Statistical Coaching. Thomas Forstner

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistical Coaching. Thomas Forstner"

Transkript

1 Statistical Coaching Thomas Forstner

2 Diagnoseverfahren

3 Allgemein Vergleich: wahrer Befund mit Test (Diagnose) wahrer Befund muss bekannt sein (Goldstandard) 3

4 Analogie zur Testtheorie 4

5 Beurteilung von Diagnosestudien Mittels Klassifikationswahrscheinlichkeiten bzw. Prognosewahrscheinlichkeiten auf Basis bedingter Wahrscheinlichkeiten Sensitivität (Se): P(positive Diagnose krank) krank und eine positive Diagnose Spezifizität (Sp): P(negative Diagnose gesund) gesund und eine negative Diagnose Positiver Vorhersagewert (PPV): P(krank positive Diagnose) positive Diagnose und wirklich krank Negativer Vorhersagewert (NPV): P(gesund negative Diagnose) negative Diagnose und wirklich gesund Prävalenz: P(krank) Verbreitung der Krankheit in der Bevölkerung 5

6 Berechnung 6

7 Beispiel 7

8 Perfektes Diagnoseverfahren Sensitivität (Se): P(positive Diagnose krank) = 100% Spezifizität (Sp): P(negative Diagnose gesund) = 100% Positiver Vorhersagewert (PPV): P(krank positive Diagnose) = 100% Negativer Vorhersagewert (NPV): P(gesund negative Diagnose) = 100% 8

9 Zufalls -Diagnoseverfahren Sensitivität (Se) = P(Diagnose positiv) Spezifizität (Sp) = P(Diagnose negativ) Positiver Vorhersagewert (PPV) = Prävalenz Negativer Vorhersagewert (NPV) = 1- Prävalenz 9

10 Beurteilung von Diagnosestudien Likelihood Ratio+: Sensitivität / (1 Spezifität) Likelihood Ratio-: (1-Sensitivität) / Spezifität Likelihood-Ratio quantifiziert die Änderung der Chancen auf die Krankheit bei Kenntnis des positiven bzw. negativen Testergebnisses Bei einem perfekten Diagnoseverfahren ist LR+ = bzw. LR- = 0 Bei einem nutzlosen Zufalls-Diagnoseverfahren ist LR+ = LR- = 1 10

11 Vergleich von Diagnoseverfahren Ein Verfahren ist in allen Maßzahlen besser -> eindeutige Entscheidung Das Verfahren ist nur in einer Maßzahl (z.b.: Sensitivität besser) -> Entscheidung schwieriger Lösung: Ein Maß definieren, dass beide Maßzahlen (Sensitivität und Spezifizität) verwendet -> häufig werden die Kosten dafür verwendet 11

12 Kosten C Kosten des Tests CDp Kosten der Behandlung für eine erkrankte und positiv diagnostizierte Person CDn Kosten der Behandlung für eine erkrankte aber negativ diagnostizierte Person CGp Kosten (z.b.: unnötige Behandlungen) für eine gesunde aber positiv diagnostizierte Person Kosten = C + CDp * Se * Prävalenz + CDn * (1-Se) * Prävalenz + CGp * (1-Sp) * (1-Prävalenz) 12

13 Beispiel Man stellt sich die Frage ob ein Screening für eine bestimmte Krebsart rein von der Kostenseite her sinnvoll ist. Man nimmt eine Prävalenz von 0,8% an. Ein Screeningverfahren hat eine Sensitivität von 51% bzw. eine Spezifität von 98%. C Testkosten 40 $ / CDp Behandlungskosten erkrankte und positiv getestete Person 1730 $ / CDn teurere Behandlungskosten erkrankte aber negativ getetste Person $ / CGp Kosten für weitere Untersuchung für gesunde aber positiv getestete Personen 170$ Kosten bei Screening = *0,51*0, *0,49*0, *0,02*0,992 = 119 $ Kosten ohne Screening = Prävalenz * CDn = 0,008*17500 = 140 $ 13

14 ordinales bzw. metrische Testergebnisse Beispiel: Radiologin beurteilt Mammographien auf einer Skala zwischen 1 (normal) bis 5 (bösartig) Allgemein: 14

15 ordinales bzw. metrische Testergebnisse Wahl von verschiedenen Cut-Off-Werten ( Trennwerte zw. gesund und krank ) und Dichotomisierung des metrischen bzw. ordinalen Testergebnisse Bildung und Betrachtung der Sensitivität bzw. Spezifität für alle möglichen Cut-Off-Werte getrennt Grafische Darstellung aller möglichen Cut-Off-Werte mittels ROC-Kurven 15

16 ROC-Kurven ROC-Kurve: Methode zur Beschreibung der Güte eines Diagnoseverfahrens unter der Berücksichtigung von verschiedenen Cut-Off-Werten 16

17 ROC-Kurven Erstellung durch stückweise lineare Interpolation (Verbindung von Punktepaaren Sensitivität und 1-Spezifität jeweils abhängig vom Cut-Off-Wert, 1-Spezifität wird als False Positve Rate bezeichnet) Maximum-Likelihood-Methode: Mittels ML-Schätzung Bestimmung einer Kurve durch die Punktepaare Sensitivität und Spezifität (sehr rechenintensiv, in Praxis kaum verwendet) Beispiel: Patienten mit künstlichen Herzklappen. Ab einem Herzklappenabstand von 0,14 cm (Cut-Off-Wert) wird von einem Defekt ausgegangen. Es sollen verschiedenen Cut-Off-Werte verglichen werden. 17

18 Interpretation Quelle: Fletcher, Fletcher und Wagner, Klinische Epidemiologie 18

19 ROC-Kurven Sensitivität und Spezifität: Maßzahlen für die Güte eines Diagnoseverfahrens bei einem fixen Cut-Off-Wert an Gesucht: Maßzahl, welches die Güte eines Diagnoseverfahrens abhängig von verschiedenen Cut-Off-Werten angibt: Fläche unter der ROC-Kurve (Wertebereich zw. 0 und 1) 19

20 Fläche unter ROC Empirische ROC-Kurven: Mittels der Trapezregel: Parametrische ROC-Kurven: Mittels Integralrechnung: 20

21 Beispiel Mammographie an 58 Frauen. Wahrer Zustand mittels Biopsie bestätigt. Fläche unter der ROC-Kurve soll berechnet werde. 21

22 Interpretation der Fläche durchschnittlicher Wert der Sensitivität für alle möglichen Werte der Spezifität durchschnittlicher Wert der Spezifität für alle möglichen Werte der Sensitivität jene Wahrscheinlichkeit, dass bei zufälligen Auswahl je eines Objektes, auf das die Bedingung zutrifft, und eines Objektes, auf das die Bedingung nicht zutrifft, das Objekt mit der Bedingung mit einer höheren Wahrscheinlichkeit von einem Klassifikationsschema als positiv eingestuft wird. Kann das Klassifikationsschema keine Zuordnung treffen, ist die Wahrscheinlichkeit nicht höher als bei einer zufälligen Entscheidung. Beispiel: Man hat eine Grundgesamtheit von 100 Personen. 50 Personen sind an einer bestimmten Krankheit erkrankt, die anderen 50 sind gesund. Wählt man nun eine kranke und eine gesunde Person aus, wird ein medizinischer Test die kranke Person wahrscheinlicher als krank erkennen als die gesunde Person. 22

23 Varianz der Fläche Die Berechnung der Fläche unter der ROC-Kurve ist formal mit der Berechnung der Teststatistik des Mann-Whitney-U-Test verwandt. Dieser Zusammenhang kann zur Berechnung der Varianz ausgenützt werden. 23

24 Vergleich zweier ROC-Kurven Vergleichsmaß: Fläche unter der Kurve Hypothesen: Teststatistik: Teststatistik ist asymptotisch normalverteilt 24

25 Konfidenzintervalle Asymptot. Konfidenzintervall für eine ROC-Kurve: Basis Konfidenzintervalle für die jeweiligen Punktepaare Sensitivität und Spezifität: Asymptot. Konfidenzintervall für Fläche: 25

26 Beispiel Vergleichen Sie die ROC-Kurven der Mammographie-Befunde von jeweils 60 Frauen, die mit 2 verschiedenen Computertomographen erstellt wurden. Computertomograph A: Fläche = 0,847 (20 bösartig, 40 gutartig) Computertomograph B: Fläche = 0,747 (10 bösartig, 50 gutartig) Nullhypothese kann nicht abgelehnt werden p = 0,206 26

27 Optimaler Cut-Off-Wert Optimal ist hier definiert als maximale Sensitivität und maximale Spezifität Bestimmung mittels Youden-Index Youden-Index: Punkt welcher am weitesten von der 45 Grad Geraden entfernt ist 27

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung V Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns 2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs

Mehr

Epidemiologie / Biometrie

Epidemiologie / Biometrie Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert hochstrat@web.de

Mehr

Diagnostische Verfahren

Diagnostische Verfahren 6. Diagnostische s Jede Registrierung oder Auswertung einer Information mit dem Ziel der Erkennung einer Erung oder eines speziellen Zustandes wird diagnostischer genannt. Beispiele Reaktion auf Ansprechen

Mehr

Bewertung diagnostischer Tests

Bewertung diagnostischer Tests n g c gesund krank n k c Segreganz negativ positiv negativ positiv Relevanz Beertung diagnostischer Tests gesund krank c Annahme: Überlappende Populationen eine messbare Grösse (z.b Konzentration) vergrössert

Mehr

Epidemiologie und HIV-Tests

Epidemiologie und HIV-Tests 26. November 2009 Cornelias HIV-Test Das ist Cornelia. Cornelia möchte Plasmaspenderin werden. Dafür braucht sie einen negativen Befund eines HIV-Tests. Deshalb geht sie ins Krankenhaus. Cornelias HIV-Test

Mehr

Themenblock. Diagnose und Prognose. Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik. Themen im Block Diagnose und Prognose

Themenblock. Diagnose und Prognose. Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik. Themen im Block Diagnose und Prognose Themenblock Diagnose und Prognose Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik Themen im Block Diagnose und Prognose Diagnose Prävalenz und prädiktive Werte Güte von diagnostischen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Klausur in "Biomathematik" WS 2007 / 2008 Montag, den 28. Januar 2008

Klausur in Biomathematik WS 2007 / 2008 Montag, den 28. Januar 2008 Klausur in "Biomathematik" WS 2007 / 2008 Montag, den 28. Januar 2008 Name: Matrikelnummer: Unterschrift: Aufgabe 1: Bei einer klinischen Therapiestudie wird bei allen Patienten der Wert eines quantitativen

Mehr

Täuschung und Manipulation mit Zahlen Teil 1

Täuschung und Manipulation mit Zahlen Teil 1 Täuschung und Manipulation mit Zahlen Teil 1 Kleines Statistikseminar zum kritischen Umgang mit Zahlen 23.3.2011 Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus Berlin Folien: Mammographie-Screening.de

Mehr

EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes

EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Seite - 1 - EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Im vorigen EbM-Splitter [4] wurde auf die

Mehr

Täuschung und Manipulation mit Zahlen

Täuschung und Manipulation mit Zahlen 58. Ärztekongress Berlin/Charité 4.11.2010 Täuschung und Manipulation mit Zahlen Kleines Statistikseminar zum kritischen Umgang mit Zahlen Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus

Mehr

WIE SICHER IST DIE DIAGNOSE?

WIE SICHER IST DIE DIAGNOSE? WIE SICHER IST DIE DIAGNOSE? ÜBER DEN UMGANG MIT UNSICHERHEIT IN DER MEDIZIN Mag. Andrea Fried Bundesgeschäftsführerin ARGE Selbsthilfe Österreich 2.10.2014 1 2.10.2014 2 Der Fluch der Statistik Medizinische

Mehr

Inhaltsverzeichnis. 0 Einleitung 1

Inhaltsverzeichnis. 0 Einleitung 1 Inhaltsverzeichnis 0 Einleitung 1 1 Univariate Statistik 3 1.1 Begriffsdefinitionen... 3 1.1.1 Beobachtungseinheit, Merkmal... 3 1.1.2 Merkmalstypen... 3 1.1.3 Skalenniveaus... 4 1.1.4 Häufigkeiten...

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur WS 2002/2003 Aufgabe 1: Man gehe davon aus,

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2003 Aufgabe 1: Welche der unten angegebenen

Mehr

2. Übung Diagnostik. Ein erfundenes Beispiel (H.P.Beck-Bornholt und H.-H.Dubben)

2. Übung Diagnostik. Ein erfundenes Beispiel (H.P.Beck-Bornholt und H.-H.Dubben) Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 2. Übung Diagnostik Universität Leipzig

Mehr

Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen?

Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen? Urania Berlin 13.10. 2008 Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen? Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus

Mehr

Bedingte Wahrscheinlichkeit. Beispiel zur bedingten Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit. Beispiel zur bedingten Wahrscheinlichkeit Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die Wahrscheinlichkeiten für das Eintreten von Ereignissen durch das Eintreten anderer Ereignisse

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Bedingte Wahrscheinlichkeiten & Unabhängigkeit

Bedingte Wahrscheinlichkeiten & Unabhängigkeit Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die

Mehr

Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig.

Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig. Diagnostikstudien Dr. Dirk Hasenclever IMISE, Leipzig Hasenclever@IMISE.uni-Leipzig.de Diagnostische Tests Krankheit ja Krankheit nein Test positiv TrueP FP Test negativ FN TrueN Test- Positive Test- Negative

Mehr

Vorlesung - Medizinische Biometrie

Vorlesung - Medizinische Biometrie Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie

Mehr

Medizinische Entscheidungstheorie. Stiftungslehrstuhl Health Economics

Medizinische Entscheidungstheorie. Stiftungslehrstuhl Health Economics Stiftungslehrstuhl Health Economics SS 2011: Vorlesung mit Übungen: mittwochs 10-12 Uhr Dozent: Prof. Dr. Stefan Felder, Raum 340 Sprechstunde: Mo 10-12 Uhr Vorlesungsunterlagen unter Lehrstuhlseite: http://wwz.unibas.ch/abteilungen/home/abteilung/health/

Mehr

Sensitivität und Spezifität (95% Konfidenzintervalle)

Sensitivität und Spezifität (95% Konfidenzintervalle) Prädiktive Werte als Gütemaÿe in Diagnosestudien: Anwendungsmöglichkeiten und Analysemethoden Katharina Lange Abteilung Medizinische Statistik Georg-August-Universität Göttingen Inhalt Beispiel: Diagnostische

Mehr

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin Sc ioinformatik Wintersemester 013/014 Nachklausur zur Statistik I Freie Universität erlin 4. pril 014 Matrikelnummer Nachname Vorname Unterschrift ufgabe 1 (4 Punkte): Zu einem Wahrscheinlichkeitsraum

Mehr

Prinzipien der klinischen Epidemiologie

Prinzipien der klinischen Epidemiologie Prinzipien der klinischen Epidemiologie Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006

MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006 MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006 Name: Matrikelnummer: Unterschrift: Aufgabe 1 In einer kleinen Gemeinde in Baden-Württemberg traten vermehrt Fälle von Q-Fieber

Mehr

Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 13 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 19.05.15 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie

Mehr

Bewertung diagnostischer Tests

Bewertung diagnostischer Tests n g c gesund krank n k c Segreganz negativ positiv negativ positiv Relevanz Beertung diagnostischer Tests gesund krank c Annahme: Überlappende Populationen eine messbare Grösse (z.b Konzentration) vergrössert

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

1 Kontrollierte klinische Studien - eine Einführung Zur Notwendigkeit randomisierter Studien: Hochdosis- Chemotherapie beim Mammakarzinom...

1 Kontrollierte klinische Studien - eine Einführung Zur Notwendigkeit randomisierter Studien: Hochdosis- Chemotherapie beim Mammakarzinom... Inhaltsverzeichnis EINLEITUNG 1 Kontrollierte klinische Studien - eine Einführung...1 1.1 Die Salk-Polio-Studie...3 1.2 Die Problematik historischer Vergleiche...5 1.3 Beobachtungsstudien und Registerdaten...8

Mehr

Neuere Ansätze zur Auswahl von Prädiktionsmodellen. Von Veronika Huber

Neuere Ansätze zur Auswahl von Prädiktionsmodellen. Von Veronika Huber Neuere Ansätze zur Auswahl von Prädiktionsmodellen Von Veronika Huber Gliederung Anwendungsbereiche von Prädiktionsmodellen Traditionelle Methoden zur Prüfung der Wirksamkeit Neuere Ansätze zur Prüfung

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW)

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW) 50 3.3 Das Fruchtwasser-Schätzvolumen in der 21.-24.SSW und seine Bedeutung für das fetale Schätzgewicht in der 21.-24.SSW und für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.3.1 Referenzwerte für

Mehr

Statistik-Klausur I E SS 2010

Statistik-Klausur I E SS 2010 Statistik-Klausur I E SS 2010 Name: Vorname: Immatrikulationsnummer: Studiengang: Hiermit erkläre ich meine Prüfungsfähigkeit vor Beginn der Prüfung. Unterschrift: Dauer der Klausur: Erlaubte Hilfsmittel:

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

FAQ Kontakt Impressum Systemvoraussetzungen. Kursanmeldung bei der vhb

FAQ Kontakt Impressum Systemvoraussetzungen. Kursanmeldung bei der vhb FAQ Kontakt Impressum Systemvoraussetzungen Zur Kursdemo Kursanmeldung bei der vhb Herzlich willkommen! Das epidemiologische Lernprogramm soll den Studierenden einen systematischen Zugang zur klinischen

Mehr

Bedingte Wahrscheinlichkeiten & Unabhängigkeit

Bedingte Wahrscheinlichkeiten & Unabhängigkeit Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte

Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte EbM-Splitter 11 Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte In den beiden letzten EbM-Splittern [6, 7] wurden die Maßzahlen Sensitivität (Wahrscheinlichkeit, eine kranke Person als

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 9. Dezember 2009 Bernd Klaus, Verena Zuber

Mehr

Medizinische Psychologie. Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information

Medizinische Psychologie. Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information Medizinische Psychologie Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information Bewertung wissenschaftlicher Ergebnisse Replizierbarkeit (Wiederholbarkeit)

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Seminar Diagnostik L5

Seminar Diagnostik L5 Seminar Diagnostik L5 Regenwahrscheinlichkeit Bezugsgröße festlegen! Beipackzettel Bezugsgröße festlegen! Brustkrebs-Screening Entscheidungsmöglichkeiten bei diagnostischen Tests Wahrer Zustand des Patienten

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Exakter Binomialtest als Beispiel

Exakter Binomialtest als Beispiel Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.

Mehr

KLAUSUR IN BIOMATHEMATIK WS 2007/08 MONTAG, DEN 28. JANUAR 2008

KLAUSUR IN BIOMATHEMATIK WS 2007/08 MONTAG, DEN 28. JANUAR 2008 KLAUSUR IN BIOMATHEMATIK WS 2007/08 MONTAG, DEN 28. JANUAR 2008 Name: Matrikelnummer: Unterschrift: Aufgabe 1: Welche der folgenden Aussagen ist falsch? A. Der Median ist weniger stark von Ausreißern beeinflusst

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Einflußfaktoren auf die serologische Einzeltierdiagnostik der Paratuberkulose mittels ELISA

Einflußfaktoren auf die serologische Einzeltierdiagnostik der Paratuberkulose mittels ELISA Einflußfaktoren auf die serologische Einzeltierdiagnostik der Paratuberkulose mittels ELISA Heike Köhler Bundesforschungsanstalt für Viruskrankheiten der Tiere, Standort Jena NRL Paratuberkulose Diagnostik

Mehr

Biometrie des Methodenvergleichs

Biometrie des Methodenvergleichs Biometrie des Methodenvergleichs S. T. Kießig Ruhr-Plasma-Zentrum Bochum E. Ulrich Haema AG Präanalytik der Hämoglobinbestimmung BÄK-RiLi hat nur Grenzwerte festgelegt Nicht festgelegt: Meßmethode direkt:

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Grundkurs Statistik für Politologen und Soziologen

Grundkurs Statistik für Politologen und Soziologen Grundkurs Statistik für Politologen und Soziologen Bearbeitet von Uwe W Gehring, Cornelia Weins 5., überarbeitete Auflage 2010. Buch. 345 S. Softcover ISBN 978 3 531 16269 0 Format (B x L): 14,8 x 21 cm

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen.

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. 1 Einleitung...1 1.1 Die Bedeutung der Statistik für die Medizin...1 1.2 Die medizinische

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die Wahrscheinlichkeiten für das Eintreten von Ereignissen durch das Eintreten anderer Ereignisse

Mehr

Lernziele Intensivblock I1 Basics! Klinische Epidemiologie. Basics! I1. Tag 1 Tag 2 Tag 3. Schätzen & Testen. Deskriptive Statistik

Lernziele Intensivblock I1 Basics! Klinische Epidemiologie. Basics! I1. Tag 1 Tag 2 Tag 3. Schätzen & Testen. Deskriptive Statistik Lernziele Intensivblock I1 Basics! Klinische Epidemiologie Stand: März 2017 Basics! I1 Tag 1 Tag 2 Tag 3 Evidenz Schätzen & Testen Zusammenhänge EBM I: Grundlagen ärztlichen Handelns Deskriptive Statistik

Mehr

Diagnostisches Testen. Coniecturalem artem esse medicinam

Diagnostisches Testen. Coniecturalem artem esse medicinam Diagnostisches Testen Coniecturalem artem esse medicinam Würfelspiel A: ein fairer Würfel zeigt eine gerade Augenzahl B: ein fairer Würfel zeigt mindestens 4 Punkte A: B: A B: P(A=1/2 P(B=1/2 P(A B=2/6

Mehr

Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft.

Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft. Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft. Schon immer wurde die Menschheit von Krankheiten bedroht und oft konnte eine Frühdiagnose mit nachfolgender

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1 2.1 Beispiele 2.2 Odds Ratio 2.3 Modell der logistischen Regression 2.3.1 Modellgleichung 2.3.2 Voraussetzungen 2.4 Schätzungen, Tests und Modellgüte 2.4.1 Schätzung der logistischen Regressionskoeffizienten

Mehr

Würste. Würste. Würste. Risikokompetenz: Schlüssel für eine bessere Medizin. 18% mehr bedeutet: Schaan, 8. März Dr.

Würste. Würste. Würste. Risikokompetenz: Schlüssel für eine bessere Medizin. 18% mehr bedeutet: Schaan, 8. März Dr. Schaan, 8. März 208 Risikokompetenz: Schlüssel für eine bessere Medizin Dr. Mirjam Jenny Die Weltgesundheitsorganisation (WHO) hat verarbeitetes Fleisch in Gruppe - krebserregend für Menschen (wie auch

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Südtiroler Akademie für Allgemeinmedizin. Seminar

Südtiroler Akademie für Allgemeinmedizin. Seminar Südtiroler Akademie für Allgemeinmedizin Seminar 16.10.2015 Diagnostische Entscheidungsfindung in der Allgemeinmedizin Andreas Sönnichsen Institut für Allgemeinmedizin und Familienmedizin Universität Witten/Herdecke

Mehr

The ROC curve in screening with multiple markers: An application to the triple test in prenatal diagnostics

The ROC curve in screening with multiple markers: An application to the triple test in prenatal diagnostics Statistische Methoden in Evidenz-basierter Medizin und Health Technology Assessment 20. bis 21. November 2003 Freiburg The ROC curve in screening with multiple markers: An application to the triple test

Mehr

Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik Diagnose und Prognose WS 06/07 Übung 5

Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik Diagnose und Prognose WS 06/07 Übung 5 Informationsblatt zum Gestationsdiabetes (Schwangerschaftsdiabetes) Gruppe B Der Schwangerschafts- oder Gestationsdiabetes () ist eine spezielle Form der Zuckerkrankheit, die sich während einer Schwangerschaft

Mehr

Retrospektives Studiendesign

Retrospektives Studiendesign Studiendesign Zielsetzungen, Studientypen Genau wie für die klassische Labordiagnostik muss auch für die Genexpressionsanalyse (und andere hochdimensionale Verfahren wie z.b. die Massenspektrometrie) vor

Mehr

Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT.

Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT. Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT. HIV - SCHNELLTEST Die Immunschwächekrankheit AIDS wird durch das HI-Virus, welches 1993 entdeckt wurde, verursacht. Die Krankheit gilt bis heute

Mehr

Statistische Überlegungen: Eine kleine Einführung in das 1 x 1

Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 PD Dr. Thomas Friedl Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm München, 23.11.2012 Inhaltsübersicht Allgemeine

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Biomathematik für Mediziner, Klausur SS 2000 Seite 1

Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

Sitzung 4: Übungsaufgaben für Statistik 1

Sitzung 4: Übungsaufgaben für Statistik 1 1 Sitzung 4: Übungsaufgaben für Statistik 1 Aufgabe 1: In einem Leistungstest werden von den Teilnehmern folgende Werte erzielt: 42.3; 28.2; 30.5, 32.0, 33.0, 38.8. Geben Sie den Median, die Spannweite

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Diagnose und Prognose: Kurzfassung 3

Diagnose und Prognose: Kurzfassung 3 Diagnose und Prognose: Kurzfassung 3 Themen und Ziele der 3. Vorlesung 1. Diagnostische Tests: Fehlentscheidungen möglich 2. Prädiktive Werte: Beschreibung der Wahrscheinlichkeit einer Fehlentscheidung

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Grundbegriffe. Allgemein. Merkmale. Verschiedene Variablen

Grundbegriffe. Allgemein. Merkmale. Verschiedene Variablen Biometrie 1 Grundbegriffe Allgemein Grundgesamtheit: Die Menge aller Objekte, auf die sich die Aussage einer Studie beziehen soll Stichprobe (=n): Der Teil der Grundgesamtheit, der befragt/ untersucht

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Tabelle 4 : Berechnete Konzeptionen pro Monat aus den Ausgangsdaten Lebendgeburten pro Monat am Beispiel der gesamten Kontrollen.

Tabelle 4 : Berechnete Konzeptionen pro Monat aus den Ausgangsdaten Lebendgeburten pro Monat am Beispiel der gesamten Kontrollen. 5 Ergebnisse 5.1 Analyse der Kontrollgruppe 5.1.1 Bestimmung des Konzeptionstermins Entsprechend dem unter 4.2.2 geschilderten Verfahren wurden aus den Ausgangsdaten, d.h. der Aufschlüsselung der Lebendgeburten

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr