= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 =

Größe: px
Ab Seite anzeigen:

Download "= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 ="

Transkript

1 1 Lösungsvorschläge zu den Aufgaben 28, 29, 30 b), 31, 32, 33, 35, 36 i) und 37 a) von Blatt 4: 28) a) fx) := x 3 10! = 0 Wir bestimmen eine Näherungslösung mit dem Newtonverfahren: Als Startwert wählen wir x 0 := = 8 < 10, 3 3 = 27 > 10). Iteration: x k+1 = x k fx k) f x k ) = x k x3 k 10 = 3x3 k x3 k + 10 = 2x3 k x 2 k 3x 2 k 3x 2 k x 1 = 2x x 2 0 x 2 = 2x x 2 1 x 3 = 2x x 2 2 = = = = fx 3 ) = > 0, fx ) = f2.1496) = 0.07 < 0 Damit ist 3 10 = 2.15 als wegen der strengen Monotonie einzige) Nullstelle von f auf 2 Stellen nach dem Dezimalpunkt genau berechnet. b) gx) := sin x x/2 =! 0. Bevor wir Näherungslösungen dieser Gleichung bestimmen, klären wir erst einmal, wo überhaupt Nullstellen von g zu finden sind. Zunächst können wir uns auf das Intervall [0, ) beschränken, weil g eine ungerade Funktion ist. Da auf dem Intervall [0, π] g x) = sin x < 0 gilt, ist dort g konkav, und natürlich auch auf dem Teilintervall [0, π/2]. Da nun g0) = 0 und gπ/2) = 1 π/4 = 0.21 > 0 ist, gibt es im Intervall [0, π/2] außer x = 0 keine weitere Nullstelle, wie man sich leicht anschaulich klar macht. Auf dem Intervall [π, ) gilt gx) = sin x x/2 1 π/2 = 0.57 < 0, und damit gibt es dort keine Nullstelle.

2 2 Auf dem Intervall [π/2, π] gilt g x) = cosx 1/2 0 1/2 < 0, und damit ist g dort streng monoton. Es gibt also auf dem Intervall [π/2, π] höchstens eine Nullstelle. Da aber g dort stetig ist und gπ/2) > 0 und gπ) < 0 vergl. o.) gelten, besitzt g dort genau eine Nullstelle. Diese können wir, da die Bedingungen in Folgerung 5.1 a) mit a := π/2 und b := π erfüllt sind, mit dem Newtonverfahren näherungsweise berechnen: Als Startwert wählen wir x 0 := b := π. Iteration: x 1 = x 0 sin x 0 x 0 /2 cosx 0 1/2 x k+1 = x k gx k) g x k ) = x k sin x k x k /2 cosx k 1/2 = π sin π π/2 cosπ 1/2 = π 0 π/2 1 1/2 = 2π/3 x 2 = x 1 sin x 1 x 1 /2 cosx 1 1/2 = x 3 = x 2 sin x 2 x 2 /2 cosx 2 1/2 = gx 3 ) = < 0, gx ) = f1.8907) = < 0 Damit ist die geforderte Genauigkeit erreicht. Die Frage ist nun aber, ob bei der Rundung der korrekten Wertes auf zwei Stellen nach dem Dezimalpunkt 1.89 von her) oder 1.90 von her) herauskäme. Dies prüfen wir mit der Rundungsgrenzzahl Für die gilt g1.895) = > 0. Also liegt die exakte Nullstelle im Intevall , ). Damit ist die Nullstelle mit 1.90 auf 2 Stellen nach dem Dezimalpunkt genau angegeben. Dies ist auch die einzige Nullstelle im Intervall 0, ). Da g eine ungerade Funktion ist, erhalten wir so als Endergebnis: 0, 1.90 und 1.90) sind die auf 2 Stellen nach dem Dezimalpunkt genau bestimmten Lösungen der Gleichung sinx = x/2. Bemerkung: Ich habe nicht begründet, warum ich den Genauigkeitstest in beiden Fällen bei x 3 und nicht schon früher oder später durchführe. In einem Computer Programm könnte man die Abfrage bei jedem Rechenschritt machen. Hier habe

3 3 ich Informationen von außen verwendet. 29) a) N = 2 15 = 30 Halbjahre). Zinssatz für ein Halbjahr: 9/2 = 4.5%). T = = 0 Restschuld Tilgung Zinsen Zahlung I: II: I II I I II b) Summe der Zinsen: S p N + 1 = = = = = = b) 31) n = 5, K 0 = K n q n = = Kn q = n = 7 = ) 1/7 = p = 8.0%) K ) p = 9, K 0 = S = 00, m = 4. Die Schuld nach 5.5 Jahren, also nach n = = 22 Quartalen, ist dann gegeben durch: K 22 = K 0 ) q4 22 = S = p 4 ) ) 22 =

4 4 1 + p! 4 = ) 4 = Der effektive Jahreszinssatz beträgt also p 4 = 9.3%). 33) a) p = 12%), Kapital nach n Jahren, n N: K n = K In diese Formel dürfen wir nicht n = 3.75 einsetzen, weil sie nur für ganzzahlige n gültig ist. Wir berechnen zunächst das Kapital am Jahresende vor dem n = 3.75 entsprechenden Stichtag : K 3 = K Innerhalb des vierten Jahres wird linear verzinst nach der aus der elementaren Zinsrechnung bekannten Formel Zinsen nach t Jahren = Kapital Zeit in Jahren) Zinssatz /. Wenn nach 3.75 Jahren das Sparguthaben abgehoben wird erhält man also: K 3.75 = K 3 + K ) = K = K b) Population nach t Stunden, t R: Pt) = P0) 1 + p /) t = P0) 1.12 t. P3.75) = P0) = P0) Bemerkung: Es gibt auch in dem Rechenergebnis einen Unterschied zwischen der Kapitalentwicklung bei jährlicher Zinsgutschrift mit dem nominellen Zinssatz p = 12 der dann auch der effektive Zinssatz ist) und einer Populationsentwicklung bei stetiger Zinsgutschrift mit dem effektiven Zinssatz p = 12. Dieser Unterschied ist allerdings sehr klein. Der prinzipielle Unterschied soll noch einmal an der folgenden Skizze verdeutlicht werden, bei der wir aber p = 40%) bzw. p = 40%) verwenden. Die glatte Kurve beschreibt Pt) mit P0) = 1 bei stetiger Zinsgutschrift und der darüberliegende Streckenzug die Kapitalentwicklung Kt) mit K0) = 1 bei jährlicher Zinsgutschrift, wobei Kt) das Kapital ist, dass man erhält, wenn man genau zum Zeitpunkt t in Jahren) sein Sparguthaben abhebt. ) n

5 t 35) Bei dieser Aufgabe erfolgen alle Einzahlungen Auszahlungen = negative Einzahlungen) vorschüssig am Anfang jeder Zinsgutschriftsperiode, und zwar jährlich, d.h. m = 1. a)k 0 = 0, R = 3000, p = 5, q = Die Anwendung der Formel 6.9), also ergibt: K n = K 0 q n + R q qn 1 q 1 K 30 = = b) Nach dem Ende des 30. Jahres beginnt die Rentenzahlung mit der Auszahlungsrate von Euro, die jeweils am Jahresanfang gezahlt wird, über 20 Jahre. Wir rechnen also mir der Rate R = Nach 20 Jahren soll das angesparte Vermögen aufgebraucht sein. Der Barwert der Rente ist genau gleich dem angesparten Vermögen, also K 0 = K 30.

6 6 c) p und damit q sind zunächst unbekannt und müssten aus den bisherigen Daten bestimmt werden. Nach Formel 6.18) für den Barwert gilt: K 30 = = K 0 = q m n+1 R) qn 1 q 1 = q q20 1 q 1 Um q zu bestimmen müssten wir ein Polynom 20-ten Grades auflösen, was in der Regel nicht explizit möglich ist. Es ist aber gar nicht verlangt, q zu bestimmen, sondern es nur gefragt, ob p über 5% liegt, d.h. ob q über dem Wert 1.05 liegt. Wenn nun q = 1.05 wäre, würden wir den Barwert K 0 = = erhalten. Für die Rentenzahlung ist aber nach Teil b) ein höherer Barwert erforderlich. Also ist der tatsächlich gewährte Zinssatz für den Anleger ungünstiger, also kleiner als 5%. Diese für die Lösung des Aufgabenteils ausreichende) verballogische Argumentation lässt sich zusätzlich mathematisch absichern: Wir untersuchen K 0 in Abhängigkeit von q, oder besser von := q 1, und benutzen dazu die Formel über die endliche geometrische Reihe auf S.46 : K 0 = R) q n+1 qn 1 q 1 n 1 n+1 = R) q q k = R) n 1 q k n+1 = R) n 1 n k 1 Da R) hier > 0, der letzte Summand konstant, n k 1 n n 2) 1 = 1 > 0 und n k 2 n n 2) 2 = 0 ist, gilt d d K 0 ) = R) n 2 n k 1) n k 2 > 0, d.h. K 0 ) ist streng monoton wachsend auf 0, ). Wird der Zinssatz größer und damit ρ kleiner, so wird der Barwert kleiner. p = 5% ergibt K 0 = = < K 30

7 7 Der wahre Zinssatz, bei dem K 0 = K 30 ist, ist also kleiner als 5%. 36 i) Bei monatlicher Zinsgutschrift kann man vollständig mit Monaten wobei die Monate von 2009 mit eingeschlossen sind) statt mit Jahren als Zeitabschnitte rechnen: Zinsfaktor: q 12 := ) = 1.005, Zahl der Monate: = Es wird am Anfang des Monats eingezahlt, also vorschüssige Zahlung. Endkapital: R q 12 q120 1 q 12 1 = S = 5000, 5%, q = 1.05 a) Feste Tilgungsrate: = Restschuld Tilgung Zinsen Zahlung = = = = =

33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung.

33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung. 1 Lösungsvorschläge zu der Zinsaufgaben 33 37 (bzw. 6 10): 33) (bzw. 6) ) p = 7(%), K 0 = 0, 100(Euro) werden am Ersten des Monats eingezahlt, also vorschüssige Zahlung. I) monatliche Zinsgutschrift: m

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am , bzw

Mathematik I für Wirtschaftswissenschaftler Klausur am , bzw 1 Mathematik I für Wirtschaftswissenschaftler Klausur am 21.2.28, 9. 11. bzw. 9. 9.. Bitte unbedingt beachten: a) Gewertet werden alle acht bzw. drei gestellten Aufgaben. b) Lösungswege sind anzugeben.

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler Mathematik I für Wirtschaftswissenschaftler Bitte unbedingt beachten: Lösungsvorschläge zur Klausur am 2.2.23. a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. 1 Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 22.02.2007, 09.00 11.00. Bitte unbedingt beachten: a) Gewertet

Mehr

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik. ISBN (Buch):

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik. ISBN (Buch): Leseprobe Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik ISBN Buch): 978-3-446-43535-3 ISBN E-Book): 978-3-446-43574- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43535-3

Mehr

Taschenbuch der Wirtschaftsmathematik

Taschenbuch der Wirtschaftsmathematik Taschenbuch der Wirtschaftsmathematik Bearbeitet von Wolfgang Eichholz, Eberhard Vilkner 6., aktualisierte Auflage 013. Buch. 396 S. Kartoniert ISBN 978 3 446 43535 3 Format B x L): 1,7 x 19,5 cm Gewicht:

Mehr

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)

Mehr

Exponentialfunktion. e x+y = e x e y. Insbesondere ist e x = 1/e x. Exponentialfunktion 1-1

Exponentialfunktion. e x+y = e x e y. Insbesondere ist e x = 1/e x. Exponentialfunktion 1-1 Exponentialfunktion Die Potenzfunktion y = e x = exp(x) mit der Eulerschen Zahl e = 2.71828... wird als Exponentialfunktion bezeichnet. Sie ist für alle x R positiv und erfüllt die Funktionalgleichung

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Im Bereich der Zinsberechnung wird zwischen der einfachen ( ) Verzinsung und dem Zinseszins

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Im Bereich der Zinsberechnung wird zwischen der einfachen ( ) Verzinsung und dem Zinseszins SS 2017 Torsten Schreiber 287 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Im Bereich der Zinsberechnung wird zwischen der einfachen ( ) Verzinsung und dem Zinseszins ( ) unterschieden. Bei

Mehr

Mathematik A Musterlösung Nachholprüfung Herbstsemester 2016

Mathematik A Musterlösung Nachholprüfung Herbstsemester 2016 Mathematik A Musterlösung Nachholprüfung Herbstsemester 206 Prof. Dr. Enrico De Giorgi 3. Juli 207 Fachbereich für Mathematik und Statistik, Universität St. Gallen, Bodanstrasse 6, 9000 St. Gallen, Schweiz,

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode SS 2018 Torsten Schreiber 313 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Mathematik 1 Folgen, Reihen und Finanzmathematik

Mathematik 1 Folgen, Reihen und Finanzmathematik Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Folgen, Reihen und Finanzmathematik Inhaltsverzeichnis 1 Zahlenfolgen 2 1.1 Grundlegende

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 1 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals

Mehr

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1.

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1. (K + R ) q 1 n = ln K 0 + R / ln(q) (nachschüssig) q 1 n = ln ( K q + R ) q 1 K 0 + R / ln(q) (vorschüssig) q 1 Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

3.2 Reihen. Mathematik I WiSe 2005/

3.2 Reihen. Mathematik I WiSe 2005/ 3.2 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Die entsprechenden Beispiele werden

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.

Mehr

Elementare Zinsrechnung

Elementare Zinsrechnung Elementare Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p =Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q = 1 + i Diskontfaktor (Abzinsungsfaktor) v = 1/(1 + i) = q 1 Laufzeit n Zinsperioden (Zeitintervalle)

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage. Seite 1

Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage.  Seite 1 Finanzmathematik Aufgaben einfach gelöst mit FinCalcPro 1. Auflage von Francesco Grassi www.educationalapps.ch Seite 1 Inhaltsverzeichnis VORWORT... 3 SYMBOLLISTE...4 FORMELSAMMLUNG... 5 Kap.1 Prozentrechnung...7

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 7 3.9.7 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode SS 2017 Torsten Schreiber 309 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Unterjährige einfache Verzinsung In Deutschland Einteilung des Zinsjahres

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Einführung und Überblick

Einführung und Überblick Einführung und Überblick Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Thomas Zehrt (Universität Basel) Einführung und Überblick 1 / 33 Outline 1

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Problemstellung worum geht es in diesem Kapitel? Kapitel 1 Zinsrechnung. Beispiel Anlage für ein Jahr. Ein einfaches Beispiel

Problemstellung worum geht es in diesem Kapitel? Kapitel 1 Zinsrechnung. Beispiel Anlage für ein Jahr. Ein einfaches Beispiel Kapitel 1 Zinsrechnung Problemstellung worum geht es in diesem Kapitel? 1 Verschiedene Verzinsungsverfahren 2 Häufig auftretende Fragestellung: Wenn man heute einen Betrag X anlegt, wie viel hat man dann

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

*q n :q n. aufzinsen. abzinsen

*q n :q n. aufzinsen. abzinsen BKO W FH12 Merkblatt Finanzmathematik Seite 1 von 6 K.Fröhlig!!!!!!!!WICHTIG!!!!!!! Zahlungen, die zu unterschiedlichen Zeitpunkten erfolgen, können nicht addiert, subtrahiert bzw. untermittelbar miteinander

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite (Grob-) Gliederung A Einführung Thema: Zinsrechnungen B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite Dr. Alfred Brink Dr. A. Brink Institut

Mehr

Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe =

Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe = Aufgabe : [6 Punkte] Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe 0 i i über die Summenformel der geometrischen Reihe ( Nachkommastellen).

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals für

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n heißt

Mehr

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7 Folgen und Reihen. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 2. Untersuchen Sie folgende Folgen auf Monotonie, Beschränktheit, Häufungspunkte und Konvergenz,

Mehr

Klausur Wirtschafts- und Finanzmathematik Lösungshinweise

Klausur Wirtschafts- und Finanzmathematik Lösungshinweise Klausur Wirtschafts- und Finanzmathematik Lösungshinweise Prüfungsdatum: 8. Januar 06 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 5, 5, 5, 5, 5, 5 Summe der Punkte: 90 Aufgabe 5

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Unterjährige Verzinsung Zahlung von Zinsen nicht jährlich, sondern in kürzeren

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur Prof. Dr. Benjamin Stamm Prof. Dr. Martin Grepl Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen II (CES) SS 2016 Klausur 29.07.2016 Dokumentenechtes

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 11

Mathematische Grundlagen der Ökonomie Übungsblatt 11 Mathematische Grundlagen der Ökonomie Übungsblatt 11 Abgabe Donnerstag 1. Januar, 10:15 in H3 3+4+8+5 = 0 Punkte Mit Lösungshinweisen zu einigen Aufgaben 43. Die Funktion f sei auf einem Intervall I R

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker UNIVERSITÄT SIEGEN Prof. Dr. Alfred Müller 12. Februar 2009 Klausuraufgaben Mathematik für Wirtschaftsinformatiker Beachten Sie folgende Hinweise: (1) Überprüfen Sie Ihr Exemplar auf Vollständigkeit! Die

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

F-Mathe-Klausur am

F-Mathe-Klausur am F-Mathe-Klausur am 19.07.2017 Aufgabe 1 Jemand zahlt bei 4% Zinsen p.a. im Zeitraum vom 01.01.2010 bis 31.12.2015 jeweils zu Beginn eines Monats 200 und im Zeitraum vom 01.01.2016 bis 31.12.2018 jeweils

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen:

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: Mathematik für Wirtschaftswissenschaftler im SoSe 24 Lösungsvorschläge zur Klausur im SoSe 24 Aufgabe (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: z = ( + i) 2 w = + i. Stellen Sie jeweils

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Anzahl Zinstage? A: 0, B: 1, C: 2, D: 3, E: 4 # Mathe VL 30.11.2016

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 4 Blatt 5.6.4 Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag 37. Wir bestimmen zunächst die Schnittpunkte

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Einführung des Integrals 15

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Sommersemester 2015 Prof. Dr. Stefan Etschberger HSA Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen zeitlichen Abständen und (meistens) in

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dipl.-Math. Rolf Wendt DOOR Aufgabe 5 Versicherungstechnik Übungsblatt 2 Abgabe bis zum Dienstag, dem 27.0.205 um 0 Uhr im Kasten 9 Die

Mehr

Mathematik A Nachholprüfung Herbstsemester 2017

Mathematik A Nachholprüfung Herbstsemester 2017 Mathematik A Nachholprüfung Herbstsemester 2017 Prof. Dr. Enrico De Giorgi 12. Juli 2018 Mathematik A: Nachholprüfung Herbstsemester 2017 1 phantom Teil I: Offene Fragen (50 Punkte) Allgemeine Anweisungen

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

1 Systematisierung der Verzinsungsarten

1 Systematisierung der Verzinsungsarten 1 Systematisierung der Verzinsungsarten 4 Stetige Verzinsung 5 Aufgaben zur Zinsrechnung Dr. A. Brink 1 1..Syse Systematisierung seugdeve der Verzinsungsarten sugs e Jährliche Verzinsung a Einfache Zinsen

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr