Die Reizleitung des menschlichen Nervensystems

Größe: px
Ab Seite anzeigen:

Download "Die Reizleitung des menschlichen Nervensystems"

Transkript

1 "Peter" Die Reizleitung des menschlichen Nervensystems Aufbau des Nervensystems Die Reizleitung erfolgt über ein Nervensystem, das aus etwa hundert Milliarden Nervenzellen aufgebaut ist. Diese Zellen sind über den gesamten Körper (ungleichmäßig) verteilt und koordinieren die Aktivitäten sämtlicher Organe und Systeme. Das Nervengewebe dient zum Aufbau nervöser Zentren und peripherer Nerven, die die Aufgabe der Reizleitung von (efferent) und zu (afferent) diesen Zentren übernehmen. Die generell hohe Fortpflanzungsgeschwindigkeit der Impulse und der daraus resultierende hohe Energieverbrauch haben einerseits den hohen Spezialisierungsgrad der Zellen und andererseits die vornehmliche Eignung für kurzfristige Steuer- und Regelaufgaben zur Folge. Im allgemeinen besteht das Nervensystem aus den Neuronen und filamentartigen Fortsätzen, den Neuriten und Dendriten, die Impulse weiterleiten. Gestützt und versorgt wird dieses Informationssystem von den relativ unbekannten Gliazellen. Die Nervenzelle Bereits die ungewöhnliche Form der Zelle läßt Aufschlüsse über die Besonderheit der Zelle zu. Da die Reizleitung vor allem auf elektrischem Wege erfolgt, wird der innere Aufbau von dem Vorhandensein von Mitochondrien geprägt, um die potentialgenerierenden Systeme mit ausreichender Energie zu versorgen. Besagte Gliazellen versorgen in weiterer Folge die Zellen mit angemessen vielen Nährstoffen. Die Hauptmerkmale der Nervenzelle sind die Existenz der Dendriten oder Bäumchenfortsätze zur Aufnahme des Reizes und Verknüpfung mit vorhergehenden Nervenzellen, des Neurits oder Axons zur Weiterleitung des Impulses an weitere Nervenzellen oder verarbeitende Systeme und der Synapse zur Bildung einer interzellulären Verbindung zur Übermittlung des Reizes an andere Nervenzellen. Da Nervenzellen hochdifferenziert sind, ist eine Zellteilung und somit Vermehrung des Zellgewebes nur im embryonalen Stadium möglich. Nach Abschluß der embryonalen Entwicklung sind somit sämtliche Nerven vorhanden und eine Ersetzung abgestorbener Neuronen nicht mehr möglich.! Der Zellkörper (Soma) Dem Zentrum jedes Neurons, dem Zellkörper, kommen vornehmlich Versorgungsaufgaben zu. Der grundlegende Aufbau entspricht selbstverständlich dem aller Körperzellen. Der zumeist kugel- oder pyramidenförmige Zellkörper beinhaltet den großen, ein klar erkennbares Kernkörperchen zeigenden, Zellkern. Im Zellplasma liegen die Nissl-Schollen (Tigroidsubstanz) und Neurofibrillen. Die Tigroidsubstanz, die sich bis in die Dendritenhügel erstreckt, stellt eine Art des endoplasmatischen Reticulums dar. Die Neurofibrillen sind kleinste impulsleitende Fäden, die die Information im Inneren des Zellkörpers weiterleiten. Weiters finden sich eine große Anzahl von Mitochondrien um die benötigte Energie bereitzustellen. Ferner sind auch Produktionsstellen für die Synthese von Enzymen anzutreffen. Eine wichtige Aufgabe kommt dem Zellkörper mit der Synthese von Membranproteinen zu:

2 2 Die Dicke der Membran beträgt so wie die aller Zellen etwa fünf Nanometer. Sie ist aufgebaut aus Molekülen, die je einen lipophilen (fettfreundlichen), also hydrophoben (wasserfeindlichen) und hydrophilen (wasserfreundlichen), also lipophoben (fettfeindlichen) Teil besitzen. Sie lagern sich so zusammen, daß die hydrophilen Enden zum Plasma und zum Äußeren der Zelle weisen, die lipophilen Enden sich gegenseitig im Inneren der Membran berühren. Diese Membran ist von besagten Proteinen durchbrochen oder versehen, die der Zelle so bestimmte Funktionen zuweisen und erst überhaupt gewisse Prozesse ermöglichen. Sie werden in fünf Gruppen gemäß ihrer Aufgaben eingeteilt: I. Pumpenproteine: Mittels Energieverbrauch können sie den Durchgang von Ionen und anderen Molekülen durch die Membran entgegen einem Konzentrationsgefälle ermöglichen. II. III. IV. Kanalproteine: Sie ermöglichen es Ionen und anderen Molekülen die sonst undurchlässige Membran einem Konzentrationsgefälle gemäß zu passieren. Rezeptorproteine reagieren mit Molekülen wie beispielsweise mit Hormonen oder Neurotransmittern, die sodann Zellfunktionen beeinflussen oder aktivieren. Enzyme haben eine Katalysatorfunktion für chemische Reaktionen an oder in der Membran. V. Strukturproteine verbinden Zellen zu einem Organ und erhalten die Feinstruktur der Zellmembran intakt. Diese Proteine werden mittels Vesikel gelagert und bei Bedarf zu ihrem Bestimmungsort innerhalb der Zelle gebracht. Im eigentlichen Prozeß der Reizleitung kommt dem Zellkörper nur eine untergeordnete Rolle zu er stellt zwar die Verbindung zwischen den Empfängern, den Dendriten, und der Weiterleitung durch das Axon dar, jedoch ist seine primäre Funktion in der Versorgung zu sehen.! Die Bäumchenfortsätze (Dendriten) Die Dendriten sind dünne, röhrenförmige Fortsätze, die sich vielfach verästeln. Sie stellen den Kontakt zu Nachbarzellen her, übernehmen Impulse und leiten sie in Richtung des eigenen Zellkörpers weiter. Eine einzige Nervenzellen kann einen einzigen Dendriten besitzen, meist jedoch sind es einige Tausend. Gemäß der Anzahl ihrer Dendriten werden sie als unipolar, pyramidenförmig oder multipolar bezeichnet. Dendriten stellen im allgemeinen die postsynaptische Membran dar: Sie sind mit den Neuriten, den weiterleitenden Teilen anderer Nervenzellen, mit Synapsen verbunden. An dieser Verbindung erfolgt die Weitergabe des Impulses meist nicht auf elektrischem sondern auf chemischem Wege. Die Bäumchenfortsätze dienen aber nicht nur der Weiterleitung von Impulsen sondern auch der Registrierung eines Reizes. Sie befinden sich auf Rezeptoren, die mit Nervenzellen eng verwandt sind. Diese Sinneszellen haben die Aufgabe, auf eine gewisse einwirkende Energieform mit deren Umwandlung in elektrische Impulse und einer Verstärkung zu reagieren. Im allgemeinen fußt die Rezeption eines Reizes auf einer Veränderung des Ruhepotentials, dem Ionengefälle zwischen Innen und Außen der Zelle. Diese meist in Form einer Potentialverringerung auftretende Gradientenänderung erfolgt durch einen Anstieg der Na + -Permeabilität der Membran. Die Umwandlung der Reizenergie in das Rezeptorpotential (die Änderung der Ionengefälles) wird Transduktion, Transformation die Umwandlung in ein für Nervenzellen weiterleitbares Aktionspotential genannt.

3 3! Die Nervenfaser (Axon, Neurit) Das Axon ist das impulsweiterleitende Element der Nervenzelle. Es empfängt den Impuls über die Dendriten und das Soma und überträgt ihn über seine beachtliche Länge an weitere Zellen. Entsprechend dem empfangenden Gegenstück unterscheidet man axo-somatische, axo-axonische und axo-dendritische Übermittlung. Diese Übertragungsstelle ist die Synapse. Durchschnittlich besitzt jede Nervenzelle etwa tausend bis zehntausend dieser Verbindungsstellen. Der genaue Vorgang der Impulsübertragung an der Synapse wird später behandelt. Sollten Axone nicht auf eine andere Nervenzelle, sondern auf einen Muskel treffen, um dort Aktionen einzuleiten, spricht man von einer motorischen Endplatte. Jedes Neuron besitzt genau ein Axon, jedoch kann sich dieses in einiger Entfernung vom Zellkörper in etliche Verzweigungen aufspalten. Diese Kollaterale genannten Endigungen ermöglichen eine Impulsweitergabe in großem Umfang. Aufgrund seiner Bestimmung für die Impulsleitung enthält das Axon keine Tigroidsubstanz, jedoch Neurofibrillen. Ein weiterer Unterschied zu den Bäumchenfortsätzen besteht in seinen Ausmaßen: Es ist um Vieles länger und etwas dünner. Das Axon, das aus dem Soma am Axonhügel entspringt, kann eine Länge von bis zu einem Meter erreichen. Ein bedeutender Bestandteil einiger Nervenzellen ist die Myelinscheide. Das ist eine lipidhaltige Schicht, die von den umgebenden Schwannschen Scheidezellen um die Längsachse des Axons aufgebaut wird. Die Scheidezellen sind eine spezielle Art der Gliazellen. Ihr Zweck ist die Beschleunigung der Impulsleitung in den Axonen. Axone, die einzeln von Schwannschen Zellen mit einer Myelinhülle umgeben sind, werden markhältig genannt. Als marklos bezeichnet werden Nervenbahnen, deren Axone nur von einer Schicht Schwannscher Zellen umgeben sind und deren Bündelung erst von einer Myelinscheide umgeben ist. Markhaltige Fasern stellen den Großteil der Gehirn- und Rückenmarkssubstanz. Zumal sie eine erhöhte optische Reflektivität aufweisen, wird diese Substanz auch als weiß bezeichnet. Marklose Fasern hingegen erscheinen eher grau und sind im besonderen die postganglionären Fasern des autonomen (vegetativen) Nervensystems. Periphere Nervenfasern beiderlei Typs werden durch Bindegewebshüllen (Perineurum) zu dickeren Kabeln gebunden. Diese wiederum formen größere Nerven, welche ebenso durch Bindegewebe (Epineurium) zusammengehalten werden. Im Nerv befinden sich des weiteren Versorgungselemente, zum Beispiel Blutgefäße. Das Epineurium schützt sämtliche beteiligten Nervenzellen vor mechanischen Beschädigungen wie beispielsweise Überstreckung. Die Myelinscheide des Axons wird periodisch (all 1-2 mm) von den Ranvierschen Schnürringen unterbrochen. Sie stellen die Enden der Schwannschen Scheidezellen dar. Eine ihrer Funktionen ist die Versorgung der Zellmembran mit Nährstoffen. Die Hauptaufgabe besteht jedoch darin, die Leitung des elektrischen Impulses zu beschleunigen: Der Impuls pflanzt sich nicht kontinuierlich durch das ganze Axon fort, sondern springt von Schnürring zu Schnürring. Da die lipoide Myelinschicht kaum ionendurchlässig ist, ist in diesem Bereich eine Erregung des Potentials nahezu unmöglich. Daher überspringt der Impuls diese Gebiete, was diesem Vorgang die Bezeichnung der saltatorischen Erregungsleitung einbringt. Marklose Fasern leiten Impulse mit einer Geschwindigkeit von 0,5 m/s bis 30m/s. Dickere Fasern ermöglichen eine schnellere Leitung, jedoch ist dem eine praktische Grenze von einer Dicke von 1 mm gesetzt, was 30 m/s entspricht. Daß die saltatorische Erregungsleitung eine große Rolle bei genauen und raschen Koordinationsprozessen spielt, beweist die typische Geschwindigkeit von 120 m/s.

4 4 Die Gliazellen Die Stütz-, Schutz- und Ernährungsfunktion wird von den Gliazellen erfüllt. Das Verhältnis von Nervenzellen zu Gliazellen beträgt etwa 1:50. Gliazellen können auch Heilungsprozesse beschädigter Nerven durch Vernarbung begünstigen. Der Raum zwischen den verletzlichen Neuronen wird von ihnen erfüllt, sodaß sie als direktes Bindeglied zwischen Neuronen und Versorgungselementen fungieren. Die Nervenzellen des menschlichen Gehirns verbrauchen pro Tag etwa 80 g Traubenzucker, was der 16fachen Menge des Blutzuckergehaltes unseres Blutes entspricht. Das macht eine effiziente Nährstoffversorgung unabdingbar. Die Kapillaren des Gehirns werden von Gliazellen umfaßt, die diese Nährstoffe direkt und wohldosiert an die Neuronen abgeben. Dieser Mechanismus sieht folgendermaßen aus: Durch die Durchblutung der Haargefäße des Gehirns nehmen die anliegenden Gliazellen Traubenzucker und Glykogen aus dem Blut auf. Sobald sich ein gewisser Grad der Sättigung eingestellt hat, wird die Blutzufuhr langsam durch die anschwellende Gliazelle unterbunden. Somit erhält die Gliazelle weniger Nährstoffe, wird aber gleichzeitig von der aktiven Nervenzelle vorhandener Zucker- und Glykogenmoleküle beraubt. Dadurch schwillt die Gliazelle wieder ab, erhöht die Blutversorgung und reichert sich mit Nährstoffen an. Eine weitere Art der Gliazellen ist die Schwannsche Scheidezelle: Sie wickelt sich im Laufe der embryonalen Entwicklung um das Axon und baut die fettartige Myelinhülle auf. Sie ermöglicht eine weitaus schnellere Leitung des Impulses. Im allgemeinen läßt sich jedoch sagen, daß über die speziellen Funktionen der Gliazellen weniger bekannt ist als über Nervenzellen. Die Impulsleitung Die Leitung vom Empfänger zum Zentrum wird von empfindungsleitenden (afferenten, zentripetalen, sensiblen) Fasern durchgeführt. Die Leitung von Zentren zu ausführenden Organen wird von bewegungsauslösenden (efferenten, zentrifugalen, motorischen) Fasern hergestellt. Signale, die in Nervenfasern geleitet werden, sind elektrische Impulse. Zur Übermittlung an andere Zellen, wie beispielsweise an den Synapsen, bedient sich das Nervensystem auch chemischer Transmissionstechniken. Das Ruhepotential Das Vorhandensein des Ruhepotentials ist die Grundlage für eine rasche Impulsleitung. Es ermöglicht die Leitung eines Impulses ohne eine unmittelbar auf den Reiz folgende Generierung eines elektrischen Feldes; somit wird eine extrem rasche Reaktion auf den einwirkenden Reiz möglich. Das Ruhepotential stellt sozusagen einen leicht anzapfbaren Energiespeicher dar. Die Ausgangssituation ist sowohl im Inneren der Zelle als auch im Äußeren eine Flüssigkeit, in der K + - und Na + -Ionen gelöst sind, wobei das Äußere etwa zehnmal so viele Na + -Ionen wie das Plasma

5 5 enthält; das Konzentrationsgefälle der Kaliumionen ist umgekehrt und beträgt etwa 40:1. Um diesen Gradienten zu erhalten, ist die Zellmembran mit sogenannten Pumpen durchsetzt, die Ionen durch die Membran selektiv durchlassen. Dieser Ionenflux erfolgt in fixierter Stöchiometrie, d. h. es werden gleichzeitig drei Natriumionen aus der Zelle und zwei Kaliumionen in die Zelle transferiert. Ein stöchiometrisch fixierter Transport von Ionen wird als Cotransport bezeichnet, im speziellen, dem gegengerichteten Transport gleichsinnig geladener Ionen, als Antiport. Sollten bei diesem Vorgang Ionen in gleichem stöchiometrischem Anteil bewegt werden, so würde er als elektroneutral bezeichnet werden. Im vorliegenden Fall jedoch wird ein elektrischer Gradient erreicht, weswegen der Pumpvorgang rheogen genannt wird. Hier erfolgt der Ionentransport weiters noch aktiv: Der Transportprozeß wird durch energieliefernde Stoffwechselvorgänge ermöglicht. Die Kalium-Natrium-Pumpen sind Transport-ATPasen Energie wird aus der Hydrolyse von ATP zu ADP bezogen. Aktive rheogene Pumpen werden des weiteren auch als elektrogen bezeichnet, da sie ein Transmembranpotential durch gekoppelten Flux generieren. Die Kalium-Natrium-Pumpe, die eine relative Molekülmasse von aufweist, kann rund 100 Na + -Ionen und 130 K + -Ionen in der Sekunde transportieren. Eine kleine Nervenzelle erreicht, da sie etwa eine Million dergestalter Pumpen aufweist, eine Transportleistung von bis zu 200 Millionen Na + - Ionen pro Sekunde. Nun ist aber die Permeabilität der Membran für die K + -Ionen, die ein recht starkes Konzentrationsgefälle aufweisen, besonders hoch. Da zu jedem Kation aber auch ein entsprechendes Anion gehört, das jedoch nicht die Zellmembran durchdringen kann, entsteht kontinuierlich ein Anionenüberschuß in der Zelle. Ein elektrisches Feld entsteht, das bei Vorhandensein eines gewissen Gradienten keinen weiteren Kationen-Ausstrom gestattet. Dieses Feld wird als Membranpotential bezeichnet, welches im Ruhezustand etwa -70 mv beträgt. Dieses im Inneren der Zelle stets vorhandene negative Ruhepotential ist der Ausgangspunkt für eine sofort verfügbare Energie zu Weiterleitung des eingehenden Impulses. Das Aktionspotential Ein eingehender Reiz kann nun bewirken, daß das Membranpotential einen positiveren Wert als 50 mv erreicht. Ab dieser Spannung nämlich öffnen sich Kanäle in der Membran und eine plötzlicher Ionenstrom gemäß dem vorhandenen Gefälle setzt ein. Ändert sich an einer Nervenfaser zunächst örtlich begrenzt die Spannungsdifferenz auf besagte 50 mv, so aktivieren sich erst die Natriumkanäle ein Stück weiter in Richtung der vorgesehenen Leitrichtung. Derartige Kanäle sind proteingesteuerte Passagen in der Membran, in denen freier Durchlaß speziellen Molekülen gewährt wird. Daraufhin strömen in großem Umfang Na + -Ionen in das Zellinnere, das somit positiv auf 30 mv geladen wird. Sogleich erfolgt die Schließung dieser Kanäle, und andere Kanäle öffnen sich. Diese lassen nun K + -Ionen nach außen ausströmen. Der Ausstrom von Kationen bewirkt somit eine neuerliche negative Ladung der Nervenzelle. Diese Depolarisierung des Membranpotentials pflanzt sich äußerst schnell durch das ganze Axon fort. Der Overshoot von 70 mv auf +30 mv erfolgt in etwa 0,5-1 ms; dem ebenso raschen Abfall folgt eine Refraktärphase, in der die Nervenzelle noch nicht wieder erregbar ist. Sie gliedert sich in die absolute Refraktärphase, in der keine weitere Leitung möglich ist, da die Zelle erst im Begriff ist, das Ruhepotential zu regenerieren, und die relative, in der die Reizschwelle gehoben ist, d. h. ein stärkerer Reiz einwirken muß, um eine Fortpflanzung einzuleiten. Die Refraktärphase verhindert somit auch die Möglichkeit, daß der Impuls in der Nervenzelle rückwärts laufen könnte. Eine weitere Einschränkung des Alles-oder-Nichts-Prinzips ist die Tatsache, daß auch unterschwellige Reize ein Aktionspotential auslösen können, wenn mindestens zwei in einem Zeitraum von maximal 100 ms die Nervenzelle erregen. Dieses Phänomen wird als Summation der Reizwirkung bezeichnet.

6 6 Das Rezeptorpotential, das durch den Reiz generiert wird, ist proportional zur physikalischen Reizstärke. Das Aktionspotential hingegen weist stets die gleiche Amplitude auf. Je stärker der Reiz ist, desto höher ist das Rezeptorpotential und desto öfter wird ein Aktionspotential ausgelöst. Die ursprüngliche Information der Reizstärke ist nun als Frequenz (Aktionspotentiale/Zeiteinheit) verschlüsselt. Wäre die Höhe des Aktionspotentials der Informationsträger (Amplitudenmodulation), würde die Potentialhöhe bei langen Leitstrecken (beim Menschen bis zu 1 m Länge) viel leichter verändert und die Information verfälscht. Daher ist die Frequenzmodulation ein sichereres Übertragungsmittel. An der nächsten Synapse wird die frequenzmodulierte Information wieder demoduliert. Je höher diese Frequenz, desto mehr Neurotransmitter werden freigesetzt. In marklosen Fasern ist die Geschwindigkeit des Impulses proportional zur Quadratwurzel des Durchmessers. Eine Vervierfachung des Querschnitts führt also zur Verdoppelung der Impulsgeschwindigkeit. Die saltatorische Leitung jedoch ermöglicht eine weitaus schnellere Leitung aufgrund der sprunghaften Fortpflanzungsart, wenn auch damit ein erhöhter Energieverbrauch einhergeht. Vorgänge an der Synapse Die Übertragung von Impulsen von Zelle zu Zelle findet an speziellen Strukturen, den Synapsen, statt. Neben elektrischen Synapsen, die Verbindungen durch Ionendiffusionen herstellen, sind auch und vor allem die chemischen bekannt. Grundsätzlich bestehen Synapsen aus dem präsynaptischen Element (zumeist ein Axon), dem synaptischen Spalt, und dem postsynaptischen Element (meist ein Dendrit). An den Synapsen erfolgt die Übertragung des Impulses meist auf chemischem Wege: Der ankommende Impuls veranlaßt das synaptische Endknöpfchen, sogenannte Transmittermoleküle, allen voran Acetylcholin und auch Noradrenalin, auszuschütten. Mit dem Eintreffen des Aktionspotentials öffnen sich im synaptischen Knöpfchen durch die sofort stattfindende Depolarisation Ca ++ -Kanäle. Die einströmenden Ionen veranlassen die Ausschüttung von Neurotransmittern; die Ca ++ -Ionen werden sofort chemisch gebunden. Diese Stoffe befinden sich in Vesikeln, mit deren Hilfe sie sowohl gespeichert, als auch rasch in den synaptischen Spalt entleert werden können. Auf ein Zeichen hin bewegt sich die membranartige Hülle in Richtung des synaptischen Spaltes. Dort verschmilzt die Hülle des Transportvesikels mit der Zellmembran und der Inhalt ergießt sich in den synaptischen Spalt. Dieser Vorgang der Verschmelzung und Entleerung nennt man Exozytose. Die Neurotransmitter diffundieren in weniger als 100 µs durch den 0.2 nm breiten Spalt und reagieren mit der postsynaptischen Membran. Rezeptoren an der postsynaptischen Membran registrieren die ausgeschütteten Neurotransmitter und öffnen Ionenkanäle. Diese komplexen Proteine werden deswegen neurotransmitter-kontrollierte Ionenkanäle genannt, weil ihnen die Reaktion mit Neurotransmittern und das Vorhandensein von Ionenkanälen gemein ist. Durch die Andockung des Transmittermoleküls ändert das Molekül seine Konformation, wodurch die Kanalkomponente eine Passage des ausgewählten Ions ermöglicht. Das Molekül des Acetylcholinrezeptors ist aus fünf weiter unterteilbaren Untereinheiten aufgebaut, von denen zwei mit Acetylcholin besetzt werden müssen, um den Kanal zu öffnen. Ein weiterer interessanter Aspekt des Moleküls ist seine offenbare Lernfähigkeit: Das Molekül ist in der Lage, seine Konformation so abzuändern, daß es auf den Botenstoff verschieden stark anspricht. Einerseits ist diese Fähigkeit ein Schutz vor Übererregung, andererseits kann das Molekül wahrscheinlich die Signalübertragung an der Synapse steigern oder drosseln, was einem Lernprozeß gleichkäme. Das freigesetzte Acetylcholin bewirkt zumeist eine Öffnung des Ionenkanals für eine Dauer von etwa 1 ms. Der Inhalt eines präsynaptischen Transportvesikels öffnet ungefähr 2000 Kanäle; im Falle einer motorischen Endplatte strömen je etwa zwanzigtausend Na + -Ionen in die Muskelzelle.

7 7 Man unterscheidet ferner zwei Arten von chemischen Synapsen: Erregende und hemmende: Wenn Kationen die Ionenkanäle passieren und eine positive Ladung im postsynaptischen Element initiieren, handelt es sich um erregende Synapsen. Hier wird ein Aktionspotential durch die Veränderung des Ruhepotentials in positiver Richtung erzeugt. Hemmende Synapsen hingegen schleusen positive Ionen aus dem Zellinneren heraus oder bringen negative Ionen ins Innere. Da das einer Initialisierung eines Aktionspotentials entgegenwirkt, ist hier von hemmenden Synapsen die Rede. Durch die eindeutige Unterscheidung von prä- und postsynaptischem Element läßt sich eine klare Richtung der Impulsleitung bestimmen.

8 8 Verwendete Literatur AULICH Dieter DECKERS Heinrich, Elektrophysiologisches Praktikum. Wiesbaden CHANGEUX Jean-Pierre, Der Acetylcholin-Rezeptor. In: GOODY Roger S. (Hg.), Proteine. Beiträge aus Spektrum der Wissenschaft. Heidelberg Berlin Oxford FALLER Adolf, GLASER Roland, Biophysik. 4., völlig überarb. Aufl. Jena Stuttgart MANDL Lothar, Organismus und Umwelt 2. Wien ROTHMAN James E. ORCI Lelio, Knospung von Transportvesikeln in Zellen. In: Spektrum der Wissenschaft 5/1996. Heidelberg STEVENS Charles F., Die Nervenzelle. In: Spektrum der Wissenschaft

1 Bau von Nervenzellen

1 Bau von Nervenzellen Neurophysiologie 1 Bau von Nervenzellen Die funktionelle Einheit des Nervensystems bezeichnet man als Nervenzelle. Dendrit Zellkörper = Soma Zelllkern Axon Ranvier scher Schnürring Schwann sche Hüllzelle

Mehr

Grundstrukturen des Nervensystems beim Menschen

Grundstrukturen des Nervensystems beim Menschen Grundstrukturen des Nervensystems beim Menschen Die kleinste, funktionelle und strukturelle Einheit des Nervensystems ist die Nervenzelle = Neuron Das menschl. Gehirn besteht aus ca. 100 Mrd Neuronen (theor.

Mehr

1. Kommunikation Informationsweiterleitung und -verarbeitung

1. Kommunikation Informationsweiterleitung und -verarbeitung 1. Kommunikation Informationsweiterleitung und -verarbeitung Sinnesorgane, Nervenzellen, Rückenmark, Gehirn, Muskeln und Drüsen schaffen die Grundlage um Informationen aus der Umgebung aufnehmen, weiterleiten,

Mehr

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7. Das periphere Nervensystem: 7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7.2. Die Hirnnerven: Sie stammen aus verschiedenen Zentren im Gehirn. I - XII (Parasympathikus: 3,7,9,10)

Mehr

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung Bau Nervenzelle Neuron (Nervenzelle) Dentrit Zellkörper Axon Synapse Gliazelle (Isolierung) Bau Nervenzelle Bau Nervenzelle Neurobiologie

Mehr

Membranen und Potentiale

Membranen und Potentiale Membranen und Potentiale 1. Einleitung 2. Zellmembran 3. Ionenkanäle 4. Ruhepotential 5. Aktionspotential 6. Methode: Patch-Clamp-Technik Quelle: Thompson Kap. 3, (Pinel Kap. 3) 2. ZELLMEMBRAN Abbildung

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

Nanostrukturphysik II Michael Penth

Nanostrukturphysik II Michael Penth 16.07.13 Nanostrukturphysik II Michael Penth Ladungstransport essentiell für Funktionalität jeder Zelle [b] [a] [j] de.academic.ru esys.org giantshoulders.wordpress.com [f] 2 Mechanismen des Ionentransports

Mehr

Physiologische Grundlagen. Inhalt

Physiologische Grundlagen. Inhalt Physiologische Grundlagen Inhalt Das Ruhemembranpotential - RMP Das Aktionspotential - AP Die Alles - oder - Nichts - Regel Die Klassifizierung der Nervenfasern Das Ruhemembranpotential der Zelle RMP Zwischen

Mehr

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1 Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30

Mehr

Das Neuron (= Die Nervenzelle)

Das Neuron (= Die Nervenzelle) Das Neuron (= Die Nervenzelle) Die Aufgabe des Neurons besteht in der Aufnahme, Weiterleitung und Übertragung von Signalen. Ein Neuron besitzt immer eine Verbindung zu einer anderen Nervenzelle oder einer

Mehr

Unterschied zwischen aktiver und passiver Signalleitung:

Unterschied zwischen aktiver und passiver Signalleitung: Unterschied zwischen aktiver und passiver Signalleitung: Passiv: Ein kurzer Stromimpuls wird ohne Zutun der Zellmembran weitergeleitet Nachteil: Signalstärke nimmt schnell ab Aktiv: Die Zellmembran leitet

Mehr

Membranpotential bei Neuronen

Membranpotential bei Neuronen Membranpotential bei Neuronen J. Almer 1 Ludwig-Thoma-Gymnasium 9. Juli 2012 J. Almer (Ludwig-Thoma-Gymnasium ) 9. Juli 2012 1 / 17 Gliederung 1 Aufbau der Neuronmembran 2 Ruhepotential bei Neuronen Diffusion

Mehr

Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung

Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang CHRISANA Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung Inhaltsverzeichnis des Moduls Nervensystem Anatomie des

Mehr

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen Erregungsübertragung an Synapsen 1. Einleitung 2. Schnelle synaptische Übertragung 3. Schnelle synaptische Hemmung chemische 4. Desaktivierung der synaptischen Übertragung Synapsen 5. Rezeptoren 6. Langsame

Mehr

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor.

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor. NaCl Künstlerische Konzeption: Xenia Leizinger Repros: Roman Willhelm technische Betreuung und Druck: Frank Robrecht Schrift: Futura condensed, Bernhard Modern Papier: Igepa Design Offset naturweiß 120

Mehr

Nervengewebe. Neurone. Gliazellen. - eigentliche Nervenzellen - Sinneszellen. -ZNS-Glia -PNS-Glia

Nervengewebe. Neurone. Gliazellen. - eigentliche Nervenzellen - Sinneszellen. -ZNS-Glia -PNS-Glia Nervengewebe Neurone Gliazellen - eigentliche Nervenzellen - Sinneszellen -ZNS-Glia -PNS-Glia Neurone: Formen und Vorkommen apolar: Sinneszellen - Innenohr, Geschmacksknospen unipolar: Sinneszellen - Retina,

Mehr

Übertragung zwischen einzelnen Nervenzellen: Synapsen

Übertragung zwischen einzelnen Nervenzellen: Synapsen Übertragung zwischen einzelnen Nervenzellen: Synapsen Kontaktpunkt zwischen zwei Nervenzellen oder zwischen Nervenzelle und Zielzelle (z.b. Muskelfaser) Synapse besteht aus präsynaptischen Anteil (sendendes

Mehr

Neuronale Signalverarbeitung

Neuronale Signalverarbeitung neuronale Signalverarbeitung Institut für Angewandte Mathematik WWU Münster Abschlusspräsentation am 08.07.2008 Übersicht Aufbau einer Nervenzelle Funktionsprinzip einer Nervenzelle Empfang einer Erregung

Mehr

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen:

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen: Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe besteht aus 2 Bestandteilen: Nervenzelle ( Neuron : Signal aufnehmen, verarbeiten und weiterleiten) Gliazelle, Stützzelle: div. metabolische Funktionen

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

Lückentexte. Muskelzelle (allgemeines) Die Muskelzelle besitzt im hohen Maße die Fähigkeit zum Zusammenziehen (Kontraktion)

Lückentexte. Muskelzelle (allgemeines) Die Muskelzelle besitzt im hohen Maße die Fähigkeit zum Zusammenziehen (Kontraktion) Lückentexte Muskelgewebe Muskelzelle (allgemeines) Die Muskelzelle besitzt im hohen Maße die Fähigkeit zum Zusammenziehen (Kontraktion) Die Muskelzelle lagert Myoglobin als Sauerstoffspeicher ein, das

Mehr

Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie. - Erregungsausbreitung -

Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie. - Erregungsausbreitung - Das Wichtigste Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie - Erregungsausbreitung - Das Wichtigste: 3.4 Erregungsleitung 3.4 Erregungsleitung Elektrotonus Die Erregungsausbreitung

Mehr

Übungsfragen, Neuro 1

Übungsfragen, Neuro 1 Übungsfragen, Neuro 1 Grundlagen der Biologie Iib FS 2012 Auf der jeweils folgenden Folie ist die Lösung markiert. Die meisten Neurone des menschlichen Gehirns sind 1. Sensorische Neurone 2. Motorische

Mehr

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung -

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Fragen zur Vorlesung: Welche Zellen können im Nervensystem unterschieden werden? Aus welchen Teilstrukturen bestehen Neuronen? Welche

Mehr

Postsynaptische Potenziale

Postsynaptische Potenziale Postsynaptisches Potenzial Arbeitsblatt Nr 1 Postsynaptische Potenziale Links ist eine Versuchsanordnung zur Messung der Membranpotenziale an verschiedenen Stellen abgebildet. Das Axon links oben wurde

Mehr

Teststoff: Hormonsystem, Nervensystem

Teststoff: Hormonsystem, Nervensystem Zweiter Biologietest am 15.1.2013, 6E Teststoff: Hormonsystem, Nervensystem Hormonsystem: was sind Hormone? Rezeptoren, Zielzellen Drüsenhormone, Gewebshormone wichtige Hormondrüsen im menschlichen Körper

Mehr

Zelluläre Kommunikation

Zelluläre Kommunikation Zelluläre Kommunikation 1. Prinzipien der zellulären Kommunikation?? 2. Kommunikation bei Nervenzellen Die Zellen des Nervensystems Nervenzellen = Neuronen Gliazellen ( Glia ) Astrozyten Oligodendrozyten

Mehr

Kapitel 05.02: Die Nervenzelle

Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 1 Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 2 Inhalt Kapitel 05.02: Die Nervenzelle...1 Inhalt... 2 Informationsweiterleitung im menschlichen Körper...3

Mehr

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung Vorlesung Einführung in die Biopsychologie Kapitel 4: Nervenleitung und synaptische Übertragung Prof. Dr. Udo Rudolph SoSe 2018 Technische Universität Chemnitz Grundlage bisher: Dieser Teil nun: Struktur

Mehr

Vom Reiz zum Aktionspotential. Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden?

Vom Reiz zum Aktionspotential. Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden? Vom Reiz zum Aktionspotential Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden? Vom Reiz zum Aktionspotential Primäre Sinneszellen (u.a. in den Sinnesorganen) wandeln den

Mehr

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS 1 1 25.10.06 Biopsychologie als Neurowissenschaft 2 8.11.06 Evolutionäre Grundlagen 3 15.11.06 Genetische Grundlagen 4 22.11.06 Mikroanatomie des NS 5 29.11.06 Makroanatomie des NS: 6 06.12.06 Erregungsleitung

Mehr

Passive und aktive elektrische Membraneigenschaften

Passive und aktive elektrische Membraneigenschaften Aktionspotential Passive und aktive elektrische Membraneigenschaften V m (mv) 20 Overshoot Aktionspotential (Spike) V m Membran potential 0-20 -40 Anstiegsphase (Depolarisation) aktive Antwort t (ms) Repolarisation

Mehr

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung

Mehr

Einige Grundbegriffe der Elektrostatik. Elementarladung: e = C

Einige Grundbegriffe der Elektrostatik. Elementarladung: e = C Einige Grundbegriffe der Elektrostatik Es gibt + und - Ladungen ziehen sich an Einheit der Ladung 1C Elementarladung: e = 1.6.10-19 C 1 Abb 14.7 Biologische Physik 2 Parallel- und Serienschaltung von Kondensatoren/Widerständen

Mehr

Die Muskulatur des Menschen

Die Muskulatur des Menschen Die Muskulatur des Menschen Motorische Einheit Im Zentrum der Muskelkontraktion steht die motorische Einheit. Sie besteht aus einem Motoneuron und der von diesem Motoneuron innervierten 1 Gruppe von Muskelfasern.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Reinste Nervensache. Das komplette Material finden Sie hier: School-Scout.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Reinste Nervensache. Das komplette Material finden Sie hier: School-Scout. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Reinste Nervensache Das komplette Material finden Sie hier: School-Scout.de 2 von 30 Das Nervensystem des Menschen (Kl. 9/10) Der

Mehr

Didaktische FWU-DVD. Das Nervensystem des Menschen. Neuronale Informationsübermittlung. Klasse Klasse Trailer ansehen

Didaktische FWU-DVD. Das Nervensystem des Menschen. Neuronale Informationsübermittlung. Klasse Klasse Trailer ansehen 46 11267 Didaktische FWU-DVD Das Nervensystem des Menschen Neuronale Informationsübermittlung Biologie Chemie Klasse 10 13 Klasse 10 13 Trailer ansehen Schlagwörter Adenosintriphosphat; Aktionspotential;

Mehr

Zelltypen des Nervensystems

Zelltypen des Nervensystems Zelltypen des Nervensystems Im Gehirn eines erwachsenen Menschen: Neurone etwa 1-2. 10 10 Glia: Astrozyten (ca. 10x) Oligodendrozyten Mikrogliazellen Makrophagen Ependymzellen Nervenzellen Funktion: Informationsaustausch.

Mehr

Muskelgewebe. Glatte Muskulatur Eingeweide; Spindelförmige Zellen, Zellkern liegt zentral

Muskelgewebe. Glatte Muskulatur Eingeweide; Spindelförmige Zellen, Zellkern liegt zentral Muskelgewebe Muskelgewebe Zellen meist langgestreckt. Können sich verkürzen und mechanische Spannung entwickeln durch kontraktile Fibrillen (Myofibrillen). Glatte Muskulatur Eingeweide; Spindelförmige

Mehr

5. Fülle folgende Tabelle aus! Ergänze die fehlenden Begriffe (...) und notiere, womit man sie vergleichen kann:

5. Fülle folgende Tabelle aus! Ergänze die fehlenden Begriffe (...) und notiere, womit man sie vergleichen kann: Übungsaufgaben: Nerven- und Hormonsystem 1. Was ist hier gezeigt? Beschrifte! 2. Beschreibe den Vorgang der Impulsübertragung im Bereich der Synapse! 3. Wie wirken a) das Pfeilgift Curare und b) das Insektizid

Mehr

Bau des Nervengewebes

Bau des Nervengewebes Bau des Nervengewebes Das Nervengewebe hat eine zelluläre Gliederung und wird prinzipiell in die erregbaren Neuronen und die nicht erregbaren Zellen der Neuroglia unterteilt. Das Nervengewebe organisiert

Mehr

Fernkurs zur Vorbereitung auf die amtsärztliche Heilpraktikerprüfung. Arbeits- und Lernskript mit naturheilkundlicher Begleittherapie

Fernkurs zur Vorbereitung auf die amtsärztliche Heilpraktikerprüfung. Arbeits- und Lernskript mit naturheilkundlicher Begleittherapie Seit 1998 erfolgreich in der Ausbildung zum/zur Heilpraktiker/in Fernkurs zur Vorbereitung auf die amtsärztliche Heilpraktikerprüfung Arbeits- und Lernskript mit naturheilkundlicher Begleittherapie Thema:

Mehr

2.) Material und Methode

2.) Material und Methode 1.) Einleitung: Wenn man unser Nervensystem und moderne Computer vergleicht fällt erstaunlicherweise auf, dass das Nervensystem ungleich komplexer ist. Dazu ein kurzer Überblick: Das menschliche Nervensystem

Mehr

Biomembranen Transportmechanismen

Biomembranen Transportmechanismen Transportmechanismen Barrierewirkung der Membran: freie Diffusion von Stoffen wird unterbunden durch Lipidbilayer selektiver Stofftransport über spezielle Membranproteine = Translokatoren Semipermeabilität

Mehr

Vorlesung Neurophysiologie

Vorlesung Neurophysiologie Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik dschild@gwdg.de Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik dschild@gwdg.de

Mehr

Transmitterstoff erforderlich. und Tremor. Potenziale bewirken die Erregungsübertragung zwischen den Nervenzellen. Begriffen

Transmitterstoff erforderlich. und Tremor. Potenziale bewirken die Erregungsübertragung zwischen den Nervenzellen. Begriffen 4 Kapitel 2 Nervensystem 2 Nervensystem Neurophysiologische Grundlagen 2.1 Bitte ergänzen Sie den folgenden Text mit den unten aufgeführten Begriffen Das Nervensystem besteht aus 2 Komponenten, dem und

Mehr

Wdh. Aufbau Struktur Gehirn

Wdh. Aufbau Struktur Gehirn KW38 MKPs Orga Wdh. Aufbau Struktur Gehirn ZNS/PNS Videotime HA: Gehirn limbisches System Das limbische System 31.3 (S. 418) Aufgabe: Aufgabe 31.3 mit Verwendung der Fachbegriffe in Form eines Lernscripts.

Mehr

Messung des Ruhepotentials einer Nervenzelle

Messung des Ruhepotentials einer Nervenzelle Messung des Ruhepotentials einer Nervenzelle 1 Extrazellulär Entstehung des Ruhepotentials K+ 4mM Na+ 120 mm Gegenion: Cl- K + kanal offen Na + -kanal zu Na + -K + Pumpe intrazellulär K+ 120 mm Na+ 5 mm

Mehr

neurologische Grundlagen Version 1.3

neurologische Grundlagen Version 1.3 neurologische Grundlagen Version 1.3 ÜBERBLICK: Neurone, Synapsen, Neurotransmitter Neurologische Grundlagen Zentrale Vegetatives Peripheres Überblick: Steuersystem des menschlichen Körpers ZNS Gehirn

Mehr

Schematische Übersicht über das Nervensystem eines Vertebraten

Schematische Übersicht über das Nervensystem eines Vertebraten Schematische Übersicht über das Nervensystem eines Vertebraten Die Integration des sensorischen Eingangs und motorischen Ausgangs erfolgt weder stereotyp noch linear; sie ist vielmehr durch eine kontinuierliche

Mehr

Die neuronale Synapse

Die neuronale Synapse Die neuronale Synapse AB 1-1, S. 1 Arbeitsweise der neuronalen Synapse Wenn am synaptischen Endknöpfchen ein Aktionspotenzial ankommt, öffnen sich spannungsgesteuerte Calciumkanäle. Da im Zellaußenmedium

Mehr

Glia- sowie Nervenzellen (= Neuronen) sind die Bausteine des Nervensystems. Beide Zellarten unterscheiden sich vorwiegend in ihren Aufgaben.

Glia- sowie Nervenzellen (= Neuronen) sind die Bausteine des Nervensystems. Beide Zellarten unterscheiden sich vorwiegend in ihren Aufgaben. (C) 2014 - SchulLV 1 von 5 Einleitung Du stehst auf dem Fußballfeld und dein Mitspieler spielt dir den Ball zu. Du beginnst loszurennen, denn du möchtest diesen Ball auf keinen Fall verpassen. Dann triffst

Mehr

Nervenphysiologie 3.4.3

Nervenphysiologie 3.4.3 Bewegungssystem 3.4.3 Nervenphysiologie präsynaptische Endigung Dendriten Zellkörper Axonhügel Axon Bau und Einteilung der Neurone Neurone bestehen aus einem Zellkörper und Nervenfortsätzen und sind zur

Mehr

Forschungsmodul: Komplexe Systeme

Forschungsmodul: Komplexe Systeme Forschungsmodul: Komplexe Systeme Bericht zur Vorlesung vom 25. Oktober 2007 von Jan-Philip Gehrcke Anatomie des Nervensystems Bei der Maus, beim Wolf und auch beim Menschen zeigt sich, dass der anatomische

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen (funktionelle Auswirkungen)

Mehr

neurologische Grundlagen Version 1.3

neurologische Grundlagen Version 1.3 neurologische Version 1.3 ÜBERBLICK: Überblick: Steuersystem des menschlichen Körpers ZNS Gehirn Rückenmark PNS VNS Hirnnerven Sympathicus Spinalnerven Parasympathicus 1 ÜBERBLICK: Neurone = Nervenzellen

Mehr

Passive Transportvorgänge

Passive Transportvorgänge Passive Transportvorgänge Diffusion und Osmose sind passive Transportprozesse. Denn die Zelle muss keine Energie aufwenden, um den Transport der Stoffe zu ermöglichen. Diffusion Einzelsubstanzen sind bestrebt,

Mehr

Vorlesung Neurobiologie SS10

Vorlesung Neurobiologie SS10 Vorlesung Neurobiologie SS10 1 Das Neuron, Invertebraten NS Ko 13.4 10h 2 Vertebraten NS Ko 16.4 8h 3 Membranpotential, Aktionspotential, Ko 20.4 10h Erregungsleitung 4 Sehen 1: Optik, Transduktion Ko

Mehr

Wie funktioniert unser Gehirn?

Wie funktioniert unser Gehirn? Wie funktioniert unser Gehirn? Wie funktioniert unser Gehirn? Was passiert, wenn wir denken? Was passiert, wenn wir unser Denken verändern? Unser Gehirn Das im Kopf liegende Gehirn steuert nahezu alle

Mehr

7 Neurobiologie. 7.1 Die Nervenzelle. Aufgabe 7.1-1: Bau der Nervenzelle

7 Neurobiologie. 7.1 Die Nervenzelle. Aufgabe 7.1-1: Bau der Nervenzelle 7 Neurobiologie 7.1 Die Nervenzelle Aufgabe 7.1-1: Bau der Nervenzelle a) Benenne die Bestandteile der Nervenzelle! b) Welche Aufgaben haben die einzelnen Bestandteile der Nervenzelle? c) Fertige von den

Mehr

Datum: Name: Bio-LK Neurophysiologie Aufbau der Nervenzelle

Datum: Name: Bio-LK Neurophysiologie Aufbau der Nervenzelle Datum: Name: Selbst bei den einfachsten tierischen Organismen findet man spezialisierte Zellen die entweder Reize wahrnehmen oder die Reizinformation weiterleiten und verarbeiten. Alle mehrzelligen Tiere

Mehr

Beide bei Thieme ebook

Beide bei Thieme ebook Beide bei Thieme ebook Neurophysiologie 1) Funktionelle Anatomie 2) Entstehung nervaler Potentiale 3) Erregungsfortleitung 4) Synaptische Übertragung 5) Transmitter und Reflexe 6) Vegetatives Nervensystem

Mehr

Exzitatorische (erregende) Synapsen

Exzitatorische (erregende) Synapsen Exzitatorische (erregende) Synapsen Exzitatorische Neurotransmitter z.b. Glutamat Öffnung von Na+/K+ Kanälen Membran- Potential (mv) -70 Graduierte Depolarisation der subsynaptischen Membran = Erregendes

Mehr

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 ----------------------------------------------------------------------------------------------------- Wie definiert man elektrische

Mehr

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s)

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s) Mechanismen in der Zellmembran Abb 7.1 Kandel Neurowissenschaften Die Ionenkanäle gestatten den Durchtritt von Ionen in die Zelle. Die Membran (Doppelschicht von Phosholipiden) ist hydrophob und die Ionen

Mehr

Mark Hübener und Rüdiger Klein

Mark Hübener und Rüdiger Klein Elektrisch aktiv 15 Für fast 100 Jahre war die im Text erwähnte Golgi-Methode die einzige Möglichkeit, einzelne Neurone vollständig anzufärben. Nach Behandlung des Gewebes mit verschiedenen Salzlösungen

Mehr

Aktionspotential - Variante 1: vom Text zum Fließdiagramm -

Aktionspotential - Variante 1: vom Text zum Fließdiagramm - Aktionspotential - Variante 1: vom Text zum Fließdiagramm - Über das Axon leiten Nervenzellen Informationen verschlüsselt in Form von elektrischen Impulsen weiter, den Aktionspotentialen. Dabei verändern

Mehr

Die Nervenzelle 1. EINLEITUNG 2. NEURONEN (= NERVENZELLEN) Biopsychologie WiSe Die Nervenzelle

Die Nervenzelle 1. EINLEITUNG 2. NEURONEN (= NERVENZELLEN) Biopsychologie WiSe Die Nervenzelle Die Nervenzelle 1. Einleitung 2. Neuronen (Evolution & Funktionelle Anatomie) 3. Neuronentypen 4. Gliazellen 5. Methoden zur Visualisierung von Neuronen Quelle: Thompson Kap. (1), 2, (Pinel Kap. 3) 1.

Mehr

Physiologie: Der Aufbau und die Funktion der Skelettmuskulatur

Physiologie: Der Aufbau und die Funktion der Skelettmuskulatur Physiologie: Der Aufbau und die Funktion der Skelettmuskulatur Hier wird kurz erklärt, wie die Muskulatur aufgebaut ist, wie die chemischen Prozesse in den Muskeln für Kontraktionen sorgen, welche Kontraktions-

Mehr

Brigitta Bondy Psychopharmaka Kleine Helfer oder chemische Keule

Brigitta Bondy Psychopharmaka Kleine Helfer oder chemische Keule Unverkäufliche Leseprobe Brigitta Bondy Psychopharmaka Kleine Helfer oder chemische Keule 128 Seiten, Paperback ISBN: 978-3-406-59980-4 Verlag C.H.Beck ohg, München Grundlagen der Wirkmechanismen der Psychopharmaka

Mehr

Das Auge als Kamera, der blinde Fleck, Neuronen und die Laterale Inhibition

Das Auge als Kamera, der blinde Fleck, Neuronen und die Laterale Inhibition Das Auge als Kamera, der blinde Fleck, Neuronen und die Laterale Inhibition (empfohlene Bildschirmwiedergabe bei 120%) (1) (2) Bau des Auges (Netzhaut grün) (3) Die optische Abbildung auf der Retina: 2

Mehr

Chemische Signale bei Tieren

Chemische Signale bei Tieren Chemische Signale bei Tieren 1. Steuersysteme der Körper: - Endokrines System (Hormonsystem) im Ueberblick 2. Wirkungsweise chemischer Signale - auf Zielzellen - Aktivierung von Signalübertragungswege

Mehr

Kapitel 12 Membrantransport

Kapitel 12 Membrantransport Kapitel 12 Membrantransport Jeder Membrantyp hat seine eigene Selektion von Transportproteinen, die nur bestimmte Stoffe reinlassen und so die Zusammensetzung des von der Membran umschlossenen Kompartimentes

Mehr

C1/4 - Modellierung und Simulation von Neuronen

C1/4 - Modellierung und Simulation von Neuronen C 1 /4 - Modellierung und Simulation von Neuronen April 25, 2013 Motivation Worum geht es? Motivation Worum geht es? Um Neuronen. Motivation Worum geht es? Um Neuronen. Da ist u.a. euer Gehirn draus Motivation

Mehr

System Neuron, Membran, Ionenkanal, Synapse, Gehirn, Netzhaut, Fototransduktion, Farbwahrnehmung, Kontrastwahrnehmung

System Neuron, Membran, Ionenkanal, Synapse, Gehirn, Netzhaut, Fototransduktion, Farbwahrnehmung, Kontrastwahrnehmung Leistungskurs Q 2: Hinweis: Thema, Inhaltsfelder, inhaltliche Schwerpunkte und Kompetenzen hat die Fachkonferenz der Beispielschule verbindlich vereinbart. In allen anderen Bereichen sind Abweichungen

Mehr

Reinste Nervensache eine Lerntheke zum Nervensystem des Menschen VORANSICHT. Das Wichtigste auf einen Blick. o So sind Nervenzellen

Reinste Nervensache eine Lerntheke zum Nervensystem des Menschen VORANSICHT. Das Wichtigste auf einen Blick. o So sind Nervenzellen Der Mensch Beitrag 25 Das Nervensystem des Menschen (Kl. 9/10) 1 von 30 Reinste Nervensache eine Lerntheke zum Nervensystem des Menschen Ein Beitrag von Erwin Graf, Freiburg Mit Illustrationen von Julia

Mehr

Tyrosinkinase- Rezeptoren

Tyrosinkinase- Rezeptoren Tyrosinkinase- Rezeptoren für bestimmte Hormone gibt es integrale Membranproteine als Rezeptoren Aufbau und Signaltransduktionsweg unterscheiden sich von denen der G- Protein- gekoppelten Rezeptoren Polypeptide

Mehr

Das Ruhemembran-Potenzial RMP

Das Ruhemembran-Potenzial RMP Erregbarkeit der Axon Das Ruhemembran-Potenzial RMP - + Nervenzellen sind von einer elektrisch isolierenden Zellwand umgeben. Dadurch werden Intrazellularraum und Extrazellularraum voneinander getrennt.

Mehr

Humanbiologie. Nervenphysiologie

Humanbiologie. Nervenphysiologie Humanbiologie Nervenphysiologie Prof. Dr. Karin Busch Institut für Molekulare Zellbiologie - IMZ Gliederung der VL SoSe 2016 20.4. Bestandteile und Funktionen der Zelle 27.4. Atmung 04.5. Herz/Blutkreislauf

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Zellalterung ist steuerbar. Ein gut geölter Motor lebt länger.

Zellalterung ist steuerbar. Ein gut geölter Motor lebt länger. Zellalterung ist steuerbar Ein gut geölter Motor lebt länger. Dasselbe trifft auch auf den menschlichen Organismus zu. Wenn Organ- und Blutgefäß Zellen regelmäßig mit den notwendigen Vitalstoffen versorgt

Mehr

Ionenkanäle Ionenpumpen Membranruhepotential. username: tierphys Kennwort: tierphys09

Ionenkanäle Ionenpumpen Membranruhepotential. username: tierphys Kennwort: tierphys09 Ionenkanäle Ionenpumpen Membranruhepotential username: tierphys Kennwort: tierphys09 Tutorium: Ragna-Maja v. Berlepsch Dienstag 16:15-18:15 Uhr Raum 2298 Prüfungsfragen VL 1: - Welche generellenfunktionen

Mehr

Das Nervensystem. Die Nervenzellen. Nervensystem I Seite 1 7

Das Nervensystem. Die Nervenzellen. Nervensystem I Seite 1 7 Nervensystem I Seite 1 7 Das Nervensystem Wie ein dicht geknüpftes Straßennetz durchziehen Nervenbahnen unseren Körper und bilden mit dem Rückenmark und der übergeordneten Zentrale, dem Gehirn, das Nervensystem.

Mehr

Die motorische Endplatte und die Steuerung der Muskelkontraktion

Die motorische Endplatte und die Steuerung der Muskelkontraktion Die motorische Endplatte und die Steuerung der Muskelkontraktion 1. Aufbau des Muskels 2. Mechanismus und Steuerung der Muskelkontraktion 2.1 Gleitfilamenttheorie 2.2 Zyklus der Actin-Myosin Interaktion

Mehr

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration 1 Transportprozesse: Wassertransport: Mit weinigen ausnahmen ist die Zellmembran frei durchlässig für Wasser. Membrantransport erfolgt zum größten Teil über Wasserkanäle (Aquaporine) sowie über Transportproteine

Mehr

Das Nervensystem des Menschen Aufbau und Funktionen des Nervensystems

Das Nervensystem des Menschen Aufbau und Funktionen des Nervensystems 55 11266 Didaktische FWU-DVD Das Nervensystem des Menschen Aufbau und Funktionen des Nervensystems Biologie Klasse 7 10 Trailer ansehen Schlagwörter Axon; Cortex; Dendrit; Denken; Endknöpfchen; enterisches

Mehr

Das Nervensystem des Menschen Aufbau und Funktionen des Nervensystems

Das Nervensystem des Menschen Aufbau und Funktionen des Nervensystems 46 11266 Didaktische FWU-DVD Das Nervensystem des Menschen Aufbau und Funktionen des Nervensystems Biologie Klasse 7 10 Trailer ansehen Schlagwörter Axon; Cortex; Dendrit; Denken; Endknöpfchen; enterisches

Mehr

Membran- und Donnanpotentiale. (Zusammenfassung)

Membran- und Donnanpotentiale. (Zusammenfassung) Membranund Donnanpotentiale (Zusammenfassung) Inhaltsverzeichnis 1. Elektrochemische Membranen...Seite 2 2. Diffusionspotentiale...Seite 2 3. Donnanpotentiale...Seite 3 4. Zusammenhang der dargestellten

Mehr

BK07_Vorlesung Physiologie 29. Oktober 2012

BK07_Vorlesung Physiologie 29. Oktober 2012 BK07_Vorlesung Physiologie 29. Oktober 2012 1 Schema des Membrantransports Silverthorn: Physiologie 2 Membranproteine Silverthorn: Physiologie Transportproteine Ionenkanäle Ionenpumpen Membranproteine,

Mehr

Synaptische Transmission

Synaptische Transmission Synaptische Transmission Wie lösen APe, die an den Endknöpfchen der Axone ankommen, die Freisetzung von Neurotransmittern in den synaptischen Spalt aus (chemische Signalübertragung)? 5 wichtige Aspekte:

Mehr

Die Zelle. Membranen: Struktur und Funktion

Die Zelle. Membranen: Struktur und Funktion Die Zelle Membranen: Struktur und Funktion 8.4 Die Fluidität von Membranen. 8.6 Die Feinstruktur der Plasmamembran einer Tierzelle (Querschnitt). (Zum Aufbau der extrazellulären Matrix siehe auch Abbildung

Mehr

Signale und Signalwege in Zellen

Signale und Signalwege in Zellen Signale und Signalwege in Zellen Zellen müssen Signale empfangen, auf sie reagieren und Signale zu anderen Zellen senden können Signalübertragungsprozesse sind biochemische (und z.t. elektrische) Prozesse

Mehr

Aufbau und Funktion von Neuronen Neuronale Informationsverarbeitung und Grundlagen der Wahrnehmung Plastizität und Lernen

Aufbau und Funktion von Neuronen Neuronale Informationsverarbeitung und Grundlagen der Wahrnehmung Plastizität und Lernen Grundkurs Q 2: Inhaltsfeld: IF 4 (Neurobiologie) Unterrichtsvorhaben V: Molekulare und zellbiologische Grundlagen der neuronalen Informationsverarbeitung Wie ist das Nervensystem des Menschen aufgebaut

Mehr

Was versteht man unter Polyneuropathie?

Was versteht man unter Polyneuropathie? 7 2 Was versteht man unter Polyneuropathie? Udo Zifko 2.1 Unser Nervensystem: Anatomie und Physiologie 8 2.1.1 Länge des Nervs 8 2.1.2 Dicke des Nervs 10 2.1.3 Struktur des Nervs 10 2.2 Arten der Polyneuropathie

Mehr

4) Diese Hirnregion steuert die wichtigsten Körperfunktionen wie Essen, Trinken und Schlafen.

4) Diese Hirnregion steuert die wichtigsten Körperfunktionen wie Essen, Trinken und Schlafen. Wie gut haben Sie aufgepasst? 1) Das Gehirn und das Rückenmark bilden das... periphere Nervensystem autonome Nervensystem zentrale Nervensystem 2) Das System wird auch als emotionales Gehirn bezeichnet.

Mehr

abiweb NEUROBIOLOGIE Abituraufgaben 17. März 2015 Webinar zur Abiturvorbereitung

abiweb NEUROBIOLOGIE Abituraufgaben 17. März 2015 Webinar zur Abiturvorbereitung abiweb NEUROBIOLOGIE Abituraufgaben 17. März 2015 Webinar zur Abiturvorbereitung Vergleichen Sie die Leitungsgeschwindigkeiten der myelinisierten (blau/ grau) und nicht myelinisierten (helles blau) Nervenbahnen!

Mehr