sigma (6σ) ist ein statistisches Qualitätsziel und zugleich der Name einer Qualitätsmanagement-Methodik. Ihr Kernelement ist die Beschreibung, Messung, Analyse, Verbesserung und Überwachung von Geschäftvorgängen

Mehr

Wilcoxon-Rangsummen-Test

Wilcoxon-Rangsummen-Test Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene Mittelwerte

Mehr

Einführung in die Wissenschaftstheorie

Einführung in die Wissenschaftstheorie Einführung in die Wissenschaftstheorie von Dr. Wolfgang Brauner Was ist Wissen? Wissen = Kenntnis von etwas haben (allg.) Wissen = wahre, gerechtfertigte Meinung (Philosophie: Platon) Formen des Wissens:

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Prozesskontrolle Modul 7 Dr.-Ing. Klaus Oberste Lehn Fachhochschule Düsseldorf Sommersemester 2012 Quellen www.business-wissen.de www.wikipedia.de www.sdreher.de 2012 Dr. Klaus Oberste Lehn 2 SPC Statistische

Mehr