Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen"

Transkript

1 Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 19. VO DAP2 SS Juni

2 Anmeldung zur Klausur um 9:00 Uhr Informatik AI/KI Bacc+Diplom: BOSS System Informationstechnik Diplom: ACHTUNG: bis : online Elektrotechnik Diplom: direkt bei uns Physik Bacc/Diplom: ihr Dekanat Datenanalyse und Datenmanagement / Statistik Bacc/Diplom: ihr eigenes Prüfungsamt Mathematik Bacc/Diplom: erst ab 1.7. bekannt (wahrscheinlich BOSS System) Lehramt, BaMaLa: direkt bei uns? 2

3 Nachtest für Ausnahmefälle Di 1. Juli 2008, 10:15 Uhr, OH14, R. 202 Anmeldung bis 26. Juni erforderlich via an Carsten Gutwenger Stoff: Alles bis inkl. Hashing (inkl Übungsblatt) Teilnahmevoraussetzungen: Attest/Entschuldigt beim 1. oder 2. Übungstest oder besondere Härtefälle anerkannt in meiner Sprechstunde Di ,14:15 Uhr-15:15 Uhr 3

4 Motivation Heute braucht es keine Motivation, denn: Spielereien DFS mit 4

5 Überblick Darstellung von Graphen im Rechner Traversieren von Graphen: Breitensuche (BFS) Tiefensuche (DFS) Elementare Graphalgorithmen: Zusammenhangskomponenten Kreise in Graphen 5

6 Darstellung von Graphen im Rechner: Statische Graphen Im Folgenden sei V={v 1,v 2,,v n } 1. Möglichkeit: Adjazenzlisten Idee: Speichere für jeden Knoten seine Nachbarmenge in einer Liste Realisierung: z.b. Knoten in Array und Nachbarkanten jedes Knotens als einfach verkettete Liste 6

7 Darstellung von Graphen im Rechner: Statische Graphen 2. Möglichkeit: Adjazenzmatrix Idee: Eine VxV Matrix enthält 0/1-Einträge für jedes Knotenpaar {u,v} Realisierung: Sei M=(m i,j ) eine n x n Matrix mit m ij :=1 falls (v i,v j ) E, und m ij :=0 sonst. bei Mehrfachkanten schreibe statt 1 die Anzahl der Kanten 7

8 Darstellung gerichteter Graphen Adjazenzlisten Adjazenzmatrix 8

9 Darstellung ungerichteter Graphen Adjazenzlisten Adjazenzmatrix ist symmetrisch: nur Speicherung 9 der oberen Hälfte

10 HIER: ab jetzt Adjazenzlisten Diskussion für dünne Graphen vorzuziehen! Adjazenzliste: Speicherplatzverbrauch: linear: Θ( V + E ) Zeit für Aufbau: linear: Θ( V + E ) Abfrage, ob Kante (u,v) existiert: Θ(d(v)) Iteration über alle Nachbarn von v V: Θ(d(v)) Adjazenzmatrix: Speicherverbrauch immer quadratisch: Θ( V 2 ) Zeit für Aufbau: immer quadratisch: Θ( V 2 ) Abfrage, ob Kante (u,v) existiert: Θ(1) Iteration über alle Nachbarn von v V: Θ( V ) 10

11 Definitionen Die Dichte (density) eines Graphen G ist das Verhältnis E / V. G heißt dünn, falls seine Dichte O(1) ist G heißt dicht, falls seine Dichte Ω( V ) ist. 11

12 Darstellung von Graphen im Rechner: Dynamische Graphen Dynamisch unter den Operationen: Hinzufügen neuer Knoten und Kanten Entfernen von Knoten und Kanten Idee: für gerichtete Graphen: Inzidenzlisten: speichere ein- und ausgehende Knoten bei v Knoten in doppelt verketteter Liste (damit Entfernen in konstanter Zeit) Inzidenzlisten in doppelt verketteten Listen 12

13 Realisierung Dynamische Graphen: Liste für die Knoten struct Node var Node prev // Vorgänger Knotenliste var Node next // Nachfolger in Knotenliste var Edge outhead // Listenanfang ausgeh. Kanten var Edge inhead // Listenanfang eingeh. Kanten var int index // fortlaufender Index end struct 13

14 Realisierung Dynamische Graphen: Liste für die Kanten struct Edge var Edge prevout //Vorgänger in Liste ausg. Kanten var Edge nextout //Nachfolger in Liste ausg. Kanten var Edge previn // Vorgänger in Liste eing. Kanten var Edge nextin // Nachfolger in Liste eing. Kanten var node source // Anfangsknoten der Kante var node target // Endknoten der Kante end struct Achtung: jeder Kanteneintrag ist genau einmal in Liste enthalten 14

15 Darstellung von Graphen im Rechner: Dynamische Graphen Legende Liste der eingehenden Kanten: 15

16 Analyse Dynamischer Graphen Speicherplatzverbrauch: linear: Θ( V + E ) Zeit für Aufbau: linear: Θ( V + E ) Abfrage, ob Kante (u,v) existiert: Θ(d(v)) Iteration über alle Nachbarn von v V: Θ(d(v)) Iteration über alle ausg. Kanten von v V: Θ(d - (v)) Iteration über alle eing. Kanten von v V: Θ(d + (v)) Einfügen eines Knotens bzw. Kante: Θ(1) Entfernen einer Kante: Θ(1) Entfernen eines Knotens: Θ(d(v)) Man geht davon aus, dass man jeweils Zeiger auf die Knoten und beim Entfernen auch auf die Kanten gegeben hat 16

17 Kap. 6.3 Traversieren von Graphen Traversieren: systematisches Durchwandern von Graphen HIER: ungerichtete Graphen Def.: Der graphentheoretische Abstand zweier Knoten u, v eines ungerichteten Graphen G ist die Länge des kürzesten Weges von u nach v, falls ein solcher existiert, sonst. Achtung: hierbei werden keine vorgegebenen Kantenlängen bzw. Kantengewichte berücksichtigt.

18 Kap Breitensuche (BFS) engl.: Breadth-first-search, BFS Idee: besuche die Knoten nach aufsteigendem graphentheoretischen Abstand zu einem vorher festgelegten Startknoten. 1. Fall: Wir sehen v zum ersten Mal (von u aus): Dann muss dist(v) um genau 1 größer sein als dist(u). Wir können v besuchen, nachdem wir alle bisher gesehenen Knoten besucht haben. 2. Fall: wir haben v schon gesehen nichts zu tun 18

19 Breitensuche (BFS) Methode: (1) Starte am Knoten u:=s. Sei Q:= eine Queue. (2) Für alle Knoten v N(u) // erforsche Knoten u (3) Falls wir v zum ersten Mal sehen: (4) markiere v als gesehen (5) dist(v):=dist(u)+1; merke Vorgänger; (6) hänge v hinten an Q an. (7) Sei u der nächste Knoten in Q. Gehe zu (2) dist(v) enthält den graphentheoretischen Abstand von u nach v; π(v) den Vorgänger des kürz. Weges 19

20 Beispiel für BFS 1 1 c b 20

21 Beispiel für BFS c b e d 21

22 Beispiel für BFS b e d 22

23 Beispiel für BFS e d g f 23

24 Beispiel für BFS d g f 24

25 Beispiel für BFS g f 25

26 Beispiel für BFS f 26

27 Beispiel für BFS Breitensuche entspricht einer level-order Traversierung in diesem BFS-Baum Die orangen Kanten (diejenigen Kanten (u,v), die zum ersten Mal v besuchen) bilden einen Baum: den BFS-Baum (oder BFS-Wald, wenn G nicht zusammenhängend ist)

28 Algorithmus BFS(s) Sei G=(V,E) ungerichteter Graph, s,u,v: Knoten (1) for all v V \ {s} do { marked[v]:=0; dist[v]:= } (2) Q.put(s); marked[s]:=1; dist[s]:=π[s]:=0 (3) while not Q.ISEMPTY() do { (4) u:=q.get() (5) for all v N(u) do { (6) if not marked[v] then { (7) Q.Put(v) (8) marked[v]:=1 (9) dist[v]:=dist[u]+1; π[v]:=u (10) } } } 30

29 BFS-Baum Im Feld π[v] werden die Vorgänger von v gespeichert. Die Kanten (π(v),v) bilden einen Baum mit Wurzel s. Die Höhe des BFS-Baumes mit Startknoten s ist eindeutig bestimmt. Die Tiefe eines Blattes v entspricht dem graphentheoretischen Abstand von v zu s Wurzel s

30 Analyse von BFS Initialisierung: Θ( V ) Die while-schleife wird für jeden von s aus erreichbaren Knoten genau einmal durchlaufen, da jeder Knoten höchstens einmal in die Queue kommt. Die for all-schleife durchläuft für jeden Knoten die Liste seiner Nachbarn N(v), das ist also jeweils Θ(d(v)) Aufwand Gesamtaufwand: Θ( V )+ Θ(d(v))= Θ( V + E ), v V da im Worst Case alle Knoten von s aus erreichbar sein können

31 Problem USSSP Unweighted Single-Source Shortest Path (USSSP): Gegeben: ungerichteter Graph G=(V,E) Gesucht: kürzester Weg von s zu jedem Knoten in G. 33

32 Breitensuche (BFS) Theorem: Sei G=(V,E) ein ungerichteter Graph und s V. Dann löst der Algorithmus BFS(s) das Unweighted Single-Source Shortest Path (USSSP) für Startknoten s in Zeit O( V + E ). 34

33 Kap Tiefensuche 35

34 Tiefensuche (DFS) engl.: Depth-first-search, DFS Idee: besuche die Knoten rekursiv: wenn v zum ersten Mal gesehen wird, markiere ihn als gesehen und erforsche den Graphen von v aus weiter! Im Gegensatz zu Breitensuche, wird hier der Graph erst einmal in seiner Tiefe durchdrungen. Bei Breitensuche werden erst alle gesehenen Knoten bearbeitet, bevor die neuen bearbeitet werden (Queue). Hier wir immer erst das Neue erledigt. 36

35 Tiefensuche DFS Methode: DFS-VISIT(v): Durchlaufe alle Nachbarn von v Für jeden neu entdeckten (nicht markierten) Knoten w: Markiere w; rufe DFS-VISIT(w) auf. Der folgende Algorithmus DFS(G) durchwandert alle Knoten des Graphen. Im Feld π[w] wird jeweils der Vorgänger von w (also v) gespeichert. 37

36 Algorithmus DFS(G) Sei G=(V,E) ungerichteter Graph, v,w: Knoten (1) for all v V do { marked[v]:=0; π[v]:=nil} (2) for all v V do { (3) if not marked[v] then DFS-VISIT(v) (4) } (5) procedur DFS-VISIT(Node v) (6) marked[v]:=1 (7) for all w N(v) do (8) if not marked[w] then { (9) π[w]:=v (10) DFS-VISIT(w) (11) }

37 Beispiel für DFS 2 c 39

38 Beispiel für DFS 2 3 e c 40

39 Beispiel für DFS g e c

40 Beispiel für DFS f g e c

41 Beispiel für DFS f g e c

42 Beispiel für DFS g e c

43 Beispiel für DFS d e c

44 Beispiel für DFS b d e c

45 Beispiel für DFS b d e c

46 Beispiel für DFS d e c

47 Beispiel für DFS e c

48 Beispiel für DFS c

49 Beispiel für DFS

50 Beispiel für DFS Die orangen Kanten (diejenigen Kanten (u,v), die zum ersten Mal v besuchen) bilden einen Baum: den DFS-Baum (G zusammenhängend, sonst Wald)

51 Sei G zusammenhängend DFS-Baum DFS-Baum besteht aus Baumkanten (tree edges, T-Kanten): (π(v),v) Rückwärtskanten (back edges, B-Kanten): s.u. DFS teilt die Kanten in T-Kanten und B-Kanten Für jede B-Kante (u,v) gilt: Es gibt genau einen Weg von v nach u mit T-Kanten im DFS-Baum v 7 6 u 5

52 Sei G zusammenhängend DFS-Baum Jeder Knoten erhält eine eindeutige DFS-Nummer. Für die Rückwärtskanten (u,v) gilt: DFSNUM(u) > DFSNUM(v). DFS teilt die Kanten in T-Kanten und B-Kanten Für jede B-Kante (u,v) gilt: Es gibt genau einen Weg von v nach u mit T-Kanten im DFS-Baum v 7 6 u 5

53 Analyse von DFS Initialisierung: Θ( V ) Die for-all-schleife ohne Aufrufe von DFS-VISIT(): O( V ). DFS-VISIT() wird für jeden Knoten genau einmal aufgerufen. Jeder Aufruf von DFS-VISIT(v) (ohne Kosten der rekursiven Aufrufe) benötigt Θ(d(v)) Zeit. Gesamtaufwand: Θ( V )+ Θ(d(v))= Θ( V + E ) v V 57

54 BFS-Baum vs. DFS-Baum BFS-Baum Höhe eindeutig DFS-Baum

55 BFS & DFS BFS-Baum DFS-Baum 59

56 Kap. 6.4 Elementare Graphenalgorithmen Kap Komponenten eines Graphen Zusammenhangskomponenten 60

57 Definitionen (Zusammenhang) G heißt zusammenhängend (connected), wenn V 1 und für jedes Paar u,v von Knoten ein Weg von u nach v in G existiert. Ein Graph G =(V,E ) mit V V und E E ist ein Untergraph (Teilgraph, subgraph) von G. Wir schreiben G G. Eine (Zusammenhangs-) Komponente (component) von G ist ein maximaler zusammenhängender Untergraph U von G, d.h. es gibt keinen anderen zusammenhängenden Untergraphen U mit U U. 61

58 Komponenten eines Graphen C 1 C 3 C 2 C 4 T-Kanten des DFS-Waldes 62

59 Idee: Bestimmen der Zusammenhangskomponenten Beginne an einem Knoten s und bestimme alle von s aus erreichbaren Knoten Komponente 1 (Markierung mit 1) Beginne nun bei einem noch unmarkierten Knoten v (marked==0) und bestimme alle von v aus erreichbaren Knoten; markiere dabei mit 2 Komponente 2 u.s.w. bis alle Knoten markiert sind 63

60 Algorithmus COMPONENTS(G) Sei G=(V,E) ungerichteter Graph, v,w: Knoten (1) for all v V do { marked[v]:=0} (2) numcomps:=0 (3) for all v V do { (4) if not marked[v] then { (5) numcomps:=numcomps+1 (6) DFS-COMP(v) (7) } } (8) Procedure DFS-COMP(Node v) (9) marked[v]:=numcomps (10) for all w N(v) do (11) if not marked[w] then (12) DFS-COMP(w)

61 Bestimmen der Zusammenhangskomponenten Theorem: Der Algorithmus COMPONENTS(G) bestimmt die Zusammenhangskomponenten eines Graphen G=(V,E) in Zeit Θ( V + E ). 65

62 Kap Kreise in Graphen Aufgabe: Gegeben ist ein ungerichteter Graph G=(V,E). Enthält G einen Kreis? Idee: mittels DFS 66

63 Kreise und DFS Lemma: Sei G ein ungerichteter Graph und F ein beliebiger DFS-Wald für G. Dann ist G genau dann kreisfrei, wenn G keine Rückwärtskante (B-Kante) bezüglich F enthält. Beweis: 1. Fall: F enthält keine B-Kante: dann besteht F nur aus T-Kanten F enthält alle Kanten aus G G kreisfrei 2. Fall: Sei (u,v) B-Kante bzgl. F es existiert Weg v,,u mit T-Kanten in F Weg mit Kante (u,v) bildet Kreis in G. 67

64 Kreise und DFS Methode: Erweitere DFS um Speicherung der B-Kanten: sobald wir von v aus auf einen markierten Knoten u treffen, haben wir eine B-Kante gefunden, falls u nicht der direkte Vorgänger (Elter) von v ist. Algorithmus ISACYCLIC(G) speichert dabei alle B-Kanten. Wenn man nur einen Kreis finden möchte, dann kann man abbrechen, sobald man eine B-Kante gefunden hat. 68

65 Algorithmus ISACYCLIC(G) Sei G=(V,E) ungerichteter Graph (1) function ISACYCLIC(Graph G=(V,E)) : bool { (2) B := (3) for all v V do { marked[v]:=0; π(v):=nil } (4) for all v V do { (5) if not marked[v] then (6) DFS-ACYCLIC(v) (7) } (8) if B then return false else return true (9) } 69

66 Algorithmus ISACYCLIC(G) ff (1) procedure DFS-ACYCLIC(Node v) { (2) marked[v] := true (3) for all w N(v) do (4) if not marked[w] then (5) π[w] := v (6) DFS-ACYCLIC(w) (7) else if π [v] w then (8) B := B (v,w) (9) } (10) } 70

67 Welche Kreise werden gefunden? Pfad von T-Kanten + eine B-Kante a c e f d g b 75

68 Test auf Kreisfreihet Theorem: Die Funktion ISACYCLIC(G) testet einen ungerichteten Graphen G=(V,E) auf Kreisfreiheit in Zeit Θ( V + E ). 76

69 77

70 Zum Ausschneiden und Üben 78

71 Q a b c d e f g

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS Kap. 5: Graphen Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 17. VO DAP2 SS 2009 23. Juni 2008 1 Motivation Warum soll ich heute hier bleiben? Graphen sind wichtig und

Mehr

Motivation Kap. 6: Graphen

Motivation Kap. 6: Graphen Motivation Kap. 6: Graphen Warum soll ich heute hier bleiben? Graphen sind wichtig und machen Spaß! Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Was gibt es

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

Kap. 6.5: Minimale Spannbäume

Kap. 6.5: Minimale Spannbäume Kap. 6.5: Minimale Spannbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 19./20. VO DAP2 SS 2009 30.6./2.7.2009 1 Anmeldung zur Klausur 31.07.2009 um 10:15

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Graphenalgorithmen I

Graphenalgorithmen I Graphenalgorithmen I Vortrag im Seminar Hallo Welt! für Fortgeschrittene 7. Juni 211 Graphenalgorithmen I 1/33 Motivation Problem Wie komme ich am schnellsten ins Kanapee? Problem Wie kommt ein Datenpaket

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Graphalgorithmen I. Simon Regnet. May 16, Universität Erlangen. Simon Regnet (Universität Erlangen) Graphalgorithmen I May 16, / 56

Graphalgorithmen I. Simon Regnet. May 16, Universität Erlangen. Simon Regnet (Universität Erlangen) Graphalgorithmen I May 16, / 56 Graphalgorithmen I Simon Regnet Universität Erlangen May 16, 2008 Simon Regnet (Universität Erlangen) Graphalgorithmen I May 16, 2008 1 / 56 Inhalt 1 Motivation 2 Terminologie 3 Datenstrukturen 4 Suche

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Graphen und Bäume 2. Binäre Suchbäume 3. AVL-Bäume 4. Algorithmen und Datenstrukturen 2 Agenda

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die nformatik 2 raphenexploration Sven Kosub A Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Exkurs: Graphtraversierung

Exkurs: Graphtraversierung Sanders: Informatik III November 28, 2006 1 Exkurs: Graphtraversierung Begriffe Graphrepräsentation Erreichbarkeit mittels Tiefensuche Kreise Suchen Sanders: Informatik III November 28, 2006 2 Gerichtete

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Graphdurchläufe Vorlesender: Martin Aumüller (nach Folien von Prof. Martin Dietzfelbinger) April/Mai 0 FG KTuEA, TU Ilmenau Effiziente Algorithmen Sommersemester 0 Einleitung Kapitel

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 4. September 2017 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte Aufgabe

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 12, Donnerstag, 22.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 12, Donnerstag, 22. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 014 / 015 Vorlesung 1, Donnerstag,. Januar 015 (Graphen, Breiten/Tiefensuche, Zusammenhangskomponenten) Junior-Prof.

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Kapitel 5: Graphen und Graphalgorithmen

Kapitel 5: Graphen und Graphalgorithmen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Algorithmen und Datenstrukturen Kapitel 5: Graphen und Graphalgorithmen Skript zur Vorlesung Algorithmen und Datenstrukturen

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 06.11.2006 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 31.10.2005 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Programmierkurs Python

Programmierkurs Python Programmierkurs Python Stefan Thater Michaela Regneri 2010-0-29 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen für Graphen Tiefen- und Breitensuche Nächste Woche: mehr Algorithmen 2 Was

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri FR.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 011 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 19.06.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Algorithmen und Datenstrukturen 14. Vorlesung

Algorithmen und Datenstrukturen 14. Vorlesung Algorithmen und Datenstrukturen. Vorlesung Karl-Heinz Niggl. Juli 006 Graphentheorie: Grundbegriffe Graphen (ungerichtet) 6 Digraph / gerichteter Graph: 6 FG KTuEA, TU Ilmenau AuD 07..006 FG KTuEA, TU

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Lösungsvorschlag Hausübung 8

Lösungsvorschlag Hausübung 8 Lösungsvorschlag Hausübung 8 Peter Kling 16. Juli 2007 Aufgabe 27 Betrachten Sie den Algorithmus Heapsort (vgl. Alg. 1) aus der Vorlesung. Illustrieren Sie die Arbeitsweise von Heapsort am Beispiel des

Mehr

Motivation Binäre Suchbäume

Motivation Binäre Suchbäume Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in

Mehr

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown Kap. Sortieren..5 HeapSort ff..6 Priority Queues Professor Dr. Vorlesung am Do 7.5. entfällt wegen FVV um Uhr Lehrstuhl für Algorithm Engineering, LS Fakultät für nformatik, TU Dortmund 7. VO DAP SS 009

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub

Mehr

SS10 Effiziente Algorithmen 2. Kapitel: Graphdurchläufe

SS10 Effiziente Algorithmen 2. Kapitel: Graphdurchläufe SS0 Effiziente Algorithmen. Kapitel: Graphdurchläufe Martin Dietzfelbinger April/Mai 00 Kapitel Durchsuchen und Strukturanalyse von Graphen (Ungerichteter) Graph C B W J A R O E G X M FG KTuEA, TU Ilmenau

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Digraphen, DAGs und Wurzelbäume

Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 1 Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 2 Eingangs- und Ausgangsgrad Bei einer gerichteten Kante e = (u,v) E heißt u Startknoten von

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdarstellungen Maike Buchin 0.6.017 Graphen Motivation: Graphen treten häufig als Abstraktion von Objekten (Knoten) und ihren Beziehungen (Kanten) auf. Beispiele: soziale

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 1 V9/11

Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 1 V9/11 Modul: Programmierung B-PRG Grundlagen der Programmierung Teil V9/ Graphen und Bäume Professur für Graphische Datenverarbeitung Institut für Informatik Fachbereich Informatik und Mathematik (2) Rückblick:

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Tiefensuche (Depth-First Search) Robert Hilbrich

Tiefensuche (Depth-First Search) Robert Hilbrich Tiefensuche (Depth-First Search) Robert Hilbrich hilbrich@cpcu.de Gliederung. Einführung. Tiefensuche, der Algorithmus. Modellierung der Arbeitsumgebung. Programmablauf. Korrektheit. Partielle Korrektheit.

Mehr

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14./15. VO DAP2 SS 2008 9./16. Juni 2009 1 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Keller, Schlangen und Listen Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Listen Listen unterstützen die Operationen Lookup, Insert, Remove. + Listen passen sich der Größe der zu speichernden

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Übersicht Topologische Sortierung (einfach) Kürzeste Wege finden

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra Datenstrukturen und Algorithmen Vorlesung 17: (K) Joost-Pieter Katoen Lehrstuhl für Informat Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 1. Juni 15 1 Joost-Pieter

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2017/18 20. Vorlesung Tiefensuche und topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Themen für den 3. Kurztest (Do, 25.01.18)

Mehr

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens Praktikum Algorithmen-Entwurf (Teil 5)..5 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen Endpunkt

Mehr