f(ξ k )(x k x k 1 ) k=1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "f(ξ k )(x k x k 1 ) k=1"

Transkript

1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt der Fläche unter dem Grph der beschränkten Funktion f : [, b] R ermitteln, so zerlegt mn ds Intervll [, b] durch Punkte = x 0 < x < x <... < x n = b und bezeichnet eine solche Zerlegung mit Z n. Mn wählt ußerdem Zwischenpunkte ξ k [x k, x k ], k =,..., n. Die sogennnte Riemnnsche Summe S(Z n ) := n f(ξ k )(x k x k ) stellt die Summe der Flächen ller Rechtecke [x k, x k ] [0, f(ξ k )] dr. k= Wenn mn diese Zerlegung immer mehr verfeinert, d.h. die Zhl der Zerlegungspunkte erhöht und diese immer dichter zusmmenliegen, so ist intuitiv klr, dss die Riemnnsche Summe immer besser die gesuchte Fläche unter der Kurve pproximiert. Definition. Es sei f eine uf dem Intervll [, b] definierte Funktion. Existiert unbhängig von der Whl der Zerlegung und der Zwischenpunkte der Grenzwert lim n n f(ξ i )(x i x i ) =: i= b f(x), so heißt er ds bestimmte Integrl von f über [, b], die Rndpunkte heißen Integrtionsgrenzen. f wird Integrnd gennnt.

2 Stz. Es sei f eine uf dem Intervll [, b] definierte, beschränkte Funktion, die n höchstens endlich vielen Stellen nicht stetig ist (ein solche Funktion nennt mn stückweise stetig), dnn existiert ds Integrl b f(x). Beispiel: e x 0 Differentition und Integrtion Definition. Eine uf dem Intervll I differenzierbre Funktion F heißt Stmmfunktion von f, wenn F (x) = f(x) für lle x I gilt.

3 Stz. (Huptstz der Differentil- und Integrlrechnung) Es sei f : [, b] R eine stetige Funktion. Dnn gilt:. Existenz von Stmmfunktionen. Die durch F (x) := x f(t) dt, x [, b], definierte Funktion ist eine Stmmfunktion von f. Jede ndere Stmmfunktion von f ht die Form F(x) = F (x) + C, C R.. Integrlberechnung. Mit einer beliebigen Stmmfunktion F von f gilt: b f(x) = F(x) b := F(b) F(). Stz 3. (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es eine Stelle ξ (, b), so dss b f(x) = (b )f(ξ). 3 Integrtionsmethoden 3. Prtielle Integrtion Für je zwei uf einem Intervll I = (, b) stetig differenzierbre Funktionen u und v ist wegen der Produktregel der Differentilrechnung (uv) = u v + uv die Funktion uv eine Stmmfunktion von u v + uv, d.h. [u (x)v(x) + u(x)v (x) ] = u(x)v(x) + C 3

4 bzw. Formel der prtiellen Integrtion. u (x)v(x) = u(x)v(x) u(x)v (x). Für ds bestimmte Integrl lutet die entsprechende Formel: b u (x)v(x) = u(x)v(x) b b u(x)v (x). Beispiele: xe x ln x sin x 3. Substitutionsmethode Grundlge für die Substitutionsmethode der Integrlrechnung ist die Kettenregel der Differentition d F(g(x)) = F (g(x))g (x), d.h. mit f(x) = F (x), ist F(g(x)) eine Stmmfunktion von f(g(x))g (x). Substitutionsregel I. f(g(x))g (x) = F(g(x)) + C. Für ds bestimmte Integrl erhält mn dmit b f(g(x))g (x) = F(g(b)) F(g()). 4

5 Beispiele: f (x) f(x) e sin x cos x b ln x x Substitutionsregel II. Berechnung des Integrls f(x). Wir substituieren: x = g(y) mit einer umkehrbren Funktion g, dnn ist = g (y) dy und = g(y ) y = g () und b = g(y b ) y b = g (b) und dmit gilt für ds unbestimmte Integrl: f(x) = f(g(y)) g (y) dy = H(y) + C = H(g (x)) + C und für ds bestimmte Integrl: b f(x) = g (b) g () f(g(y)) g (y) dy. Beispiele: b cos (3x + 4) 3 x 3x

6 x 3.3 Integrtion rtionler Funktionen Es geht hierbei um die Integrtion echt gebrochen rtionler Funktionen. Im Allgemeinen ist eine gebrochen rtionle Funktion von der Gestlt f(x) = P(x) Q(x) = g(x) + p(x) Q(x) () mit Polynomen P, Q, g, p. Die Funktion heißt echt gebrochen rtionl, wenn der Polynomgrd des Zählerpolynoms kleiner ls der Polynomgrd des Nennerpolynoms ist. Ist die gebrochen rtionle Funktion nicht echt gebrochen rtionl, so knn mn immer ein Polynom bdividieren, so dss die verbleibende gebrochen rtionle Funktion echt gebrochen rtionl ist. Dies ist in der Formel () drgestellt. Die gebrochen rtionle, wobei der Polynomgrd von P(x) größer ls der Polynomgrd von Q(x), knn durch Division in ein Polynom g(x) und eine echt gebrochen rtionle Funktion p(x) Q(x) zerlegt werden. Ds Polynom g(x) knn leicht integriert werden, so dss wir nur echt gebrochen rtionle Ausdrücke untersuchen müssen. Funktion P(x) Q(x) Beispiele: f(x) = x5 3x 3 + x + x x 6

7 f(x) = x4 x 3 x x + 3 x Prtilbruchzerlegung Ausgngspunkt für die Prtilbruchzerlegung ist eine echt gebrochen rtionle Funktion f(x) = p(x) q(x) mit der Eigenschft, dss der Grd des Zählerpolynoms p(x) echt kleiner ls der Grd des Nennerpolynoms q(x) ist. Dnn werden folgende Schritte durchgeführt:. Schritt: Herstellen einer Produktdrstellung des Nennerpolynoms der folgenden Form: q(x) = c (x ) k (x ) k (x r ) k r (x + b x + c ) l (x + b x + c ) l (x + b s x + c s ) l s, dbei stehen die Terme in der ersten Zeile für reelle Nullstellen des Nennerpolynoms und die Exponenten k i geben die Vielfchheit der reellen Nullstelle i n. Die Terme in der zweiten Zeile stehen für Pre konjugiert komplexer Nullstellen des Nennerpolynoms (sind lso Polynome. Grdes ohne reelle Nullstellen) und der Exponent l i gibt die Vielfchheit dieses Pres nicht-reeller Nullstellen n.. Schritt: Gemäß der erhltenen Zerlegung des Nennerpolynoms folgt der Anstz: ({ p(x) q(x) = c A (x ) + A (x ) A } k (x ) k { A + (x ) A } k (x ) k A rk r (x r ) k r { B x + C + (x + b x + c ) + B x + C (x + b x + c ) B } l x + C l (x + b x + c ) l { B x + C + (x + b x + c ) B } l x + C l (x + b x + c ) l B ) sl s x + C sls (x + b s x + c s ) l s 7

8 mit unbeknnten Koeffizienten A jk, B il, C il. 3. Schritt: Berechnung der unbeknnten Koeffizienten A jk, B il, C il. Dzu wird zunächst die Anstzgleichung mit dem Nennerpolynom q(x) multipliziert. Nun ergeben sich Bestimmungsgleichungen für die unbeknnten Koeffizienten entweder durch Koeffizientenvergleich oder durch Einsetzen spezieller x-werte (z.b. x =,,...). Beispiele: f(x) = p(x) q(x) = x + 4x 9 (x )(x + 3)(x 4) f(x) = p(x) q(x) = 9x x + 9 (x ) (x + x + 5) 8

9 f(x) = p(x) q(x) = x3 + x x + (x + ) Die bisher behndelten Integrtionsregeln genügen, um jede gebrochenrtionle reelle Funktion zu integrieren. D mn eine solche stets in die Summe us einem Polynom und einer echt gebrochenrtionlen Funktion zerlegen knn und Polynome einfch zu integrieren sind, bruchen wir uns nur noch überlegen, wir wir mit dem echt gebrochenrtionlen Anteil verfhren. Dfür wenden wir die Zerlegung in reelle Prtilbrüche n. Wegen der Linerität des Integrls müssen wir lediglich die Integrle zu den Prtilbrüchen ngeben, nämlich folgende: (i) (ii) (iii) x, (x ) k, k >, x + px + q, (iv) (v) (vi) x + b x + px + q, (x + px + q) k, k >, x + b (x, k >, + px + q) k wobei die Nennerpolynome x + px + q keine reellen Nullstellen mehr hben, d.h. die Diskriminnte ( p ) q ist negtiv. Hndeln wir lle Fälle b: (i) Linere Substitution in einem Grundintegrl: x = ln x + C 9

10 (ii) Linere Substitution in einem Grundintegrl: (x ) k = k (x ) k + C (iii) Linere Substitution in einem Grundintegrl: x + px + q = = ( x + p q p 4 q p 4 ) + ( q ( p )) = rctn x + p q p 4 q ( p ) + C, ( x+ p q p 4 ) + x + px + q = rctn x + p + C. 4q p 4q p (iv) Wir frisieren den Zähler so, dss wir uf die oben besprochene Form Ableitung durch Funktion kommen: x + b x + px + q = x + p x + px + q + b p x + px + q, x + b x + px + q = ( ln x + px + q + b p ) x + px + q. Ds verbleibende Integrl ist in (iii) gelöst worden. (v) Wir gehen von (x + px + q) k us und integrieren prtiell, wobei v (x) =, u(x) = (x + px + q) k gesetzt wird, d.h. v(x) = x, (k )(x + p) u (x) = (x + px + q) k : = (x + px + q) k = x x(k )(x + p) (x + px + q) k + (x + px + q) k x (x + (k ) + px + q) k x + px + q (x + px + q) k } {{} = (x + px + q) k +(k ) px q (x + px + q) k 0

11 Fsst mn die beiden gleichen Integrle zusmmen, ergibt sich = (3 k) (x + px + q) k = x (x + px + q) k + ( k)p x + p (x + px + q) k ( k) p + 4q + (x + px + q) k x (x + px + q) k + p (x + px + q) k + ( k)( p + 4q) (x + px + q) k. Dmit sind wir beim gesuchten Integrl ngekommen und können nch diesem umstellen: (x + px + q) k = x + p (k )(4q p )(x + px + q) k + (3 k) ( k)(4q p ) (x + px + q) k. Dies ist eine Rekursionsformel, die ds gesuchte Integrl für k > uf ein Integrl desselben Typs mit Exponent k bzw. für k = uf den Fll (iii) zurückführt. (vi) Unsere Strtegie ist wieder, den Zähler dditiv zu zerlegen: x + b (x + px + q) k = x + p (x + px + q) k + x + b (x + px + q) k = ( ( k + )(x + px + q) k + b p (x + px + q) k b p Ds verbleibende Integrl ist schon in (v) behndelt worden. ) (x + px + q) k Beispiele: x + 4x 9 (x )(x + 3)(x 4) 9x x + 9 (x ) (x + x + 5)

12 x 3 + x x + (x + ) 4 Uneigentliche Integrle Bisher hben wir bestimmte Integrle b f(x) untersucht, bei denen eine beschränkte Funktion f über ein ebenflls beschränktes, bgeschlossenes Intervll integriert wurde. Nun erweitern wir den Integrlbegriff. Definition 3. Wir sgen, ds uneigentliche Integrl f(x) konvergiert, flls f integrierbr ist uf [, b] für lle b > und f(x) := lim b existiert. Sonst sgen wir, ds Integrl divergiert. b f(x) Auf nloge Weise wird uch die Konvergenz oder Divergenz des Integrls b erklärt. Beispiele: x f(x) x

13 Auch ds uneigentliche Integrl lässt sich ls (vorzeichenbehftete) Fläche unter einer Kurve deuten. Definition 4. Flls f : R R eine Funktion ist, so dss existieren, so sgen wir, dss f(x) := 0 f(x) und f(x) konvergiert, mit dem Wert 0 f(x) + 0 f(x). 0 f(x) beide Mn bechte, dss ds nicht gleichwertig zur Existenz des Grenzwertes lim f(x) ist. Dieser ist z.b. für die Funktion f(x) = x Null, während beide uneigentlichen Integrle divergieren. Es gibt noch ndere Arten unbestimmter Integrle: Definition 5. Mn schreibt für eine Funktion f : [, b) R b und sgt, ds uneigentliche Integrl f(x) := lim ε 0+ b b ε f(x), f(x) konvergiert, flls der rechtsstehende Grenzwert und die in ihm uftretenden Integrle existieren. Andernflls nennt mn ds Integrl divergent. 3

14 Für Funktionen f : (, b] R geht mn nlog vor. Beispiele: x 0 x 0 Definition 6. Ist f : [, b] \ {c} R uf einem Intervll [, b] mit Ausnhme eines Punktes c definiert, so bedeute b f(x) := c f(x) + b c f(x), flls beide rechtsstehenden uneigentlichen Integrle existieren. Beispiel: x Mn bechte, dss obige Definition nicht gleichwertig ist zur Existenz des Grenzwertes ( c ε ) b lim f(x) + f(x). () ε 0+ c+ε 4

15 Dieser ist z.b. für die Funktion f(x) = x uneigentlichen Integrle divergieren. uf [, ] \ {0} gleich Null, obwohl beide Flls nur () existiert, dnn spricht mn vom Cuchyschen Huptwert des Integrls, geschrieben v.p. v.p. steht für vleur principle. Wir hben lso b f(x). v.p. x = 0. Beispiel: { x, wenn x < 0 f(x) mit f(x) = x + x, wenn x > 0 5

Fur das unbestimmte Integral gilt. f(x) dx + b

Fur das unbestimmte Integral gilt. f(x) dx + b . Integrtionsregeln.. Linerität. Fur ds unbestimmte Integrl gilt (f(x) bg(x)) = f(x) b g(x),, b R... Prtielle Integrtion. Fur je zwei uf einem Intervll I = (, b) stetig differenzierbre Funktionen u und

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen Friedrich-Schiller-Universität Jen Institut für Physiklische Chemie BC 1.2 Mthemtik PD Dr. Thoms Bocklitz BC 1.2 Mthemtik Zusmmenfssung Kpitel III: Funktionen einer Veränderlichen 1 Konzept Funktionen

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mthemtik und Nturwissenschften Fchrichtung Mthemtik, Institut für Numerische Mthemtik GRUNDLAGEN MATHEMATIK 5. Integrlrechnung Prof. Dr. Gunr Mtthies Wintersemester 2015/16 G. Mtthies Grundlgen Mthemtik

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

Übungsaufgaben. Achtung(!):

Übungsaufgaben. Achtung(!): Übungsufgben 8. Übung: Woche vom 5.12.-9.12.16 (Int.-R. I): Heft Ü1: 11.1 (,b,g,j); 11.2 (e,g,l,m,p); 11.3 (,c-e,q,r) Achtung(!): 2. Test (relle Fkt., Diff.-rechng.) wird m 2.12. freigeschlten (Duer: bis

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

6.6 Integrationsregeln

6.6 Integrationsregeln 50 KAPITEL 6. DAS RIEMANN-INTEGRAL Beispiel 6.5.4 (Differenzierbreit und gleichmäßige Konvergenz) Die Funtionenfolge {f n (x)} n N definiert durch f n (x) = n sin(nx) onvergiert uf jedem Intervll gleichmäßig

Mehr

Der Hauptsatz der Differential und Integralrechnung

Der Hauptsatz der Differential und Integralrechnung Kpitel 4 Der Huptstz der Differentil und Integrlrechnung Bemerkung 4. Motivtion. Die Integrtionstheorie wurde im letzten Kpitel recht weit entwickelt. Nun wird ein Werkzeug bereitgestellt, mit welchem

Mehr

10 Integrationstechniken

10 Integrationstechniken Integrtionstechniken. Wichtige Stmmfunktionen α d = α + α+, d = log e d = e cos d = sin sin d = cos d = rcsin d = rctn + cosh d = sinh sinh d = cosh + d = sinh d = cosh α R, α. Linerität der Integrtion

Mehr

9.3 Der Hauptsatz und Anwendungen

9.3 Der Hauptsatz und Anwendungen 9.3 Der Huptstz und Anwendungen Definition: Seien Funktionen F, f : [, b] R Funktionen mit F (x) = f(x), x b. Dnn heißt F(x) Stmmfunktion von f(x). Bemerkung: Ist F(x) eine Stmmfunktion von f(x), so sind

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

21. Das bestimmte Integral

21. Das bestimmte Integral 1. Ds bestimmte Integrl Wir betrchten eine Kurve y = f(x) mit f(x) 0 uf dem Intervll [, b]. Obwohl der Flächeninhlt eines Rechteces (und in weiterer Folge eines Dreieces und nderer elementrer geometrischer

Mehr

Elementare Integrationstechniken

Elementare Integrationstechniken Elementre Integrtionstechniken Zusmmenfssung Wir wiederholen einfche und häufig benutzte Integrtionstechniken und geben zu jedem Kpitel uch einige Übungsbeispiele n. Die Menge n guten Anlysisbüchern ist

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

5 Integralrechnung. 5.2 Das bestimmte Integral. 5.3 Das unbestimmte Integral

5 Integralrechnung. 5.2 Das bestimmte Integral. 5.3 Das unbestimmte Integral Wiedergegeben werden Ausschnitte der Vorlesung Anlysis von Prof. Brbirz im Sommersemester 00 m Fchbereich Elektrotechnik und Informtik der Fchhochschule Hmburg. Für die Richtigkeit wird keine Gewähr übernommen.

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b].

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b]. Krlsruhe Institute of Technology 3 Integrtion (3.1) ) Z = {x,...,x n } mit = x < x 1 < < x n = b heißt eine Zerlegung von [,b] in endlich viele Teilintervlle. Z (oder Z [, b]) sei die Menge ller Zerlegungen

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Riemann-integrierbare Funktionen

Riemann-integrierbare Funktionen Kpitel VI Riemnn-integrierbre Funktionen 26 Ds Riemnn-Integrl ls Grenzwert von Zwischensummen 27 Der Huptstz der Differentil- und Integrlrechnung nebst Folgerungen 28 Äquivlente Definitionen des Riemnn-

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 27 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 8. August

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale KAPITEL 6 Doppel- und Dreifchintegrle 6. Doppelintegrle................................... 74 6.. Flächeninhlt ebener ereiche.......................... 74 6..2 Definition und Eigenschften des Doppelintegrls..............

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

9 Eindimensionale Integralrechnung

9 Eindimensionale Integralrechnung 9 Eindimensionle Integrlrechnung 9. Flächeninhlt und Stmmfunktionen 9.. Flächeninhlt Beispiel 9.. Wir betrchten eine Menge G(f,,b) im R 2, die nch unten durch die Abszisse, nch oben durch den Grphen einer

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

9. Teil: Integralrechnung

9. Teil: Integralrechnung Brückenkurs Mthemtik, Institut für Chemie und Biochemie, Freie Universität Berlin 9 Teil: Integrlrechnung Ausgehend von einer gegebenen differenzierbren Funktion f(x gelingt mit den beknnten Ableitungsregeln

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Kapitel 3 Integralrechnung

Kapitel 3 Integralrechnung Kpitel 3 Integrlrechnung Der Ausgngspunkt für die Entwicklung der Integrlrechnung ist ds Problem der Berechnung krummlinig begrenzter Flächen. Bereits in der Antike gelng es Archimedes, den Flächeninhlt

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

5 Das Riemannsche Integral 1

5 Das Riemannsche Integral 1 5 Ds Riemnnsche Integrl 5. Drbouxsche Summen Sei I [, b] mit < b und f : [, b] IR sei beschränkt (d. h. f(i) ist beschränkt). Z {x, x,..., x n } mit x < x < x 2 < < x n b heißt Zerlegung von [, b]. I k

Mehr

Kapitel 8. Integration, gewöhnliche Differentialgleichungen. 8.1 Bestimmtes und unbestimmtes Integral Das bestimmte Integral

Kapitel 8. Integration, gewöhnliche Differentialgleichungen. 8.1 Bestimmtes und unbestimmtes Integral Das bestimmte Integral Inhltsverzeichnis 8 Integrtion, gewöhnliche Differentilgleichungen 5 8. Bestimmtes und unbestimmtes Integrl............... 5 8.. Ds bestimmte Integrl.................... 5 8..2 Ds unbestimmte Integrl,

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y KAPITEL 18 UND 19 H. KOCH 1. VORLESUNG VOM 08.01.2018 Kpitel 18 Definition 1 (Zerlegungen, Treppenfunktionen, Regelfunktionen) Sei < b. 1. Eine Zerlegung τ von [, b] besteht us einer Zhl N N und (N + 1)

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer Integrlrechnung 18.01.08 Ds unbestimmte Integrl/Stmmfunktion Ds bestimmte Integrl/Flächenberechnung Integrl ls Umkehrung der Ableitung Idee: kehre den Prozess des Dierenzierens um. f sei eine reelle Funktion

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer Integrlrechnung 20.05.09 Ds unbestimmte Integrl/Stmmfunktion Ds bestimmte Integrl/Flächenberechnung Integrl ls Umkehrung der Ableitung Idee: kehre den Prozess des Dierenzierens um. f sei eine reelle Funktion

Mehr

13.1 Definition: Es sei I = [a, b] abgeschlossenes Intervall. Die Menge

13.1 Definition: Es sei I = [a, b] abgeschlossenes Intervall. Die Menge V. Integrlrechnung 13. Ds Riemnn-Integrl 13.1 Definition: Es sei I = [, b] bgeschlossenes Intervll. Die Menge B([, b]) := {f f : [, b] R, f beschränkt} heißt Menge der beschränkten Funktionen (uf dem Intervll

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a Prof. Dr. H. Brenner Osnbrück WS 203/204 Anlysis I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f: [, b] R knn mn f(t)dt b ls die Durchschnittshöhe der Funktion

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnbrück WS 20/202 Mthemtik für Anwender I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f :[,b] R knn mn f(t)dt b ls die Durchschnittshöhe

Mehr

Übungen mit dem Applet Grundfunktionen und ihre Integrale

Übungen mit dem Applet Grundfunktionen und ihre Integrale Grundfunktionen und ihre Integrle 1 Übungen mit dem Applet Grundfunktionen und ihre Integrle 1 Ziele des Applets... 2 2 Begriffe und ihre Drstellung mit dem Applet... 2 b 2.1 Bestimmtes Integrl I (b) =

Mehr

Analysis II. 5 Integration. Inhaltsverzeichnis. 5.1 Das Riemann-Integral. Walter Bergweiler. Sommersemester 2007 Fassung vom 6.

Analysis II. 5 Integration. Inhaltsverzeichnis. 5.1 Das Riemann-Integral. Walter Bergweiler. Sommersemester 2007 Fassung vom 6. 5 Integrtion Anlysis II Wlter Bergweiler Sommersemester 7 Fssung vom 6. Juli 7 Diese Vorlesung ist eine Fortsetzung der Vorlesung Anlysis I us dem Wintersemester 6/7. Die Nummerierung dieser Vorlesung

Mehr

Anwendungen der Integralrechnung

Anwendungen der Integralrechnung Anwendungen der Integrlrechnung 8. Flächeninhlt und Flächenschwerpunkt............... 4 8. Kurvenlänge............................. 7 8. Rottionskörper........................... 9 8.3 Whrscheinlichkeitsverteilungen

Mehr

(t), t < v2 t1 t2. (t), t. v3 t2 t3. Im Beispiel oben wäre und konstant, (Geradenstück) wobei so zu bestimmen ist, dass v3 t3 ist.

(t), t < v2 t1 t2. (t), t. v3 t2 t3. Im Beispiel oben wäre und konstant, (Geradenstück) wobei so zu bestimmen ist, dass v3 t3 ist. Zurück Integrtion von Funktionen einer reellen Vriblen Stnd 4.5.06 Kurzskript Integrtion in R Regeln Nvigtion Einfche Integrtionsregeln Prtielle Integrtion Substitutionsregel Integrtion über komplexwertige

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

In diesem Kapitel stellen wir einige wichtige Verfahren zur näherungsweisen Berechnung bestimmter Integrale b

In diesem Kapitel stellen wir einige wichtige Verfahren zur näherungsweisen Berechnung bestimmter Integrale b Kpitel Numerische Integrtion In diesem Kpitel stellen wir einige wichtige Verfhren zur näherungsweisen Berechnung bestimmter Integrle f(x)dx vor. Integrtionsufgbe: Zu gegebenem integrierbrem f : [, b]

Mehr

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei 8. Integrierbre Funktionen Definition 3.3 (Treppenfunktionen). Eine Funktion t : [,b] R heißt Treppenfunktion, flls es endlih viele Punkte x < x 1 < < x n mit x = und x n = b gibt, so dss f uf jedem der

Mehr